
An Extensible Meta-Learning Approach for

Scalable and Accurate Inductive Learning

Philip Kin-Wah Chan

Submitted in partial ful�llment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences.

Columbia University

1996

c

 Philip Kin-Wah Chan

1996

ALL RIGHTS RESERVED

ABSTRACT

An Extensible Meta-Learning Approach for

Scalable and Accurate Inductive Learning

Philip Kin-Wah Chan

Much of the research in inductive learning concentrates on problems with relatively

small amounts of data. With the coming age of ubiquitous network computing, it is

likely that orders of magnitude more data in databases will be available for various

learning problems of real world importance. Some learning algorithms assume that

the entire data set �ts into main memory, which is not feasible for massive amounts

of data, especially for applications in data mining. One approach to handling a large

data set is to partition the data set into subsets, run the learning algorithm on each

of the subsets, and combine the results. Moreover, data can be inherently distributed

across multiple sites on the network and merging all the data in one location can be

expensive or prohibitive.

In this thesis we propose, investigate, and evaluate a meta-learning approach to

integrating the results of multiple learning processes. Our approach utilizes machine

learning to guide the integration. We identi�ed two main meta-learning strategies:

combiner and arbiter. Both strategies are independent to the learning algorithms

used in generating the classi�ers. The combiner strategy attempts to reveal relation-

ships among the learned classi�ers' prediction patterns. The arbiter strategy tries to

determine the correct prediction when the classi�ers have di�erent opinions. Vari-

ous schemes under these two strategies have been developed. Empirical results show

that our schemes can obtain accurate classi�ers from inaccurate classi�ers trained

from data subsets. We also implemented and analyzed the schemes in a parallel and

distributed environment to demonstrate their scalability.

Contents

Table of Contents i

List of Figures vi

List of Tables x

1 Introduction 1

1.1 Inductive Learning, Knowledge-Based Systems and Data Mining : : : 3

1.2 Problem Statement and Our Approach : : : : : : : : : : : : : : : : : 6

1.3 Brief Summary of Results and Contributions : : : : : : : : : : : : : : 9

1.4 Organization of the Thesis : 11

2 Inductive Learning and Related Work 14

2.1 Improving Accuracy : 18

2.1.1 Single learning algorithm and diverse classi�ers : : : : : : : : 18

2.1.2 Integrating multiple learning algorithms : : : : : : : : : : : : 19

2.2 Improving E�ciency : 22

2.3 Incremental Learning : 24

2.4 Our Approach : 24

2.5 Community : 25

3 Meta-Learning 26

i

3.1 Computing Initial Base Classi�ers : 28

3.2 Integrating Base Classi�ers : 30

3.3 Voting, Combining and Arbitration : : : : : : : : : : : : : : : : : : : 32

3.4 Meta-learning by Combining and Arbitration : : : : : : : : : : : : : : 33

3.4.1 Combiner strategy : 34

3.4.2 Arbiter strategy : 37

3.4.3 Hybrid strategy : 42

4 Experimental Apparatus and Methodology 44

4.1 Learning Algorithms : 44

4.2 Learning Tasks : 45

4.2.1 Molecular biology sequence analysis data : : : : : : : : : : : : 45

4.2.2 Arti�cial data : 50

4.3 Experimental Methodology : 51

4.4 Limitations in Experiments : 52

5 One-level Meta-Learning on Partitioned Data 54

5.1 Issues : 56

5.2 Experiments and Results : 57

5.2.1 Voting, statistical, and meta-learning techniques : : : : : : : : 58

5.2.2 Partitioned data with replication : : : : : : : : : : : : : : : : 61

5.3 Summary : 67

6 Hierarchical Meta-Learning on Partitioned Data 68

6.1 Arbiter Tree : 69

6.1.1 Discussion : 70

6.2 Combiner Tree : 72

6.3 Related Work : 73

ii

6.4 Experimental Results for Arbiter Tree : : : : : : : : : : : : : : : : : 74

6.4.1 Bounded arbiter training sets : : : : : : : : : : : : : : : : : : 76

6.4.2 Order of arbiter trees and training set size limit : : : : : : : : 76

6.4.3 Unbounded arbiter training sets : : : : : : : : : : : : : : : : : 78

6.4.4 Reducing the largest arbiter training set size : : : : : : : : : : 81

6.5 Experimental Results for Combiner Tree : : : : : : : : : : : : : : : : 85

6.6 Summary : 89

7 Local Meta-Learning with Imported Remote Classi�ers 91

7.1 Local Meta-Learning : 92

7.2 Experimental Results : 95

7.3 Experimental Results on Data Replication : : : : : : : : : : : : : : : 100

7.4 Summary : 109

8 Analyzing the Integration of Multiple Learned Classi�ers 110

8.1 Notations : 110

8.2 Metrics : 111

8.2.1 Accuracy Di�erence and Improvement : : : : : : : : : : : : : 112

8.2.2 Diversity : 115

8.2.3 Coverage : 119

8.2.4 Correlated error : 123

8.2.5 Specialty : 125

8.3 Analyzing Arbiters : 127

8.3.1 Arbiter accuracy : 127

8.3.2 Arbiter usage : 128

8.3.3 Arbiter e�ectiveness : 129

8.4 Summary : 131

iii

9 E�ciency and Scalability 132

9.1 Serial Evaluation of Learning Algorithms : : : : : : : : : : : : : : : : 132

9.1.1 Theoretical time complexity : : : : : : : : : : : : : : : : : : : 133

9.1.2 Empirical time performance : : : : : : : : : : : : : : : : : : : 135

9.2 Parallel Evaluation of Hierarchical

Meta-learning : 141

9.2.1 Notations and De�nitions : 142

9.2.2 Speedup analysis : 143

9.2.3 Scalability analysis : 146

9.2.4 Empirical simulation : 147

9.2.5 Parallel implementation : 149

9.2.6 Experiments on the parallel implementation : : : : : : : : : : 151

9.3 Summary : 156

10 Multistrategy Meta-Learning 158

10.1 Multistrategy Meta-learning on Unpartitioned Data : : : : : : : : : : 159

10.1.1 Experiments : 160

10.1.2 Results : 163

10.1.3 Discussion : 166

10.2 Multistrategy Meta-learning on Partitioned Data : : : : : : : : : : : 167

10.2.1 Issues : 168

10.2.2 Experiments : 169

10.2.3 Results : 174

10.3 Comparing Multistrategy Combiner with

Stacked Generalization : 176

10.3.1 Experiments : 177

10.3.2 Results : 177

10.3.3 Discussion : 184

iv

10.4 Summary : 185

11 Conclusion 187

11.1 Results and Contributions : 188

11.2 Research Directions : 191

11.3 Final Remarks : 194

Bibliography 195

v

List of Figures

2.1 Inductive Learning. : 14

3.1 Meta-learning. : 27

3.2 A combiner with two classi�ers. : 34

3.3 Sample training sets generated by the class-combiner and class-attribute-

combiner schemes with two base classi�ers. : : : : : : : : : : : : : : : 35

3.4 Sample training set generated by the binary-class-combiner scheme

with two base classi�ers. : 36

3.5 A sample combiner learned from 4 base classi�ers. One classi�er c1

survived. : 37

3.6 An arbiter with two classi�ers. : 38

3.7 Sample training sets generated by the three arbiter schemes with two

base classi�ers. : 40

3.8 Sample training sets generated by the hybrid schemes. : : : : : : : : : 43

4.1 Splice junctions and mRNA. : 48

5.1 Meta-learning from partitioned data. : : : : : : : : : : : : : : : : : : 55

5.2 Accuracy for the one-level integrating techniques in the splice junctions

domain. : 59

5.3 Accuracy for the one-level integrating techniques in the protein coding

regions domain. : 60

5.4 Accuracy for the class-combiner scheme trained over varying amounts

of replicated data. � ranges from 0% to 30%. : : : : : : : : : : : : : 62

vi

5.5 Accuracy for the class-attribute-combiner scheme trained over varying

amounts of replicated data. � ranges from 0% to 30%. : : : : : : : : 63

5.6 Accuracy for the arbiter scheme trained over varying amounts of repli-

cated data. � ranges from 0% to 30%. : : : : : : : : : : : : : : : : : 64

5.7 Accuracy for the bayesian-belief scheme trained over varying amounts

of replicated data. � ranges from 0% to 30%. : : : : : : : : : : : : : 65

6.1 Sample arbiter tree. : 69

6.2 Results on di�erent arbiter schemes. : : : : : : : : : : : : : : : : : : : 75

6.3 Accuracy for di�erent orders of arbiter trees and limits for training set

size. : 77

6.4 Results on di�erent maximum arbiter training set sizes. : : : : : : : : 79

6.5 Largest set sizes with unlimited maximum arbiter training set size. : 80

6.6 Accuracy with di�erent class partitioning schemes. : : : : : : : : : : : 83

6.7 Arbiter training set size with di�erent class partitioning and pairing

strategies. : 84

6.8 Accuracy for the class-combiner tree techniques. : : : : : : : : : : : : 86

6.9 Accuracy for the class-attribute-combiner tree techniques. : : : : : : : 87

7.1 Local meta-learning at a site with three remote sites. : : : : : : : : : 93

7.2 Generating local meta-level training data. : : : : : : : : : : : : : : : 94

7.3 Accuracy for local meta-learning vs. number of subsets in the splice

junction domain. : 96

7.4 Accuracy for local meta-learning vs. number of subsets in the protein

coding region domain. : 97

7.5 Accuracy for local meta-learning vs. number of subsets in the sec-

ondary structure domain. : 98

7.6 Accuracy for local meta-learning vs. number of subsets in the arti�cial

domain. : 99

7.7 Accuracy for the class-combiner scheme trained over varying amounts

of replicated splice junction data. � ranges from 0% to 40%. : : : : : 101

vii

7.8 Accuracy for the class-combiner scheme trained over varying amounts

of replicated protein coding region data. � ranges from 0% to 40%. : 102

7.9 Accuracy for the class-combiner technique trained over varying amounts

of replicated secondary structure data. � ranges from 0% to 40%. : : 103

7.10 Accuracy for the class-combiner technique trained over varying amounts

of replicated arti�cial data. � ranges from 0% to 40%. : : : : : : : : 104

7.11 Accuracy for the class-attribute-combiner technique trained over vary-

ing amounts of replicated splice junction data. � ranges from 0% to

40%. : 105

7.12 Accuracy for the class-attribute-combiner technique trained over vary-

ing amounts of replicated protein coding region data. � ranges from

0% to 40%. : 106

7.13 Accuracy for the class-attribute-combiner technique trained over vary-

ing amounts of replicated secondary structure data. � ranges from 0%

to 40%. : 107

7.14 Accuracy for the class-attribute-combiner technique trained over vary-

ing amounts of replicated arti�cial data. � ranges from 0% to 40%. : 108

8.1 Average accuracy of base classi�ers vs. overall accuracy. : : : : : : : 113

8.2 Average accuracy of base classi�ers vs. accuracy di�erence. : : : : : : 114

8.3 Average accuracy of base classi�ers vs. accuracy improvement. : : : : 116

8.4 Diversity of base classi�ers vs. accuracy improvement. : : : : : : : : : 118

8.5 Coverage of base classi�ers vs. accuracy improvement. : : : : : : : : 121

8.6 Coverage-possible accuracy improvement vs. realized accuracy im-

provement. : 122

8.7 Correlated error of base classi�ers vs. accuracy improvement. : : : : : 124

8.8 Specialty of base classi�ers vs. accuracy improvement. : : : : : : : : 126

8.9 Average accuracy of base classi�ers vs. arbiter accuracy. : : : : : : : 127

8.10 Average accuracy of base classi�ers vs. arbiter usage. : : : : : : : : : 129

8.11 Average accuracy of base classi�ers vs. arbiter e�ectiveness. : : : : : 130

9.1 Training time vs. number of examples in splice junctions. : : : : : : : 135

viii

9.2 Training time vs. number of examples in splice junctions with polyno-

mial curve �tting. : 137

9.3 Training time vs. number of examples in arti�cial data. : : : : : : : : 138

9.4 Training time vs. number of examples in arti�cial data with polynomial

curve �tting. : 140

9.5 Speedup of simulated parallel meta-learning over serial meta-learning. 148

9.6 Speedup of simulated parallel meta-learning over pure serial learning. 149

9.7 Processor allocation for each node in a binary arbiter/combiner tree

with 8 leaf nodes. : 150

9.8 Training time for parallel meta-learning on 8 processors (grouped by

learning algorithms). : 152

9.9 Training time for parallel meta-learning on 8 processors (grouped by

schemes). : 153

9.10 Speedup of parallel meta-learning on 8 processors over serial learning. 155

10.1 Multistrategy Meta-learning on Unpartitioned Data : : : : : : : : : : 159

10.2 Multistrategy meta-learning on partitioned data. : : : : : : : : : : : : 168

10.3 Con
icts in meta-level training data : : : : : : : : : : : : : : : : : : : 185

ix

List of Tables

2.1 A data set on congressional voting record. : : : : : : : : : : : : : : : 15

10.1 Summary of prediction accuracy (%) for secondary structures (SS)

(Part 1). : 161

10.2 Summary of prediction accuracy (%) for secondary structures (SS)

(Part 2). : 162

10.3 Summary of prediction accuracy (%) for splice junctions (SJ) (Part 1). 163

10.4 Summary of prediction accuracy (%) for splice junctions (SJ) (Part 2). 164

10.5 Prediction accuracy (%) of single-strategy classi�ers : : : : : : : : : : 164

10.6 Summary of prediction accuracy (%) for the secondary structure data

(Part 1). : 170

10.7 Summary of prediction accuracy (%) for the secondary structure data

(Part 2). : 171

10.8 Summary of prediction accuracy (%) for the splice junction data (Part

1). : 172

10.9 Summary of prediction accuracy (%) for the splice junction data (Part

2). : 173

10.10Single-strategy Prediction Accuracy (%) : : : : : : : : : : : : : : : : 173

10.11Prediction accuracy of combiner and stack generalization for secondary

structure and splice junction data : 178

10.12Prediction accuracy single-strategy classi�ers on secondary structures

and splice junction data : 179

10.13Summary of correlation analysis between combiner and stacked gener-

alization. : 180

x

10.14Training time (CPU seconds) for combiner and stacked generalization. 182

10.15Summary of accuracy of meta component data for Secondary Structure

and Splice Junction(%) : 183

xi

Acknowledgements

Unquestionably, I am grateful for the continual support and encouragement from

my advisor, Prof. Sal Stolfo. Without Sal, this thesis might never �nish. Life has

its twists on me and Sal has given me the much needed trust and con�dence. I

came to Columbia to work with Sal and the decision was undoubtedly the right one.

Moreover, he gave me the freedom to pursue my research interests. Although he had

other projects in progress, he always had time to give me advice and ideas.

Through Sal, grants from National Science Foundation, New York State Science

and Technology Foundation, and Citibank provided support for this study.

Profs. Kathy McKeown, Mukesh Dalal, and Alex Tuxhilin (New York University),

and Dr. Foster Provost (NYNEX Science and Technology) dutifully served on my

thesis committee and gave valuable comments on this document. Discussions with Dr.

Dave Wolpert at IBM Almaden Research Center (previously at Santa Fe Institute)

yielded improved ideas in this study.

The Department of Computer Science and Columbia University provided many

resources for my work. Ashutosh Dutta, Chris Maio, Charles Thayer, and the CS

Central Research Facilities sta� answered many questions and solved many problems.

Alice Cueba, Mel Francis, Germaine L'Eveque, Martha Peres, Renate Valencia, and

the CS administrative sta� tirelessly helped me with the necessary paperwork. The

libraries on campus rarely disappointed and usually amazed me. Columbia never

ceased edifying me and feeding my growing curiosity.

Florida Institute of Technology, my current employer, has been understanding and

provides the time and resources for me to �nish this thesis. Prof. Bill Shoa�, the

computer science chair, has been very supportive and understanding.

I had an early interest in machine learning and Prof. Doug Fisher at Vanderbilt

xii

University was responsible for teaching me what the �eld is all about. He was my

�rst graduate advisor and I was his �rst graduate student. Prof. Larry Dowdy at

Vanderbilt gave me my �rst research opportunities.

Summer internships at Citibank, GTE Laboratories, and Siemens Corporate Re-

search provided me with valuable research experience. Dr. Schutzer introduced me

to the suit-and-tie �nancial industry. Drs. Robert Weihmayer, Gregory Piatetsky-

Shapiro, Chris Matheus, and Shri Goyal generously allowed me to work with them

for two summers. If it was not for Drs. George Drastal and Pat Langley, I wouldn't

have set foot at the Institute for Advanced Study or driven on Einstein Lane.

I bene�ted from technical discussions with Hasanat Dewan, Dave Espinosa, Dave

Fan, Jason Glazier, Mauricio Hernandaz, Dave Ohsie, Lee Woodbury, and the late

Russell Mills. Dave Fan generated some of the experimental results. Sabah Al-

Binali, Simon Baker, Shu-Wei Chen, Susil DaSilva, Sam Fenster, Blair MacIntyre,

and Bill Yoshimi injected quite a bit of social spirit in my departmental life. My kind

roommates Katie Jacobs and George Panagos involved me with many activities. I

was also the bene�ciary of Katie's culinary talents.

A few memorable friendships fostered from the Barnard-Columbia Education

Project. Lori Robertson, Liz Sallinger, and Katy Terry's dedication and hard work

continue to encourage me to give more to the community. It was a pleasure work-

ing with them. Theresa Knapek sets a respectable and honorable example, which

originally inspired and constantly reminds me this important part of my life-long

journey.

Andrea Alexander, Ben Bushman, Heather Evans, Brett Helquist, the late Rox-

anna Glass, Jenny Helvey, Joelle Jugant, Greg Lunt, Ron Nelson, Je� Sweat, Allison

Stander, Mike Thomas, Ned Thomas, Brent Walker, Larry Wampler, Mike Whiting,

Heather Willoughby, Julie Wilson, and many others from church gave me friendships

that will not be easily forgotten. Bishop Brent Belnap is an inspiration. Our Heavenly

Father has been very gracious.

xiii

Lap-Ki Chan, a good friend for more than eighteen years, is a constant companion

for philosophical discussions. We seem to be running on the same road toward the

same place. Joe Cheong, Joe Frisbie, Salina Fung, Edwin Lee provided friendships

throughout these years.

The Chu and Lee families in Texas have been generous and kind. They provided

much care and help during my college years, for which I will always be grateful.

The Cheung family is my second family in New York City. Mr. Jimmy Cheung, a

long time family friend, Mrs. Cheung and their �ve children, Peter, Teresa, Charlie,

Ting-Ting, and Bobby have been giving me much hospitality throughout my stay

in New York. I would be on the street if they didn't open their home to me when

I �rst arrived in the city. The weekend stay-overs, trips, and free meals will be

missed. The family also introduced me to Pete Lee, who is now a good friend and

constantly keeps me amused. Occasional free meals at the Bladwin, Cross, Cutshaw,

and Stansifer families in Melbourne are always appreciated.

Lastly, I would like to thank my parents and my two brothers, George and Francis.

I wouldn't be who I am if my parents didn't teach me the importance of values and

can never repay what they have given me. My brothers tolerated me while we were

going up. Although we are thousands of miles apart, our childhood will always be

remembered. Thanks also go to Ginnie, my sister-in-law, for her kindness and, with

George, for making me a soon-to-be uncle.

Many more remain unnamed, but my memory is lacking and it'll certainly take a

book...

xiv

To Peace

and

To My Parents.

xv

1

Chapter 1

Introduction

The key to intelligence is the ability to learn. Research in the �eld ofmachine learning

(Carbonell, 1989) attempts to endow computers with this intrinsic capability that

exists in all higher-order organisms to one degree or another. Learning can be loosely

de�ned as a process that improves performance of an agent by acquiring knowledge

through interactions with a changing environment.

In this thesis research we concentrate on a particular type of learning called in-

ductive learning (Michalski, 1983). Given some examples (data) obtained from the

environment, inductive learning aims to discover patterns in the examples and form

concepts that describe the examples. For instance, given some examples of chairs and

tables, one can form a concept that suggests that the surface of tables is usually hard,

whereas the surface of chairs is usually soft.

There are many desirable characteristics of a learning process. Probably the most

important is that it composes concepts that re
ect reality. In other words, the con-

cepts should be accurate and predictive. Given an instance that has not been en-

countered before, the learned concept should be able to correctly identify it. This has

been the central issue for most inductive learning research e�orts.

Another desirable characteristic is how fast a concept can be learned. It is impor-

2

tant that a learning system process examples e�ciently. Because of the advancement

of computer technology, enormous amounts of data can easily be generated, and with

\high-capacity" and \high-speed" networks, these data can be made available widely

and quickly. For instance, the Human Genome Project (DeLisi, 1988), initiated by

the National Institutes of Health (NIH) and Department of Energy (DOE), aims to

map the entire human genome and will inevitably generate orders of magnitude more

sequence data than exist today. The HPCC Grand Challenges (Wah, 1993) research

e�orts will generate more data and faster than ever before. Also, �nancial institutions

and market analysis �rms are already dealing with overwhelming amounts of global

information that in time will undoubtedly grow in size faster than improvements in

machine resources. However, much of the research in inductive learning concentrates

on problems with relatively small amounts of data. The algorithms developed so far

are generally not scalable to large databases as envisaged by the Genome Project.

The complexity of typical machine learning algorithms renders their use infeasible in

problems with massive amounts of data (Chan & Stolfo, 1993d). A more concrete

testimony of the e�ciency problem is from Catlett (1991), who projects that ID3

(Quinlan, 1986) (a popular inductive learning algorithm) on modern machines will

take several months to learn from a million records in the
ight data set obtained

from NASA, which is clearly unacceptable.

Moreover, typical learning algorithms like ID3 rely on a monolithic memory to

�t all of its training data. However, it is clear that main memory can easily be ex-

ceeded with massive amounts of data. Even with large virtual memory, constantly

swapping data in and out of memory becomes a signi�cant overhead. Furthermore,

it is not inconceivable that the amount of data can exceed the virtual memory.

This is also why data are disk-resident in database management systems. There-

fore, to e�ciently process huge databases, learning algorithms need to be scalable.

We refer scalability as the ability to e�ciently process increasing amounts of in-

formation, given that a machine has a limited amount of resources. (A more for-

mal de�nition is in Section 9.2.3) On a single machine, its limited resources can

3

get completely saturated by a learning algorithm when it is presented with large

amounts of data, which results in intolerable performance or inability of the algo-

rithm to execute. More importantly, machine learning is central to knowledge dis-

covery in databases / data mining (KDD/DM) (Piatesky-Shapiro & Frawley, 1991;

Matheus et al., 1993) systems. In most cases research in this area is faced with mas-

sive databases. That is, learning systems are facing vast amounts of information and

scaling them up is a critical issue facing machine learning research.

In the next section we explore the relationship between inductive learning and

other related areas where scalability is an important issue.

1.1 Inductive Learning, Knowledge-Based Systems

and Data Mining

Inductive learning is the task of identifying regularities in some given set of ex-

amples with little or no knowledge about the domain from which the examples are

drawn. Inductive learning systems process examples that include class labels and

generate concepts which accurately describe the classes present in the examples.

The learned concepts can also be used as knowledge in knowledge-based systems;

learning provides a means for these systems to evolve over time and adapt to changing

environments. For instance, in a rule-based expert system each rule consists of an

antecedent, which is a pattern matching expression in some symbolic formalism, and

a consequent, which speci�es the actions to be taken if the antecedent is matched.

Hence, each rule can be learned from examples by treating it as a concept to be

learned, where the antecedent is the pattern describing the concept and the conse-

quent is its classi�cation. Inductive learning in this context can be viewed as auto-

mated knowledge acquisition for building knowledge-based systems. Much as knowl-

edge engineering via human is the bottleneck in knowledge acquisition (Boose, 1986),

ine�cient machine learning is the bottleneck in automated knowledge acquisition.

4

Machine learning can be a continual process, as in people, for revising outdated the-

ories in knowledge-based systems (Ourston & Mooney, 1990; Towell & Shavlik, 1993;

Brunk & Pazzani, 1995).

Many believe that we are poised once again for a radical shift in the way we

learn and work, and in the amount of new knowledge we will acquire. The coming

age of high performance network computing, and widely available \data highways"

will transform the \information age" into the \knowledge age" by providing new

opportunities in defense, commerce, education and science for sharing and utilizing

information. However, with this new technological capability comes along a number

of hard technical problems, many centered on the issue of scale. It is perhaps obvious

that having massive amounts of data and information available anywhere and anytime

enables many new opportunities to acquire new knowledge. Yet it is unclear how

precisely this will be achieved in an e�cient and transparent fashion.

One means of acquiring new knowledge from databases is to apply various machine

learning algorithms that compute descriptive representations of the data as well as

patterns that may be exhibited in the data. The �eld of machine learning has made

substantial progress over the years and a number of algorithms have been popularized

and applied to a host of applications in diverse �elds (Langley & Simon, 1995; Bratko

& Muggleton, 1995; Fayyad et al., 1993; Craven & Shavlik, 1994). Thus, we may

simply apply the current generation of learning algorithms to very large databases

and wait for a response! However, the question is how long might we wait? Indeed,

do the current generation of machine learning algorithms scale from tasks common

today that include thousands of data items to new learning tasks encompassing as

much as two orders of magnitude or more of data that is physically distributed?

Furthermore, many existing learning algorithms require all the data to be resident

in main memory, which is clearly untenable in many realistic databases. In certain

cases, data is inherently distributed and cannot be localized on any one machine for

a variety of practical reasons. In such situations it is infeasible to inspect all of the

data at one processing site to compute one primary \global" classi�er. We call the

5

problem of learning useful new knowledge from large inherently distributed databases

the scaling problem for machine learning.

In a relational database context, a typical data mining task is to explain and

predict the value of some attribute of the data given a collection of �elds of some tuples

with known attribute values. An existing relation with attribute values drawn from

some domain is thus treated as training data for a learning algorithm that computes

a logical expression, a concept description or a classi�er, that is later used to predict

a value of the desired attribute for some \test datum" whose desired attribute value

is unknown.

In a federated or integrated multi-database context, a similar data mining task

may be de�ned over the universal relation embodying the constituent databases.

Here, however, the problem is more daunting. We presume all component databases

of a federated system share common (or at least \provably equivalent") attributes

with values drawn from a common domain of values. However, each component

relation may include attributes that are unique to that database. In such situations,

a data mining or machine learning task applied to the universal relation de�ned by

the constituents would necessarily include null values in some tuples. The problem

of logically forming the universal relation in preparation for a data mining process is

itself a di�cult problem studied by a large research community (e.g. (Hernandez &

Stolfo, 1995)). For this study, we make the simplifying assumption that the universal

relation is available over a distributed set of processing sites. Our focus is on various

means that seek to integrate the entirety of distributed data to learn one \global

classi�er" able to predict unknown values of some desired attribute, or to classify data

into semantically meaningful abstractions. Such a capability is useful in systems that

aim to provide Intelligent Integration of Information. Here, mediator services may

include data mining as a means of providing value-added services to learn concepts

or to organize information in some reasoned fashion.

There are many useful applications of inductively learned classi�ers computed over

6

databases that support other useful query and transaction processing functions. For

example, many large business institutions and market analysis �rms have for years

attempted to learn simple categorical classi�cations of their potential customer base,

i.e., relevant patterns of attribute values of consumer data that predict a low-risk

(high pro�t) customer versus a high-risk (low-pro�t) customer. In such applications,

a variety of data about a customer are integrated and merged together into a single

structured database to which learning programs are applied. Credit bureau data

is frequently merged with magazine subscription data as well as a company's own

customer data to compose one universal relation for a data mining task. Similarly,

defense and intelligence operations utilize similar methodologies on vast information

sources to predict a wide range of conditions in various contexts (location of the

enemy, conditions for political uprisings, the appearance of bioluminescence in the

oceans, and so forth). Many organizations seeking similar added value from their

data are already dealing with overwhelming amounts of global information that in

time will likely grow in size faster than available improvements in machine resources.

1.2 Problem Statement and Our Approach

The central problem we study in this thesis is succinctly stated as:

We seek a means to improve the e�ciency and accuracy of inductive learn-

ing systems applied to very large amounts of data that can be distributed

among remote sites.

Meta-learning (Chan & Stolfo, 1993b) is proposed as one such approach. This ap-

proach encompasses the use of learning algorithms to learn how to integrate results

from multiple learning systems.

The accuracy and e�ciency issues can be, and have been, approached separately,

but is there a uni�ed approach that can address both of them simultaneously or

separately? One advantage of such a uni�ed approach is the generality of applying

7

the same method to each issue. Another is the cohesiveness of the combined solution

for both issues. Thus, the central question we pose in this thesis is: \Is there a

uni�ed machine learning approach that can achieve high accuracy and e�ciency when

applied to massive databases of examples?" The research described here is an attempt

to provide such a uni�ed approach that we call meta-learning, and demonstrate its

use for learning concepts accurately and e�ciently. Meta-learning is a process that

learns how to combine separate and distinct learning systems. Our approach to

solve the scaling problem is data reduction, meaning to partition the data set into

smaller subsets, apply learning algorithms on each subset, followed by a phase that

combines the learned results. Each subset is sized to �t into main memory. In

addition to alleviating the memory restriction problem, we can speed up the process

by running the learning programs in parallel on multiple processors. In fact, parallel

and distributed learning motivated us to investigate learning from partitioned data.

Our ultimate goal is to develop a sound approach to scalable and accurate learning

systems for massive amounts of distributed data. However, in such schemes one may

presume that accuracy will su�er; i.e., combining results for separate classi�ers may

not be as accurate as learning from the entire data set. Thus, it is important to

determine which schemes for combining results have minimal impact on the quality

of the �nal result. High accuracy is achieved by intelligently combining separately

learned concepts to derive a �nal learned concept that explains a large data base more

accurately than any of the individual learners.

That is, we are trying to build learners that can learn from massive amounts

of data e�ciently in processing time and in memory usage. Furthermore, data can

be inherently partitioned and cannot be brought together at a single location. One

example is that di�erent data sets are owned by diverse parties and data sharing is

prohibited.

One approach to speed up a learning algorithm is to parallelize the algorithm.

However, this approach requires optimizing the code of a particular algorithm for a

speci�c architecture. That is, for each algorithm-architecture combination, the opti-

8

mized code is probably, if not always, di�erent. With the growing number of learning

algorithms and architectures, this requires substantial amount of optimization work

to be performed for the desirable algorithm-architecture combination for a learning

task.

The e�ciency of classifying instances by the resulting learned system is a related

and important issue. Our strategies generally produce components that can be exe-

cuted concurrently, but detail schemes for parallelizing the classi�cation process are

beyond the scope of this thesis research.

Since di�erent algorithms have di�erent representations and search heuristics, dif-

ferent search spaces may be explored and hence potentially diverse results can be

obtained from di�erent algorithms. Mitchell (1980) refers to this phenomenon as

inductive bias. That is, the outcome of running an algorithm is biased in a cer-

tain direction. Furthermore, di�erent data sets have di�erent characteristics and the

performance of di�erent algorithms on these data sets might di�er.

Our proposed approach to improve accuracy is to combine di�erent learning sys-

tems in a loose fashion by essentially meta-learning a new system that is taught how

to combine the collective outputs of the constituent systems. One advantage of this

approach is its simplicity in treating the individual learning systems as black boxes

with little or no modi�cation required to achieve a �nal system. Therefore, individual

systems can be added or replaced with relative ease.

We note with interest that this general meta-learning approach is independent

of the underlying learning algorithms that may be employed. Furthermore, it is

independent of the computing platform used. Thus, our meta-learning approach is

intended to be scalable as well as portable and extensible.

However, we may not be able to guarantee the accuracy of the �nal result to be

as good as an individual learning algorithm applied to the entire data set since a

considerable amount of information may not be accessible to each of the separate

learning processes. It is one of the primary issues we study in this thesis.

9

As our investigation progressed, the space of possible variations of our approach

rapidly increased. To limit the scope of this thesis, we focus on the utility of meta-

learning as a general and uni�ed approach for scalable and accurate inductive learning

in diverse situations. The more important, in our opinion, ideas were explored, but

the less important ones were not fully investigated and were left as pointers for further

studies.

1.3 Brief Summary of Results and Contributions

We proposed meta-learning as an uni�ed approach to improving the e�ciency

and accuracy of inductive learning systems applied to massive amounts of data that

can be distributed among remote sites. Here we brie
y summarize the results and

contributions:

� Several meta-learning strategies have been identi�ed and speci�c schemes have

been developed. A substantial number of systematic empirical evaluations with

di�erent permutations of learning algorithms and tasks have been performed.

� The meta-learning strategies do show a consistent improvement in classi�cation

accuracy over any of the base classi�ers trained on a subsets of available training

data. Our studies show that classi�ers trained individually from random subsets

of a large data set are not as accurate as integrating a collection of separately

learned classi�ers.

� The meta-learning strategies can outperform the other more common one-level

voting-based or Bayesian techniques. In the learning tasks and domains we

studied, the one-level meta-learning schemes do not consistently maintain high

accuracy as the number of subsets increases (and the amount of available data

thus decreases). However, the results show that the hierarchical meta-learning

approach is able to sustain the same level of accuracy as a global classi�er

trained on the entire data set distributed among a number of sites.

10

� Under the arbiter tree strategy allowing unbounded meta-level training sets, we

determined that, over the variety of algorithms employed, at most 30%, and in

certain cases at most 10%, of the entire training data was required at any one

processing site to maintain the equivalent predictive accuracy of a single global

classi�er computed from all available data. In other words, with the arbiter

tree strategy, a site can process a larger learning task (at least 3 times in the

domain we studied) without increasing memory resources.

� Unbounded meta-level training sets are not necessary to achieve good results.

Limiting the meta-level training set size to twice the size of the data subsets

used to compute base classi�ers usually yielded a system able to maintain the

same level of accuracy achieved by the global classi�er.

� Combiner and arbiter trees of lower order perform better than ones with higher

order. This seems mainly attributed to the increase in the number of opportu-

nities in correcting the base classi�ers since there are more levels in the lower

order trees to �lter and compose good training data.

� The class-attribute-combiner tree strategy was demonstrated to consistently

boost the predictive accuracy of a global classi�er under certain circumstances.

This suggests that a properly con�gured meta-learning strategy combining mul-

tiple knowledge sources provides a more accurate view of all available data than

any one learning algorithm alone can achieve.

� In many cases, replication buys nothing, meaning that learning over fully dis-

tributed disjoint training data with an appropriate distribution of class informa-

tion is as e�ective as learning from distributed partially replicated data. This

suggests that the various meta-learning strategies indeed do an e�ective job of

sharing knowledge distributed among a set of independently trained classi�ers.

� Local meta-learning can improve a classi�er at a site by integrating imported

remote classi�ers. The remote classi�ers are treated as \black boxes" and data

at remote sites are not shared.

11

� Deeper analysis of our empirical results show that increase in accuracy improve-

ment can be attributed to greater diversity and fewer correlated errors among

more accurate base classi�ers.

� The �ve learning algorithms used in this thesis were analyzed for time complex-

ity. Three out of �ve algorithms exhibit linear complexity with respect to the

number of training examples. However, none of them were linear in practice

when very large data sets were used.

� Our parallel implementation demonstrates that our schemes are bene�cial to

some learning algorithms in terms of speed and others in terms of scalability.

� Meta-learning with multiple learning algorithms and whole data sets achieved

as least the accuracy of the most accurate underlying learning algorithm. Since

the best learner is not known apriori, meta-learning provides a mechanism to

at least match the best.

� Combiner and stacked generalization were comparable in terms of accuracy as

well as the resultant concept. However, stacked generalization is computation-

ally more expensive.

Lastly, much of this thesis work has been published at various forums; their cita-

tions appear throughout this document.

1.4 Organization of the Thesis

In Chapter 2 we overview the machine learning area of inductive learning. Tech-

niques in the literature for improving the accuracy and e�ciency of learning algo-

rithms are discussed.

In Chapter 3 we describe our meta-learning approach. The combiner, arbiter, and

hybrid strategies are identi�ed and the di�erent speci�c schemes under these strategies

12

are detailed.

To evaluate our proposed schemes and techniques, we performed a substantial

number of experiments across di�erent learning algorithms and tasks. the apparatus

and methodology used in our experiments are described in Chapter 4.

In Chapter 5 we present how meta-learning is applied to integrating classi�ers

that are trained from partitioned data in disjoint subsets and empirically compares

meta-learning to techniques found in the literature. Our techniques are also evaluated

on data subsets with partially replicated data.

Techniques explored in Chapter 5 can be characterized as one-level techniques.

The combiner tree and arbiter tree strategies are hierarchical techniques and are dis-

cussed in Chapter 6 to demonstrate that they can further improve the one-level meta-

learning strategies.

In Chapter 7 we investigate how meta-learning can be used to improve a local

classi�er by integrating it with imported classi�ers from remote sites. We assume no

\raw data" can be shared among di�erent sites and only the learned classi�ers can

be exchanged.

In Chapter 8 we formulate several metrics that can be used to analyze the inte-

gration of multiple classi�ers. These metrics are then used to analyze our empirical

results.

In Chapter 9 we perform a formal analysis on the time complexity of the various

learning algorithms used in this thesis and the potential speed-up and degree of scala-

bility of using meta-learning techniques. Our parallel and distributed implementation

is discussed and evaluated.

Up to this point, this thesis has been discussing results from integrating classi�ers

trained by a single learning algorithm. In Chapter 10 we explore the integration of

classi�ers generated by di�erent learning algorithms.

13

We conclude, in Chapter 11, by discussing the contributions and research direc-

tions of this work.

14

Chapter 2

Inductive Learning and Related

Work

Inductive learning (Michalski, 1983) is the task of identifying regularities in some

given set of training examples with little or no knowledge about the domain from

which the examples are drawn. Given a set of training data, each interpreted as a

set of feature vectors, x, and a class label y associated with each vector, the task is

to compute a classi�er that correctly labels any feature vector drawn from the same

source as the training set. It is common to call the body of knowledge that classi�es

data with the label y as the concept y. Figure 2.1 depicts the inductive learning

process.

For examples, Table 2.1 displays a tiny fraction of the congressional voting record

Learning

Algorithm
Training

Data

Classifier

Figure 2.1: Inductive Learning.

15

Party Mx-missile Edu-spending Crime

REP n y y

REP n y y

DEM n n y

DEM n n n

Table 2.1: A data set on congressional voting record.

data set obtained from the Machine Learning Database at the University of California,

Irvine (Merz & Murphy, 1996). The data set records how lawmakers vote in the

House on di�erent legislative issues. One might want to determine if a lawmaker

is a republican or a democrat by observing how he/she votes. From this data set

and using party a�liation as a class label, a learning algorithm might produce this

concept/classi�er (in rule representation):

(Edu-spending = y) => REP

(Edu-spending = n) => DEM

denoting if a lawmaker votes yes on education spending, he/she is a republican,

otherwise, the lawmaker is a democrat. This learned concept can then provide an

\educated guess" for the following question (what is Smith's party a�liation?):

(Name = smith, Mx-missile = n, Edu-spending = y, Crime = n)

=>

Party = ?

Inductive learning can be supervised or unsupervised. In supervised inductive

learning, the class labels of training examples are supplied and the learned concepts

describe these class labels (or learning from examples (Dietterich & Michalski, 1983)).

However, in unsupervised inductive learning (or learning from observations (Michalski

& Stepp, 1983)), the class labels are not supplied or known. The learning algorithm

induces clusters, which can later be identi�ed as individual concepts. CLUSTER/2

(Michalski & Stepp, 1983), COBWEB (Fisher, 1987), and AUTOCLASS (Chesse-

16

man et al., 1988) are such conceptual clustering algorithms. Our work focuses on

supervised inductive learning.

Inductive learning can be performed in two modes: non-incremental or incremen-

tal. In non-incremental learning all of the examples are presented to the learning

algorithm as an aggregation (for example, ID3 (Quinlan, 1986)) . However, in in-

cremental learning training examples are assimilated one at a time and the learning

algorithms do not have control over the order of presentation (for example, ID5 (Ut-

go�, 1989), an incremental version of ID3). This research concentrates on supervised

inductive learning in non-incremental mode.

In inductive learning, examples are usually presented as attribute-value pairs with

the corresponding class labels (or classi�cations). Here, a concept (or classi�er) is

loosely de�ned as a description (pattern) and a conclusion (classi�cation). That is,

a concept can be used to draw a conclusion (classifying an instance) based on a

matching description. Concepts generated by the learning algorithms can be used in

classifying instances that have not been seen before. In other words, given a set of

unseen and unclassi�ed instances, the learned concepts merely predict the instances'

classi�cation.

Some of the common representations used for the generated classi�ers are deci-

sion trees, rules, version spaces, neural networks, distance functions, and probability

distributions. In general, these representations are associated with di�erent types of

algorithms that extract di�erent information from the database and provide alter-

native capabilities besides the common ability to classify unknown exemplars drawn

from some domain. For example, decision trees are declarative and thus more com-

prehensible to humans than weights computed within a neural network architecture.

However, both are capable of classifying data in meaningful ways.

Decision trees are used in ID3 (Quinlan, 1986) and CART (Breiman et al., 1984),

where each concept is represented as a conjunction of terms on a path from the root

of a tree to a leaf. Rules in AQ (Michalski et al., 1986), Decision Lists (Rivest,

17

1987), CN2 (Clark & Niblett, 1989), and ITRULE (Goodman & Smyth, 1989) are

if-then expressions, where the antecedent is a pattern expression and the consequent

is a class label. Each version space learned in the Candidate Elimination algorithm

(Mitchell, 1982) de�nes the most general and speci�c description boundaries of a

concept using a restricted version of �rst order formulae. Neural networks com-

pute a weighted network to classify data (Fahlman & Hinton, 1987; Lippmann, 1987;

Hinton, 1989). The learned distance functions in exemplar-based learning algorithms

(or nearest neighbor algorithms) de�ne a similarity or \closeness" measure between

two instances (Stan�ll & Waltz, 1986; Aha et al., 1991; Cost & Salzberg, 1993). Con-

ditional probability distributions used by Bayesian classi�ers are derived from the fre-

quency distributions of attribute values and re
ect the likelihood of a certain instance

belonging to a particular classi�cation (Duda & Hart, 1973; Langley et al., 1992;

Langley & Sage, 1994). Implicit decision rules classify according to maximal proba-

bilities. Chromosomes composed of three-valued pattern vectors constitute a popu-

lation (classi�er) in genetic algorithms (DeJong, 1988; Booker et al., 1989). Learning

involves evolving the chromosomes to maximize a �tness function.

These algorithms and their variants have been put to practical use in a wide range

of data mining activities. In this thesis we do not seek new learning algorithms to

add to this broad list. Rather, we propose meta-learning as an approach whereby

any of these algorithm can be used in a \plug-and-play fashion." We utilize inductive

learning algorithms to not only explain databases of information drawn from some

arbitrary domain, but also we apply these same algorithms to a distributed database

of predictions generated by a set of underlying classi�ers! This means, we apply

inductive learning to the task of \learning how distributed classi�ers correlate with

each other" to improve the accuracy of the desired classi�cation process. This is the

essence of what we mean by meta-learning. Our ultimate goal is to provide scalable

inductive learning and classi�cation capabilities in wide area computing networks to

be able to learn globally what is only partially learned locally.

18

2.1 Improving Accuracy

Machine learning researchers clearly desire more accurate learning algorithms.

One direction is to generate diverse classi�ers by some method using a single learning

algorithm and the classi�ers are combined via some mechanism. Another approach

has focussed on integrating by some means multiple strategies or multiple algorithms.

Here we summarize a few of the most relevant e�orts.

2.1.1 Single learning algorithm and diverse classi�ers

Some research has concentrated on methods to improve an existing algorithm by

using the algorithm itself to generate purposely biased distributions of training data.

The most notable work in this area is due to Schapire (1990), which he refers to as

hypothesis boosting. Based on an initial learned hypothesis for some concept derived

from a random distribution of training data, Schapire's scheme iteratively generates

two additional distributions of examples. The �rst newly derived distribution in-

cludes randomly chosen training examples that are equally likely to be correctly or

incorrectly classi�ed by the �rst learned classi�er. A new classi�er is formed from

this distribution. The second distribution is formed from the training examples on

which both of the �rst two classi�ers disagree. A third classi�er is computed from

this distribution. The predictions of the three learned classi�ers are combined using

a simple voting rule. Schapire proves that the overall accuracy is higher than the one

achieved by simply applying the learning algorithm to the initial distribution under

the PAC (Probabilistic Approximately Correct) learning model (Valiant, 1984). In

fact, he shows that arbitrarily high accuracy can be achieved by recursively applying

the same procedure. Although his approach is limited to the PAC model of learn-

ing, some success was achieved in the domain of character recognition, using neural

networks (Drucker et al., 1993). Freund (1992) has a similar approach, but with

potentially many more sequentially generated distributions involved.

19

Hansen and Salamon (1990) integrate an ensemble of neural networks by simple

voting. The di�erent networks in an ensemble are generated by randomized parame-

ters. Kwok and Carter (1990) generate di�erent decision trees by choosing di�erent

tests at the root and combine their predictions by simple voting. Breiman's (1994)

bagging utilizes bootstrapping to generate many di�erent training distributions and

voting to combine the predictions. Optiz and Shavlik (1996) perturb neural networks

using genetic algorithms and combine the networks using weighted voting.

Dietterich and Bakiri (1991; 1995) augment the output representation of a multi-

class problem using error-correcting codes. Generated classi�ers are integrated by

choosing the code with the fewest errors in the code book.

Other work in this direction includes Qian and Sejnowski's (1988) cascaded neural

networks, where the output of one neural network is fed into another to learn higher-

level correlations. Kohavi and John (1995) search for the best algorithm parameters

using extensive cross validation runs. Naik and Mammone (1992) apply learning

to selecting parameters for neural networks. Pomerleau (1992) uses a rule-based

approach to combining multiple driving experts for guiding a vehicle in a variety of

circumstances. The driving experts are trained neural networks.

2.1.2 Integrating multiple learning algorithms

Other researchers have proposed implementing learning systems by integrating in

some fashion a number of di�erent algorithms to boost overall accuracy. The basic

notion behind this integration is to complement the di�erent underlying learning

strategies embodied by di�erent learning algorithms by e�ectively reducing the space

of incorrect classi�cations of a learned concept.

There are mainly two strategies that we may consider in integrating di�erent

learning strategies. One strategy is to increase the amount of knowledge in the learn-

ing system. For example, some work has been reported on integrating inductive and

20

explanation-based learning (Flann & Dietterich, 1989; Danyluk, 1991). Explanation-

based techniques are integrated to provide the appropriate domain knowledge that

complements inductive learning, which is knowledge poor. This approach requires a

complicated new algorithm that implements both strategies to learning in a single

system. A less knowledge-intensive direction uses heuristics to combine multiple clas-

si�ers in a tree structure (Tcheng et al., 1989; Brodley, 1995). The space of training

examples is recursively partitioned into subspaces, from each of which a classi�er is

generated using a heuristically selected learning algorithm. (Further details on these

methods are provided in Section 6.3).

Another strategy is to loosely integrate a number of di�erent inductive learning

algorithms by integrating their collective output concepts in some fashion. Some of

these techniques are described below and later evaluated from our empirical results.

For example, Silver et al.'s (1990) work on using a coordinator to gather votes from

three di�erent classi�ers and Holder's (1991) work on selecting learning strategies

based on their relative utility.

Many of the simpler techniques that aim to combine multiple evidence into a

singular prediction are based on voting. The �rst scheme we examine is simple voting.

That is, based on the predictions of di�erent base classi�ers, a �nal prediction is

chosen as the classi�cation with a plurality of votes. A variation of simple voting

is weighted voting. Each classi�er is associated with a weight, which is determined

by how accurate the classi�er performs on a validation set. (A validation set is a

set of examples randomly selected from all available data. Since each classi�er is

trained on only one subset, examples in the other subsets that contribute to the

validation set provide a measure of predictiveness.) Each prediction is weighted by

the classi�er's assigned weight. The weights of each classi�cation are summed and

the �nal prediction is the classi�cation with the most weight.

Littlestone and Warmuth (1989) propose several weighted majority algorithms for

combining di�erent classi�ers. (In their work the classi�ers are di�erent prediction

21

algorithms, which are not necessarily learned. The training data are only used for

calculating the weights.) These combining algorithms are similar to the weighted

voting method described above; the main di�erence is how the weights are obtained.

The basic algorithm, called WM , associates each learned classi�er with an initial

weight. Each example in the training set is then processed by the classi�ers. The

�nal prediction for each example is generated as in weighted voting. If the �nal

prediction is wrong, the weights of the classi�ers whose predictions are incorrect are

multiplied by a �xed discount �, where 0 � � < 1, that decreases their contribution

to �nal predictions.

A variation of the basicWM algorithm, calledWML, does not allow the weights

to be discounted beyond a prede�ned limit. A discount can only occur if the weight

is larger than

number of classifiers

times the total weight of all classi�ers, where 0 �
 < :5. Another variation, called

WMR, produces randomized responses. The probability of a classi�cation selected

as the �nal prediction is the total weight of that classi�cation divided by the total

weight of all classi�cations; i.e.,

P (class

x

) =

total weight(class

x

)

P

i

total weight(class

i

)

:

The weights are trained as in the WM algorithm.

Littlestone and Warmuth's (1989) weighted majority work is mainly theoretical.

Their model assumes that the classi�ers make binary predictions. They show that

if the worst classi�er makes at most m mistakes, the weighted majority algorithms

will make at most O(log(number of classifiers) + m) mistakes. We adapt their

techniques in this study to include classi�ers that predict an arbitrary number of

classes. Again, we use a validation set to train the weights in the weighted majority

algorithms.

Xu et al. (1992) developed a method for integrating predictions from multiple clas-

si�ers based on the Bayesian formalism. The belief function they derived (Equation

22

32) is simpli�ed as:

bel(class

i

; x) �

classifiers

Y

k

P (class

i

j classifier

k

(x));

where x is an instance and classifier

k

(x) is the classi�cation of instance x predicted

by classifier

k

. The �nal prediction is class

j

where bel(class

j

; x) is the largest among

all classes. In our experiments reported below, we estimate the conditional probabil-

ities from the frequencies generated from the validation set. Xu et al. (1992) also

developed integrating methods based on the Dempster-Shafer theory.

A more interesting approach to loosely combine learning programs is to learn how

to combine independently learned concepts. Stolfo et al. (1989) propose learning

rules by training weighted voting schemes, for merging di�erent phoneme output

representations from multiple trained speech recognizers. Wolpert (1992) presents a

theory of stacked generalization to combine several classi�ers. (Indeed, this work is

closest to what we mean by meta-learning as we will describe later.) Several (level

0) classi�ers are �rst learned from the same training set. The predictions made by

these classi�ers on the training set and the correct classi�cations form the training

set of the next level (level 1) classi�er. When an instance is being classi�ed, the level

0 classi�ers �rst make their predictions on the instance. The predictions are then

presented to the level 1 classi�er, which makes the �nal prediction. Zhang et al.'s

(1992) work utilizes a similar approach to learn a combiner based on the predictions

made by three di�erent classi�ers. Breiman (1996b) applied the stacking idea to

regression. The techniques are closest to our meta-learning approach proposed here.

2.2 Improving E�ciency

Quinlan (1979) approached the problem of e�ciently applying learning systems

to data that are substantially larger than available main memory with a windowing

technique. A learning algorithm is applied to a small subset of training data, called

a window, and the learned concept is tested on the remaining training data. This

23

is repeated on a new window of the same size with some of the incorrectly classi�ed

data replacing some of the data in the old window until all the data are correctly

classi�ed. Wirth and Catlett (1988) show that the windowing technique does not sig-

ni�cantly improve speed on reliable data. On the contrary, for noisy data, windowing

considerably slows down the computation. Catlett (1991) demonstrates that larger

amounts of data improves accuracy, but he projects that ID3 (Quinlan, 1986) on mod-

ern machines will take several months to learn from a million records in the
ight data

set obtained from NASA. Using data reduction techniques, Domingos (1996) signi�-

cantly improves the e�ciency of RISE (a speci�c-to-general rule induction algorithm)

(Domingos, 1995).

Catlett (1991) proposes some improvements to the ID3 algorithm particularly for

handling attributes with real numbers. For each real-numbered attribute, ID3 sorts

the attribute values present in the examples, considers a two-way split of the values

(a threshold) between each pair of adjacent values, and selects the most e�ective split

according to an objective function. That is, n� 1 splits are considered for n values.

Catlett devised a scheme to skip some of the splits that are considered statistically

not likely to be picked (Catlett, 1992). This scheme applies only to real-numbered

attributes and the processing time can still be prohibitive due to ID3's non-linear

complexity (Chan & Stolfo, 1993d).

Another approach to solving the scaling problem is simply to increase the number

of processors and available memory, parallelize the learning algorithms and apply

the parallelized algorithm to the entire data set. Zhang et al.'s (1989) work on

parallelizing the backpropagation algorithm on a Connection Machine is one example.

This approach requires optimizing the code for a particular algorithm on a speci�c

parallel architecture.

Other researchers use a more coarse-grain parallel/distributed approach. Classi-

�ers are trained from data subsets and are combined via some mechanism. Provost et

al. (Provost & Aronis, 1996; Provost & Hennessy, 1996) exchange and evaluate rules

24

to provably and optimally combine rule sets learned by RL (Clearwater & Provost,

1990). Our meta-learning approach is similar, however, it is not restricted to a par-

ticular learning algorithm.

2.3 Incremental Learning

Incremental learning algorithms have been proposed that allow the
exibility of

not requiring all training examples to be inspected at once. However, some incremen-

tal algorithms do require the storage of all examples for future examination during

learning, for example, ID5 (Utgo�, 1989). That is, these incremental learning algo-

rithms still demand that all examples �t in the main memory, which is not plausible

for massive amounts of data. For those incremental algorithms that do not require all

examples to be resident in memory, like neural nets, many demand multiple passes

over the data to achieve convergence, which usually consumes substantial processing

time. Incremental IBL (Aha & Kibler, 1989) makes only one pass over the data and

stores only a subset of the training examples; however, it does not bound the number

of examples retained during training.

2.4 Our Approach

Again, our approach for improving e�ciency and accuracy for learning algorithms

focuses on data reduction and meta-learning techniques. The meta-learning tech-

niques attempt to learn correlations among the classi�ers trained on multiple data

sets. That is, they try to learn how to e�ectively integrate learned classi�ers to

achieve an accuracy higher than any of the individual classi�ers. Data reduction

techniques reduce and limit the amount of data inspected by any individual learn-

ing process. Unlike many related techniques, our meta-learning approach is scalable

(by data reduction partitioning), extensible (algorithm-independent), and portable

25

(architecture-independent). In the next chapter our meta-learning approach is dis-

cussed in detail.

2.5 Community

Because of the growing interest and importance in the area of integrating diverse

learning systems, Prof. Sal Stolfo, Dr. Dave Wolpert, and I organized a workshop

at the Fourteen National Conference on Arti�cial Intelligence (AAAI-96) in Port-

land, Oregon. The workshop was entitled \Integrating Multiple Learned Models for

Improving and Scaling Machine Learning Algorithms" (Chan et al., 1996) and was

held on August 4th and 5th. 33 paper submissions were received from around the

world. Because of the unexpected relatively large number of submissions, reviewers

other than the organizers were enlisted. After evaluating two reviews for each sub-

mission, we accepted 24 papers for presentation. About 80 researchers and developers

expressed interest in attending the two-day workshop; around 50 of them came and

participated.

26

Chapter 3

Meta-Learning

Meta-learning (Chan & Stolfo, 1993b) is loosely de�ned as learning of meta-knowledge

about learned knowledge. In our work we concentrate on learning from the output

of concept learning systems. In this case meta-learning means learning from the

predictions of these classi�ers on common training data. A classi�er (or concept) is

the output of a concept learning system and a prediction (or classi�cation) is the

predicted class generated by a classi�er when an instance is supplied. Thus, we are

interested in the output of the classi�ers, not the internal structure and strategies of

the learning algorithms themselves. Moreover, in several of the schemes we de�ne,

the training data presented to the learning algorithms initially are also available to

the meta-learner under certain circumstances.

Figure 3.1 depicts the di�erent stages in a simpli�ed meta-learning scenario:

1. The classi�ers (base classi�ers) are trained from the initial (base-level) training

sets.

2. Predictions are generated by the learned classi�ers on the training sets.

3. A meta-level training set is composed from the predictions generated by the

classi�ers.

27

Learning

Algorithm
Training

Data

Predictions
1 1

2

2

Classifier

Learning

Algorithm
Training

Data

Predictions
1 1

2

2

Classifier

Final

Classifier

System

33

Meta-level

Training

Data

4 4

3
3

Meta-Learning

(Arbitration and Combining)

Figure 3.1: Meta-learning.

4. The �nal classi�er meta-classi�er is trained from the meta-level training set.

In meta-learning a learning algorithm is used to learn how to integrate the learned

classi�ers. That is, rather than having a predetermined and �xed integration rule (for

example, voting), the integration rule is learned based on the behavior of the trained

classi�ers.

Sections 3.1 and 3.2 discuss how the base classi�ers can be generated and how

they can be integrated. Section 3.4 details our meta-learning strategies. Section 3.3

summarizes our methods by contrasting them with others in the literature.

28

3.1 Computing Initial Base Classi�ers

We consider two distinct phases in meta-learning in which data reduction is ap-

plied in two di�erent fashions. In the �rst phase, \base level classi�ers" are computed

from the initial input database. Thus, the initial input database D, where N =j D j,

is divided into s random and unbiased subsets of training data, each of (roughly)

size N=s. These subsets are input to s learning processes, executed concurrently. In

the second phase when meta-learning over a number of computed base classi�ers, we

may similarly partition \meta-data" across subsets of classi�ers who are integrated

in smaller groups. However, here we may compose distributions of meta-level train-

ing data that are purposefully biased by the classi�cations of the underlying base

classi�ers (i.e., we �lter the data according to the predictions of the precomputed

classi�ers).

There are, however, several important considerations. We must be concerned

with the bias introduced by the particular distribution formed by the data reduction

method. For example, if the data are partitioned over the \class label" (i.e., the

target concept of inductive learning) then the resultant classi�ers would be speci�c

to only a single class, and no others. This may be a poor strategy for at least two

important reasons.

First, under this scheme important information that distinguishes between two

classes will not be available to any learning algorithm. Thus, \near-misses", \out-

liers," and \counter-factuals" will not be available to a learning algorithm. This may

lead to \overly general" inductively inferred descriptions of the data, putting a heav-

ier burden on meta-learning to correct the mistakes of the base classi�ers. Indeed,

many \discrimination based" learning algorithms require negative training examples

to compute useful results. Secondly, the independent subsets of training data may

still be too large to process e�ciently. For example, for very large N , and a rel-

atively small number of classes, c, the quantity N=c may itself be a large number.

This implies that other attributes of the data must participate in the data reduction

29

scheme to distribute the computation. But then we must be concerned with choosing

\good distributions" that minimize any potential severe bias or skew that may lead

to faulty or misleading classi�ers. The importance of choosing the right attributes

and the resultant impact on learning cannot be understated.

Random selection of the partitioned data sets with a uniform distribution of classes

is perhaps the most sensible solution. Here we may attempt to maintain the same

frequency distribution over the \class attribute" so that each partition represents

a good but smaller model of the entire training set. Otherwise, a totally random

selection strategy may result in the absence of some classes we wish to discriminate

among in some of the training subsets. Several experiments have been conducted and

are reported below to explore these issues. Unfortunately, there is no strong theory

to guide us on how to optimally solve this problem.

An alternative to partitioning data into disjoint training subsets is to apply \par-

tial data reduction," meaning that we may allow for some amount of replication in the

partitioned data sets. In this way, the separately learned base classi�ers have some

hope of analyzing common data, some of which may include \near-misses." However,

this strategy implies that we are not making maximal use of our parallel resources,

since a considerable amount of the original training database is being replicated at

various distributed computing sites. However, the extreme bias in the data that may

be derived from purely disjoint data partitioning can be relaxed to some degree with

partial replication.

Several experiments have been conducted and are reported in later chapters detail-

ing the surprising outcome of these two strategies. Disjoint partitioning of training

data versus partially replicating information among the base training data sets is

compared over two learning tasks, varying the amount of replication in a series of

tests. The results show that partial replication essentially buys nothing: no improve-

ment, nor any reduction, in accuracy is seen! Thus, meta-learning over disjoint sets

of training data is e�ective provided the distribution of training data is not highly

30

skewed or severely biased.

3.2 Integrating Base Classi�ers

Since di�erent learning algorithms employ di�erent knowledge representations and

search heuristics, di�erent search spaces may be explored by each and hence poten-

tially diverse results can be obtained. Mitchell (1980) refers to this phenomenon

as inductive bias; the outcome of running an algorithm is biased towards a certain

outcome. Furthermore, di�erent partitions of a data set have di�erent statistical

characteristics and the performance of any single learning algorithm might di�er sub-

stantially over these partitions. These observations imply that great care must be

taken in designing an appropriate distributed meta-learning architecture. A number

of these issues are explored in this section.

How precisely do we integrate a number of separately learned classi�ers? Bayesian

statistics theory provides one possible approach to combining several learned classi-

�ers based upon the statistics of the behavior of the classi�ers on the training set.

Given some set of classi�ers, C

i

; i = 1::n and a feature vector x, we seek to compute

a class label y for x. Bayes theorem suggests an \optimal" strategy as follows:

P (y j x) =

X

i

P (C

i

)� P (y j C

i

; x)

P (C

i

) is the probability that C

i

predicts correctly, (i.e., the probability it is the true

model), while P (y j C

i

; x) is the probability that x is of class y given by C

i

. Of

course, this makes sense only when the probabilities are indeed known, and our clas-

si�ers are probabilistic and not categorical. The best we can do to estimate P (C

i

) is

to calculate the appropriate statistics from observing the behavior of each classi�er on

the training set as an approximation to the actual probabilities (which may be quite

inaccurate.) (Furthermore, Bayes theorem would be optimal if we knew all possible

classi�ers, not just those that we happen to compute.) This information, however,

provides only statistics about each classi�er's behavior with respect to the training

31

set, and no information about how the classi�ers are related to each other. For ex-

ample, learning that two classi�ers rarely agree with each other when predicting a

class label y (meaning that when one classi�er predicts y, the other does not) might

have much more predictive value (eg. when combined with a third classi�er) than

merely knowing that the two classi�ers predict y with equal probability! We view

the Bayesian approach as a baseline, and use methods derived from this approach,

Bayesian Belief (Xu et al., 1992), for comparative purposes in our experiments re-

ported later. There are many other approaches we might imagine that are based

upon learning relationships between classi�ers. The manner in which we learn the

relationship between classi�ers is to learn a new classi�er (a \meta-level classi�er")

whose input is the set of predictions of two or more classi�ers on common data. It is

this latter view that we call meta-learning.

In the following sections we detail meta-learning by arbitration, and by combining

where in both cases a variety of inductive learning algorithms are employed to generate

the appropriate meta-classi�ers. Each strategy is treated in great detail including the

variety of training data distributions generated in each scheme.

There are a number of important questions only poorly understood but for which

substantial experimental evidence suggests directions for future exploration. In par-

ticular:

� Can meta-learning over data partitions maintain or boost the accuracy of a

single global classi�er?

� How do voting and Bayesian techniques compare to meta-learning in accuracy?

� How do arbiters compare to combiners in accuracy?

� A meta-learned classi�er may be treated as a base classi�er. Thus, might hi-

erarchically meta-learned classi�ers perform better than a single layered meta-

learned architecture?

32

� How much training data and of what distribution should an arbiter or combiner

be provided in order to produce accurate results?

� Might meta-learned classi�ers be improved by learning over partitions of par-

tially replicated training data, or is disjoint training data su�cient to achieve

high accuracy?

A substantial number of exploratory evaluations have been completed. Details of

these results are in the following chapters.

We have discovered through experimentation three very interesting behaviors ex-

hibited by various meta-learning strategies that warrant further elaboration. We

demonstrate that under certain circumstances, a meta-learning architecture can learn

e�ectively with a fraction of the total available information at any one site, that ac-

curacy can be boosted over the global classi�er trained from all available data, and

that maximal parallelism can be e�ectively exploited by meta-learning over disjoint

data partitions without a substantial loss of accuracy (Chan & Stolfo, 1996a). These

results suggest strongly that a \�eld test" of these techniques over a real world net-

work computing environment (eg. over database server sites on the web) is not only

technically feasible, but also an important next step in the development of these ideas.

In the following sections we present some of the di�erent strategies used in our

meta-learning study.

3.3 Voting, Combining and Arbitration

We distinguish three distinct strategies for combining multiple predictions from

separately learned classi�ers. Voting generally is understood to mean that each clas-

si�er gets one vote, and the majority (or plurality) wins. Weighted voting provides

preferential treatment to some voting classi�ers, as may be predicted by observing

performance on some common test set. The outcome of voting is simply to choose

33

one of the predictions from one or more of the classi�ers. The second major strategy

is arbitration, which entails the use of an \objective" judge whose own prediction is

selected if the participating classi�ers cannot reach a consensus decision. Thus, the

arbiter is itself a classi�er, and may choose a �nal outcome based upon its own pre-

diction but cognizant of the other classi�ers' predictions. Finally, combining refers to

the use of knowledge about how classi�ers behave with respect to each other. Thus, if

we learn, for example, that when two classi�ers predict the same class they are always

correct (relative to some test set), this simple fact may lead to a powerful predictive

tool. Indeed, we may wish to ignore all other classi�ers when they predict a common

outcome. Figures 3.2 and 3.6 contrast the primary di�erences between combiners and

arbiters, which are now detailed.

3.4 Meta-learning by Combining and Arbitration

We distinguish between base classi�ers and combiners/arbiters as follows. A base

classi�er is the outcome of applying a learning algorithm directly to \raw" training

data. The base classi�er is a program that given a test datum provides a prediction of

its unknown class. An combiner or arbiter, as detailed below, is a program generated

by a learning algorithm that is trained on the predictions produced by a set of base

classi�ers and the raw training data. The arbiter/combiner is also a classi�er, and

hence other arbiters or combiners can be computed from the set of predictions of

other combiners/arbiters in a hierarchical manner.

Before we detail the di�erent strategies, for concreteness, we de�ne the following

notations. Let x be an instance whose classi�cation we seek, C

1

(x), C

2

(x), ... C

k

(x)

are the predicted classi�cations of x from k base classi�ers, C

1

, C

2

, ... C

k

. Examples

randomly drawn from the entire original training set constitute the validation set, E,

which is used to generate the meta-level training set according to the following strate-

gies. class(x) and attribute vector(x) denote the correct classi�cation and attribute

vector of example x as speci�ed in the validation set, E.

34

Combiner

Classifier 1

Classifier 2

Instance

Prediction 1

Prediction 2

Final

Prediction

Figure 3.2: A combiner with two classi�ers.

3.4.1 Combiner strategy

In the combiner strategy, the predictions of the learned base classi�ers on the

training set form the basis of the meta-learner's training set. A composition rule,

which varies in di�erent schemes, determines the content of training examples for the

meta-learner. From these examples, the meta-learner generates a meta-classi�er, that

we call a combiner. In classifying an instance, the base classi�ers �rst generate their

predictions. Based on the same composition rule, a new instance is generated from

the predictions, which is then classi�ed by the combiner (see Figure 3.2). The aim

of this strategy is to \coalesce" the predictions from the base classi�ers by learning

the relationship between these predictions and the correct prediction. A combiner

computes a prediction that may be entirely di�erent from any proposed by a base

classi�er, whereas an arbiter chooses one of the predictions from the base classi�ers

and the arbiter itself.

We experimented with three schemes for the composition rule. First, the predic-

tions, C

1

(x), C

2

(x), ... C

k

(x), for each example x in the validation set of examples,

E, are generated by the k base classi�ers. These predicted classi�cations are used

to form a new set of \meta-level training instances," T , which is used as input to a

learning algorithm that computes a combiner. The manner in which T is computed

varies as de�ned below:

35

Example Class Attribute vector Base classi�ers' predictions

x class(x) attrvec(x) C

1

(x) C

2

(x)

x

1

table attrvec

1

table table

x

2

chair attrvec

2

table chair

x

3

table attrvec

3

chair chair

Training set from

the class-combiner scheme

Instance Class Attribute vector

1 table (table, table)

2 chair (table, chair)

3 table (chair, chair)

Training set from

the class-attribute-combiner scheme

Instance Class Attribute vector

1 table (table, table, attrvec

1

)

2 chair (table, chair, attrvec

2

)

3 table (chair, chair, attrvec

3

)

Figure 3.3: Sample training sets generated by the class-combiner and class-attribute-

combiner schemes with two base classi�ers.

class-combiner Return meta-level training instances with the correct classi�cation

and the predictions; i.e., T = f(class(x); C

1

(x); C

2

(x); :::C

k

(x)) j x 2 Eg: This

scheme was also used by Wolpert (1992). See Figure 3.3 for a sample training set.

class-attribute-combiner Return meta-level training instances as in class-combiner

with the addition of the attribute vectors; i.e., T = f(class(x); C

1

(x); C

2

(x); ::::C

k

(x);

attribute vector(x)) j x 2 Eg: See Figure 3.3 for a sample training set.

binary-class-combiner Return meta-level training instances similar to those in

the class-combiner scheme except that each prediction, C

i

(x), has m binary pre-

dictions, C

i

1

(x); : : : ; C

i

m

(x), where m is the number of classes. Each prediction,

36

Example Class Attribute Base classi�er1's Base classi�er2's

vector predictions predictions

x class(x) attrvec(x) C

1

table

(x) C

1

chair

(x) C

2

table

(x) C

2

chair

(x)

x

1

table attrvec

1

yes no yes no

x

2

chair attrvec

2

yes yes no yes

x

3

table attrvec

3

no yes no yes

Training set from

the binary-class-combiner scheme

Instance Class Attribute vector

1 table (yes, no, yes, no)

2 chair (yes, yes, no, yes)

3 table (no, yes, no, yes)

Figure 3.4: Sample training set generated by the binary-class-combiner scheme with

two base classi�ers.

C

i

j

(x), is produced from a binary classi�er, which is trained on examples that are

labeled with classes j and :j. In other words, we are using more specialized base

classi�ers and attempting to learn the correlation between the binary predictions

and the correct prediction. For concreteness, T = f(class(x); C

1

1

(x); : : : ; C

1

m

(x);

C

2

1

(x); : : : ; C

2

m

(x); : : : C

k

1

(x); : : : ; C

3

m

(x)) j x 2 Eg: See Figure 3.4 for a sample

training set.

These three schemes for the composition rule are de�ned in the context of forming

a training set for the combiner. These composition rules are also used in a similar

manner during classi�cation after a combiner has been computed. Given an instance

whose classi�cation is sought, we �rst compute the classi�cations predicted by each

of the base classi�ers. The composition rule is then applied to generate a single

meta-level test instance, which is then classi�ed by the combiner to produce the �nal

predicted class of the original test datum.

Figure 3.5 shows a combiner (in decision tree format) that is learned from 4 base

classi�ers in the RNA splice junction domain (Section 4.2.1). The combiner strategy

discovers that base-classifier-1 is much more relevant than the others that only

37

base-classifier-1 = EI: EI

base-classifier-1 = IE:

| p-3 = A: N

| p-3 = C: IE

| p-3 = G: N

| p-3 = T: IE

base-classifier-1 = N:

| p1 = A: N

| p1 = C: N

| p1 = G:

| | p5 = A: N

| | p5 = C: N

| | p5 = G:

| | | p2 = A: N

| | | p2 = C: N

| | | p2 = G: N

| | | p2 = T: EI

| | p5 = T: N

| p1 = T: N

Figure 3.5: A sample combiner learned from 4 base classi�ers. One classi�er c1

survived.

base-classifier-1 appears in the combiner.

3.4.2 Arbiter strategy

In the arbiter strategy, the training set for the meta-learner is a subset of the

training set for the base learners; i.e. the meta-level training instances are a particular

distribution of the raw training set. The predictions of the learned base classi�ers

for the training set and a selection rule, which varies in di�erent schemes, determines

38

Classifier 1

Classifier 2

Instance

Prediction 1

Prediction 2

Final

Prediction

Arbiter

Arbitration

Rule

Arbiter’s

Prediction

Figure 3.6: An arbiter with two classi�ers.

which subset will constitute the meta-learner's training set. (This contrasts with the

combiner strategy, which has the same number of examples for the base classi�er as

for the combiner. Also, the meta-level training instances for a combiner incorporate

additional information than just the raw training data.) Based on this training set, the

meta-learner generates a meta-classi�er, in this case called an arbiter. In classifying

an instance, the base classi�ers �rst generate their predictions. These predictions,

together with the arbiter's prediction and a corresponding arbitration rule, generate

the �nal prediction (see Figure 3.6). In this strategy one learns to arbitrate among

the potentially di�erent predictions from the base classi�ers, instead of learning to

coalesce the predictions as in the combiner strategy. We �rst describe the schemes

for the selection rule and then those for the arbitration rule.

We experimented with three schemes for the selection rule, which chooses training

examples for an arbiter. In essence the schemes select examples that are confusing to

the base classi�ers, from which an arbiter is learned. A training set T for the arbiter

is generated by picking examples from the validation set E. The choice of examples

selected from E is dictated by a selection rule, that purposefully biases the arbiter

training data. The three versions of this selection rule implemented and reported

39

here include:

di�erent-arbiter Select an instance from E if none of the classes in the k base

predictions gathers a majority classi�cation (> k=2 votes); i.e., T = T

d

= fx 2

E j no majority(C

1

(x); C

2

(x); :::C

k

(x))g: The purpose of this rule is to choose data

that are in some sense \confusing"; i.e., the majority of classi�ers do not agree on

how the data should be classi�ed (di�erent opinions). As we will show later, this

rule has comparable performance to the other more complex rules, hence, when the

speci�cation of a selection rule is absent, this rule is implied. That is, this is the

default arbiter strategy. For further reference, this scheme is denoted as arbiter

or di�erent-arbiter.

di�erent-incorrect-arbiter Select instances with predictions that does not gather

a majority, T

d

, as in the �rst case, but also instances with predictions that have a

majority but are incorrect; i.e, T = D [I, where I = T

i

= fx 2 E j majority(C

1

(x);

C

2

(x); :::; C

k

(x)) 6= class(x)g: Note that we lump together both cases of data that

are incorrectly classi�ed or in disagreement (no majority).

di�erent-incorrect-correct-arbiter Return a set of three training sets: T

d

and

T

i

, as de�ned above, and T

c

with examples that have the same correct predictions; i.e.,

T = fT

d

; T

i

; T

c

g, where T

c

= fx 2 E j majority(C

1

(x); C

2

(x); :::; C

k

(x)) = class(x)g:

Here we attempt to separate the data into three cases and distinguish each case by

learning a separate \subarbiter." T

d

, T

i

, and T

c

generate A

d

, A

i

, and A

c

, respectively.

The �rst arbiter is like the one computed in the �rst case to arbitrate disagreements.

The second and third arbiters attempt to distinguish the cases when the predictions

have a majority but are either incorrect or correct.

Figure 3.7 depicts sample training sets for the three arbiter schemes. Note the

di�erence in training data for the arbitration and combining. Arbiters are computed

from a distinguished and biased subset of data selected from the input database

40

Example Class Attribute vector Base classi�ers' predictions

x class(x) attrvec(x) C

1

(x) C

2

(x)

x

1

table attrvec

1

table table

x

2

chair attrvec

2

table chair

x

3

table attrvec

3

chair chair

Training set from

the di�erent-arbiter scheme

Instance Example Class Attribute vector

1 x

2

chair attrvec

2

Training set from

the di�erent-incorrect-arbiter scheme

Instance Example Class Attribute vector

1 x

2

chair attrvec

2

2 x

3

table attrvec

3

Training sets from

the di�erent-incorrect-correct-arbiter scheme

Set Instance Example Class Attribute vector

Di�erent (T

d

) 1 x

2

chair attrvec

2

Incorrect (T

i

) 1 x

3

table attrvec

3

Correct (T

c

) 1 x

1

table attrvec

1

Figure 3.7: Sample training sets generated by the three arbiter schemes with two base

classi�ers.

used to train the base classi�ers. Combiners, however, are trained on the predicted

classi�cations of that data generated by the base classi�ers, as well as the data itself.

The learned arbiters are trained by some learning algorithm on the particular

distinguished distributions of training data and are used in generating predictions.

During the classi�cation of an instance, y, an arbitration rule and the learned arbiter,

A, produce a �nal prediction based on the k predictions, C

1

(y), C

2

(y) ... C

k

(y), from

the k base classi�ers and the arbiter's own prediction, A(y).

Two versions of the arbitration rule have been implemented. The �rst version

41

corresponds to the �rst two selection strategies, while the second version corresponds

to the third strategy.

di�erent-arbiter or di�erent-incorrect-arbiter Return the class with a plural-

ity of occurrences in C

1

(y), C

2

(y), ... C

k

(y), and A(y), with preference given to the

arbiter's choice in case of a tie. For example, if the three classi�ers predict table,

chair, and table and the arbiter predicts chair (i.e., a tie), the �nal prediction is

chair.

di�erent-incorrect-correct-arbiter Return a class label according to:

if no majority(C

1

(y); C

2

(y); :::C

k

(y))

return A

d

(y)

else if majority(C

1

(y); C

2

(y); :::C

k

(y)) = A

c

(y)

return A

c

(y)

else

return A

i

(y),

where A = fA

d

; A

i

; A

c

g.

This rule tries to di�erentiate the three di�erent circumstances so that the three

specialized \subarbiters" can be utilized.

We described the combiner and arbiter strategies for meta-learning. It is impor-

tant to note the di�erence between the combiner and arbiter strategies. The combiner

strategy tries to �nd relationships among the predictions generated by the classi�ers

and the correct predictions. A combiner is a \learned function" that determines the

�nal prediction given a set of predictions. For example, given an unlabeled instance

x, the combiner may learn a rule stating that if classi�er C

1

predicts table, and C

2

predicts chair, then the combiner predicts lamp (i.e., possibly a completely di�erent

prediction from either classi�er). However, the arbiter strategy attempts to arbi-

trate among the con
icting predictions and an arbiter is just another classi�er, but

trained on a biased distribution of the original examples. Here, for example, when

42

C

1

, and C

2

's predictions disagree, the arbiter makes its own prediction, which could

be completely di�erent from the two base predictions, and a vote determines the �nal

prediction.

We next discuss hybrid schemes that merge some of ideas from the arbiter and

combiner strategies.

3.4.3 Hybrid strategy

We integrate the combiner and arbiter strategies in the hybrid strategy. Given the

predictions of the base classi�ers on the original training set, a selection rule picks

examples from the training set as in the arbiter strategy. However, the training set

for the meta-learner is generated by a composition rule applied to the distribution of

training data (a subset of E) as de�ned in the combiner strategy. Thus, the hybrid

strategy attempts to improve the arbiter strategy by correcting the predictions of

the \confused" examples. It does so by using the combiner strategy to coalesce the

predicted classi�cations of data in disagreement by the base classi�ers. A learning

algorithm then generates a meta-classi�er, e�ectively a combiner, from this training

set.

When a test instance is classi�ed, the base classi�ers �rst generate their pre-

dictions. These predictions are then composed to form a meta-level instance for the

learned meta-classi�er using the same composition rule. The meta-classi�er then pro-

duces the �nal prediction. The hybrid strategy thus attempts to improve the arbiter

strategy by coalescing predictions instead of purely arbitrating among them.

We experimented with two combinations of composition and selection rules, though

any combination of the rules is possible:

di�erent-class-attribute-hybrid Select examples that have di�erent predictions

from the base classi�ers and the predictions, together with the correct classes and

43

Example Class Attribute vector Base classi�ers' predictions

x class(x) attrvec(x) C

1

(x) C

2

(x)

x

1

table attrvec

1

table table

x

2

chair attrvec

2

table chair

x

3

table attrvec

3

chair chair

Training set from

the di�erent-class-attribute-hybrid scheme

Instance Class Attribute vector

1 chair (table, chair, attrvec

2

)

Training set from

the di�erent-incorrect-class-attribute-hybrid scheme

Instance Class Attribute vector

1 chair (table, chair, attrvec

2

)

2 table (chair, chair, attrvec

3

)

Figure 3.8: Sample training sets generated by the hybrid schemes.

attribute vectors form the training set for the meta-learner. This integrates the

di�erent-arbiter and class-attribute-combiner schemes.

di�erent-incorrect-class-attribute-hybrid Select examples that have di�erent

or incorrect predictions from the base classi�ers and the predictions, together with

the correct classes and attribute vectors form the training set for the meta-learner.

This integrates the di�erent-incorrect-arbiter and class-attribute-combiner schemes.

Sample training sets for these two hybrid schemes are displayed in Figure 3.8.

Much of our investigation in this thesis focuses on the class-combiner, class-

attribute-combiner, and di�erent-arbiter schemes. The other more complex schemes

were not examined as much because preliminary experiments indicate that they do

not gain much upon the simpler schemes. The next chapter details our experimental

apparatus and methodology.

44

Chapter 4

Experimental Apparatus and

Methodology

To evaluate our meta-learning approach and other techniques in the literature, we

performed a substantial numbers of experiments using a variety of learning algo-

rithms and tasks. We �rst discuss the apparatus and then the methodology for our

experiments.

4.1 Learning Algorithms

Five inductive learning algorithms were used in our experiments. Implementa-

tions of these algorithms are \o�-the-shelf" and were not modi�ed. The variety of

algorithms provide some generality for our empirical results.

We obtained ID3 (Quinlan, 1986) and CART (Breiman et al., 1984) as part of

the IND package (Buntine & Caruana, 1991) from NASA Ames Research Center;

both algorithms compute decision trees. CN2 (Clark & Niblett, 1989) is a rule learn-

ing algorithm and was obtained from Dr. Clark (Boswell, 1990). WPEBLS is the

weighted version of PEBLS (Cost & Salzberg, 1993), which is a nearest-neighbor

45

learning algorithm. BAYES is a naive Bayesian learning algorithm that is based on

computing conditional probabilities as described in (Clark & Niblett, 1989). The last

two algorithms were reimplemented in C++.

4.2 Learning Tasks

Various machine learning techniques have been applied to di�erent molecular bi-

ology sequence analysis tasks (Chan, 1991; Craven & Shavlik, 1994). For our study,

we chose three sequence analysis tasks obtained from the Machine Learning Database

Repository at University of California, Irvine (Merz & Murphy, 1996). Moreover, we

also used an arti�cial data set that can be generated at random.

4.2.1 Molecular biology sequence analysis data

Molecular biologists in genetics have been focusing on analyzing sequences ob-

tained from proteins, DNA (DeoxyriboNucleic Acid), and RNA (RiboNucleic Acid).

These sequences are divided into two groups: amino acid sequences and nucleotide se-

quences. These two groups are brie
y discussed in the following two sections. Further

readings can be found in (Schleif, 1986; Lewin, 1987; Hunter, 1993).

The basic building blocks of genetics are nucleotides. DNA consists of two chem-

ically linked sequences of nucleotides (or polynucleotide chains) in double helix form

whereas RNA consists of only one polynucleotide chain. In DNA the nucleotide se-

quence of one strand complements the other strand in such a way that one strand

can be used to synthesize the other. There are four di�erent kinds of nucleotides in

DNA (adenine, cytosine, guanine, and thymine) and RNA (adenine, cytosine, gua-

nine, and uracil). That is, a DNA or RNA segment can be represented as a sequence

of symbols, where each symbol denotes one of the four nucleotides. For example,

GGGACGGUCC is a segment of ten nucleotides of the U1 RNA (Nakata et al.,

46

1985).

Although a DNA molecule consists of two nucleotide strands, one strand is the

complement of the other, which is more or less redundant in terms of encoding genetic

information. If one constructs the sequence of all the DNA molecules in an organism's

genome, one can represent the organism as a long sequence of just four letters. The

length of the human DNA sequence is estimated to be 3� 10

9

.

Characteristics and functions of organisms are controlled by proteins, whose pro-

duction is regulated by the information encoded in the nucleotide sequences of DNA.

A gene is basically a DNA fragment that carries the information representing a par-

ticular protein. This genetic information is primarily the order of nucleotides in the

DNA. Proteins are not directly produced from the information on DNA. Instead,

information in a gene is copied to another type of nucleotide sequence, called RNA,

whose nucleotide order is used to produce proteins. Speci�cally, a sequence of three

nucleotides, a codon, encodes one amino acid. Of the 64 possible codons, 61 represent

amino acids and the remaining three signify the end of the encoded proteins. Since

there are only 20 amino acids, all except two amino acids are represented by multiple

codons.

As in analyzing amino acid sequences, we can gain more structural and functional

information about DNA and RNA from studying their nucleotide sequences. For ex-

ample, the decoding process of producing a protein always starts at a certain location

in a DNA segment called the promoter. Molecular biologists try to identify the initi-

ation region in a given DNA sequence so that they can understand more about the

interactions between DNA and protein production.

Proteins are fundamental and instrumental in every aspect of biological function

even though they are relatively simple in their sequence structure. Proteins consist of

polypeptide chains. Each polypeptide chain is an unbranched sequence of amino acids

linked by peptide bonds. There are a total of twenty di�erent primary amino acids;

others are derived from the primary ones. A protein segment can thus be represented

47

as a sequence of symbols, where each symbol signi�es a distinct amino acid. For

example, PIVDTGSVAP is a segment of ten amino acids in Hemoglobin V (Qian &

Sejnowski, 1988).

Due to the physical and chemical interactions among amino acids, proteins do not

appear as linear ropes. Interacting segments create twists and turns (called protein

folding). Scientists have identi�ed structural patterns in proteins and classi�ed four

structural levels. The primary structure is the sequence of amino acids, a linear chain

of speci�c acids. The main conformational states in the secondary structure are �-

helix, �-sheet, and coil (not helix or sheet), which are three-dimensional shapes formed

from this linear chain. Features in the secondary structure induce the tertiary struc-

ture. For proteins that consist of multiple polypeptide chains, multimeric proteins,

interactions among chains generate the quaternary structure.

The shape of a protein largely determines its functions. Various structural features

provide sites for biochemical activities

1

. A lot of the enzymatic activities hinge on

lock-and-key type reactions, which highly rely on structural properties.

The purpose of analyzing amino acid sequences is to gain information about pro-

teins both structurally and functionally. Consider, for example, the secondary struc-

ture is important in determining the function of the protein. Scientists have been

trying to �nd ways to predict the secondary structures from amino acid sequences so

they can learn more about the functional properties of proteins (more in Sec. 4.2.1).

RNA splice junction

Protein synthesis begins with the construction of an mRNA molecule (messenger

RNA (ribonucleic acid)) based on the nucleotide sequence of a DNA molecule. This

process is called transcription. The composition of RNA is similar to that of DNA,

1

Imagine a rope with a series of knots, each knot representing an amino acid. Our imaginary

protein rope can be twisted and folded into a globule, the most frequent shape in protein, exposing

some knots externally while hiding others internally. The exposed external knots generate various

shapes, which largely determine the protein's biochemical behavior.

48

DNA

Transcription

Intron

Exon

mRNA

Exon-intron
junction junction

precursor RNA

Splicing

Intron-exon

Figure 4.1: Splice junctions and mRNA.

except RNA is single-stranded, the ribose component replaces the deoxyribose one,

and uracil (U) replaces thymine. The second process is translation, where each coding

triplet of nucleotides on an mRNA molecule is mapped to an amino acid and a chain

of amino acids forms a protein.

In eukaryotes' (organisms with cells that have nuclear membrane (for example,

human)) DNA, there are interrupted genes. That is, some regions of a gene do

not encode protein information. During transcription, these non-protein-encoding

regions (called introns) are passed to the precursor RNA. Introns are sliced o� before

translation begins. The regions that encode protein information (called exons), are

spliced together and the resultant intron-free mRNA is used in translation. Figure 4.1

schematically depicts the process of generating an mRNA molecule.

The RNA splice junction (SJ) data set (courtesy of Towell, Shavlik, and No-

ordewier (1990)) contains sequences of nucleotides and the type of splice junction, if

any, at the center of each sequence. Exon-intron, intron-exon, and non-junction are

the three classes in this task. Each sequence has 60 nucleotides with eight di�erent

values per nucleotide (four base ones plus four combinations). The data set contains

3,190 training instances. The learning task is to identify the type of splice junction

with high accuracy.

49

Protein coding region

As discussed previously, amino acids are encoded by nucleotide triplets (codons)

in a DNA sequence. It is important to know how the nucleotides are grouped into

codons (reading frames). Starting at position x and position x+1 gives two di�erent

sequences of codons and hence two di�erent sequences of amino acids. One amino

acid sequence might constitute a known protein, the other might be a structure of

unknown nature.

The protein coding region (PCR) data set (courtesy of Craven and Shavlik (1993))

contains DNA nucleotide sequences and their binary classi�cations (coding or non-

coding). Each sequence has 15 nucleotides with four di�erent values per nucleotide. If

the 15 nucleotides represent 5 codons which are part of a known protein, the sequence

is labeled coding, otherwise, it is labeled non-coding. The PCR data set has 20,000

sequences. The learning task is to recognize coding regions accurately.

Protein secondary structure

There have been quite a number of research attempts to use machine learning

techniques to identify conformational states in the protein secondary structure from

amino acid sequences. The task is to learn the rules governing the formation of,

say an �-helix, given a particular amino acid sequence. That is, given an amino acid

sequence, we want to predict the conformational state around the mid point (usually)

of that sequence. The windowing technique is commonly used for generating training

sequences. Each training sequence consists of a �xed number of neighboring amino

acids in sequence and a window, a �xed number of amino acids considered as a

subsequence. The window slides over the protein sequence, one amino acid at a time,

to generate di�erent training sequences. The window size varies according to the

method applied in di�erent tasks.

The protein secondary structure (SS) data set (courtesy of Qian and Sejnowski

50

(1988)) contains sequences of amino acids and the secondary structures at the cor-

responding positions. There are three structures (alpha-helix, beta-sheet, and coil)

and 20 amino acids (21 attributes, including a spacer (Qian & Sejnowski, 1988)) in

the data. The amino acid sequences were split into shorter sequences of length 13

according to a windowing technique used in (Qian & Sejnowski, 1988). The SS data

set has 21,625 sequences.

These three data sets represent di�erent degrees of di�culty in learning an accu-

rate concept. Typical learning algorithms can achieve an accuracy of 90+% in the

splice junction data set, 70+% in the protein coding region data set, and 50+% ac-

curacy in the protein secondary structure data set. The learning task is to identify

the di�erent secondary structures.

4.2.2 Arti�cial data

A fourth data set was also employed. This arti�cial (ART) data set has 10,000 in-

stances randomly generated from a disjunctive boolean expression that has 4 symbolic

(26 values) and 4 numeric (1,000 values) variables. The expression is:

(x

0

< `N

0

^ x

1

< 500 ^ x

2

< `N

0

) _ (x

1

> 500 ^ x

2

> `N

0

^ x

3

> 500) _

(x

4

< `N

0

^ x

5

< 500^ x

6

< `N

0

) _ (x

5

> 500^ x

6

> `N

0

^ x

7

> 500);

where x

0

, x

2

, x

4

, and x

6

are symbolic variables with values `A' through `Z', and x

1

,

x

3

, x

5

, and x

7

are numeric variables with values 0 through 999. A total of 4:6� 10

17

instances are possible. Arbitrarily large data sets can be generated at will and are

used in experiments destinated for measuring e�ciency performance.

Although these data sets (except the arti�cial data sets used in e�ciency exper-

iments) are not very large data sets, they do provide us with an idea of how our

strategies behave in practice. Since the data sets are su�ciently small, we are able

to generate base line statistics on the accuracy of each learning algorithm we have

chosen to use in this study. Otherwise, using a massive database would imply that

51

we have unbounded resources and time in order to compute baseline statistics. As

we have noted (as well as (Catlett, 1991)) this might take many years of computing.

Furthermore, scaling studies are possible on these smaller sets simply by varying the

number and size of the subsets formed in the initial data reduction schemes and ex-

trapolating. However, larger data sets are being sought for use in this study which

will be the focus of our work. Stated another way, if we cannot display useful and

interesting results of meta-learning on these small test cases, larger-scale studies are

probably not warranted.

4.3 Experimental Methodology

One of the more common techniques used in evaluating the accuracy of a learning

program is cross validation (Breiman et al., 1984). In an n-fold cross validation,

the entire data set is divided into n disjoint subsets and n train-and-test runs are

performed. In each run, two disjoint sets are formed: a training set and a test set.

One of the n subsets form the test set and the remaining n � 1 subsets merged to

form the training set. A classi�er is generated by applying a learning algorithm to the

training set and is evaluated on the test set. Note that the classi�er is evaluated on

data not used in training. That is, the accuracy obtained from the test set estimates

the accuracy/predictiveness of the learned classi�er. A di�erent subset (out of n

subsets) is used as the test set (hence a di�erent training set) in each of the n runs.

The accuracies of the n di�erent classi�ers measured over the n di�erent test sets are

averaged as the �nal prediction accuracy for the learning algorithm employed.

The learning algorithms and the learning tasks we evaluate here by cross validation

are detailed in the following pages. In most of the experimental results reported below,

the average from 10-fold cross validation runs is plotted. This represents hundreds of

experimental runs over the various meta-learning strategies in-toto. Also, statistical

signi�cance in di�erence of averages is measured by using the one-sided t-test with a

90% con�dence value.

52

To simulate the multiple-site scenario, in our experiments, we divided the training

set into equi-sized subsets (each subset representing a site) and varied the number

of subsets (sites) from 2 to 64. Base-classi�ers are learned from these subsets. In

most experiments we also ensured that each subset was disjoint but with proportional

distribution of examples of each class (i.e., the ratio of examples in each class in the

whole data set is preserved). Prediction accuracy of meta-learned classi�ers (or meta-

classi�ers) are compared to the accuracy of global classi�ers, which are learned from

the entire data set before partitioning. As the number of subsets increases, each of

the subset becomes smaller, which result in signi�cant loss of information. Therefore,

it is particularly important that the meta-classi�ers are at least as as accurate as the

global classi�ers.

4.4 Limitations in Experiments

Experiments in this thesis were performed at di�erent time periods (not in chapter

order) and the choice of di�erent learning tasks and algorithms in di�erent sets of

experiments changed when more learning tasks and algorithms were acquired. WPE-

BLS was used in earlier studies and was later excluded because it is signi�cantly

slower than the other algorithms and it needs much more space to store its classi�ers

since each of the classi�ers stores the corresponding training examples. CN2 was

included in our studies later when it became available. Earlier experiments focused

on ID3 and CART because they are the more popular learning algorithms. In fact,

they were used in almost every experiment.

Data for splice junctions and secondary structures were used in earlier experi-

ments. Data for protein coding regions were later included when it became available.

Since various learning algorithms are not suitable to generate accurate classi�ers for

the secondary structure data (as experienced by other researchers), the data set was

not used in later experiments. The arti�cial data set was added to our study for

large-scale studies when we could not obtain a real-world data set large enough for

53

our scalability experiments.

De�nitive results can only be obtained from very large-scale experiments, which

are beyond the scope of this study. Our results are limited to the di�erent learning

algorithms and tasks employed in our experiments. However, each set of experiments

was performed on quite a number of di�erent combinations of learning tasks, learning

algorithms, and other parameters. That is, our results do provide some degree of

generality.

54

Chapter 5

One-level Meta-Learning on

Partitioned Data

As we discussed previously, our approach to solve the scaling problem is to partition

the data set into smaller subsets, apply learning algorithms to each subset, followed

by a meta-learning phase that combines the learned results. In this study we focus on

using the same learning algorithm on each of the subsets as well as for generating the

integrated (meta-learned) structures. Figure 5.1 depicts this process with the same

learning algorithm L generating classi�ers C

1

through C

n

from training data subsets

T

1

through T

n

. Multistrategy meta-learning (using multiple learning algorithms) will

be discussed in Chapter 10. Each subset is sized to �t into main memory. In ad-

dition to alleviating the memory restriction problem, we can speed up the process

by running the learning programs in parallel on multiple processors. However, in

such schemes one may presume that accuracy will su�er; i.e., combining results for

separate classi�ers may not be as accurate as learning from the entire data set. Thus,

it is important to determine which schemes for combining results have minimal im-

pact on the quality of the �nal result. Furthermore, we note that the partitioned

data approach reported here is di�erent from much of the similar work which com-

bines multiple classi�ers trained from the \entire" data set for accuracy improvement

55

Meta-Learning

C1 C2 C3 Cn

T1 T2 T3 Tn

Training

Data

L L L L

...

Figure 5.1: Meta-learning from partitioned data.

(sometimes called \boosting" (Schapire, 1990)).

In this chapter we study di�erent techniques for integrating predictions generated

by a set of base classi�ers, each of which is computed by a learning algorithm applied

to a distinct partitioned data subset. Common voting and statistical techniques are

evaluated. Techniques described in Section 2.1.2 that are included in this study are:

� Voting

� Weighted Voting

� Weighted Majority (WM) (Littlestone & Warmuth, 1989)

� Weighted Majority-Limit (WML) (Littlestone & Warmuth, 1989)

� Weighted Majority-Random (WMR) (Littlestone & Warmuth, 1989)

56

� Bayesian Belief (Xu et al., 1992)

These familiar techniques are empirically compared to our proposed meta-learning

techniques (arbiter, class-combiner, and class-attribute-combiner) described in Chap-

ter 3. All the meta-learning strategies discussed so far have only one level of meta-

learning to create the integrating structures. Hence, we characterize these strategies

as one-level meta-learning methods (Chan & Stolfo, 1995a).

5.1 Issues

Before we compare the other techniques in the literature with ours, several issues

have to be addressed and are discussed as follows.

Number and size of training subsets: The number of initially partitioned train-

ing data subsets largely depends on the number of processors available, the inherent

distribution of data across multiple platforms (some possibly mobile and periodically

disconnected), the total size of the available training set, and the complexity of the

learning algorithms. The available resources at each processing sites naturally de�nes

an upper bound on the size of each subset. If the number of subsets exceeds the

number of processors available, each processor can simulate the work of multiple ones

by serially executing the task of each processor. Another consideration is the desired

accuracy we wish to achieve. As we will see in our experimental results, there may be

a tradeo� between the number of subsets and the �nal accuracy of a meta-learning

system. Moreover, the size of each subset cannot be too small because su�cient data

must be available for each learning process to produce an e�ective base classi�er in

the initial stage of training.

Distribution of examples, disjoint or replicated: Since a totally random distri-

bution of examples may result in the absence of one or more classes in the partitioned

57

data subsets, the classi�ers formed from those subsets will be ignorant about those

classes. That is, more \disagreements" may occur between classi�ers, which leads to

larger arbiter training sets. Maintaining the class distribution in each subset as in the

total available training set may alleviate this problem. The classi�ers generated from

these subsets may be closer in behavior to the global classi�er produced from the

entire training set than those trained on random class distributions. In addition, dis-

joint data subsets promote the maximum amount of parallelism and hence are more

desirable. Yet partial replication (Chan & Stolfo, 1996a) may mitigate the problem

of extreme bias potentially introduced by disjoint data.

Strategies: There are indeed many strategies for arbitration and combining as

detailed here, each impacting the size of training data required to implement them

e�ectively. Several experiments were run to determine the relative e�ectiveness of

some of these strategies. They vary in the type of information or biased distributions

of training data the arbiter is allowed to see. Thus far, the meta-learning strategies

we discussed are applied solely to a single collection of base classi�ers. (These are

called \one-level" meta-learners.) We also studied building hierarchical structures

in a recursive fashion, i.e., meta-learning arbiters and combiners from a collection of

\lower level" arbiters and combiners. These hierarchical classi�ers attempt to improve

the prediction accuracy that may be achieved by one-level meta-learned classi�ers and

are described in Chapter 6.

5.2 Experiments and Results

Di�erent combinations of two learning algorithms (ID3 and CART) and two data

sets (Splice Junctions and Protein Coding Regions) were explored in our experiments.

The experimental procedures in Section 4.3 were followed and results are summarized

in the following sections.

58

5.2.1 Voting, statistical, and meta-learning techniques

We �rst consider whether meta-learning performs as well as the common voting

and Bayesian techniques reported in the literature. In our experiments, we varied the

number of equi-sized subsets of training data from 2 to 64 ensuring each was disjoint

but with proportional distribution of examples of each class. The size of a valida-

tion set used for generating the integrating structures (weights/probabilities/arbiters/

combiners) is twice the size of the underlying training set for a base classi�er. (Since

the arbiter approach selects a subset of the validation set, a larger validation set

size than the base set size provides more training examples at the meta-level.) The

prediction accuracy on a separate test set is our primary comparison measure. The

di�erent strategies were run on the two data sets with the two learning algorithms.

The results from the splice junctions data set are plotted in Figure 5.2 and the protein

coding regions data set in Figure 5.3. In each �gure the �rst row of graphs depicts

results from the di�erent integrating techniques using ID3 and the second row using

CART. The accuracy for the global classi�er is plotted as \one subset," meaning the

learning algorithm was applied to the entire training set to produce the baseline ac-

curacy results for comparison. The average accuracy of the base classi�ers for each

number of subsets is also plotted, labeled as \avg-base." By way of comparison, the

average accuracy of the most accurate base classi�ers is plotted as \max-base." The

plotted accuracy is the average of 10-fold cross-validation runs.

Experiments run over the splice junctions data set indicate that all the methods

sustain a drop in accuracy when the number of subsets increases (i.e., the size of

each distinct subset of training data decreases). For either algorithm, the class-

combiner and class-attribute-combiner schemes exhibit higher accuracy than all the

other techniques. The di�erence is statistically signi�cant for ID3 with most subset

sizes and for CART with a few subset sizes. At 64 subsets, with � 45 examples each,

while the other methods sustain signi�cantly more than 10% in accuracy degradation,

the combiner methods incur around 10% or less decrease in accuracy. The weighted-

majority-random method performs the worst and signi�cantly worse than the others.

59

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

voting
weighted-voting

WM
WML
WMR

avg-base
max-base

80

85

90

95

1 2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

voting
bayesian-belief

arbiter
class-combiner

class-att-combiner

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

voting
weighted-voting

WM
WML
WMR

avg-base
max-base

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

voting
bayesian-belief

arbiter
class-combiner

class-att-combiner

Figure 5.2: Accuracy for the one-level integrating techniques in the splice junctions

domain.

60

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

voting
weighted-voting

WM
WML
WMR

avg-base
max-base

60

65

70

75

1 2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

voting
bayesian-belief

arbiter
class-combiner

class-att-combiner

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

voting
weighted-voting

WM
WML
WMR

avg-base
max-base

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

voting
bayesian-belief

arbiter
class-combiner

class-att-combiner

Figure 5.3: Accuracy for the one-level integrating techniques in the protein coding

regions domain.

61

For the protein coding regions data set, only the arbiter scheme can maintain,

and sometimes exceeds, the original accuracy level. Most other techniques su�er a

signi�cant drop in accuracy for 2 subsets and climb back to the original accuracy level

when the number of subsets increases. Again, the weighted-majority-random method

performs much worse than the others.

In general all the methods, except the weighted-majority-random scheme, consid-

erably outperform the average base classi�er (\avg-base"). The gap is statistically

signi�cant. Furthermore, they outperform the average most accurate base classi�er

(\max-base") except with CART in the splice junction domain. That is, random sam-

pling of the training data is de�nitely not su�cient to generate accurate classi�ers in

the two data sets we studied. Hence, combining techniques are necessary.

The results of our experiments indicate that the meta-learning strategies dominate

over the weighted voting techniques across domains and learners used in this study.

However, the meta-learning techniques do not always outperform the weighted voting

schemes. In the SJ domain, the combiner techniques are more favorable while in the

PCR domain the arbiter technique is. It is not clear under what circumstances a par-

ticular meta-learning strategy will perform better. Additional studies are underway

in an attempt to gain an understanding of these circumstances.

As we observe in the SJ domain, none of the schemes can maintain the baseline

accuracy when the number of subsets increases. Next, we investigate the relaxation

of the disjoint subset property.

5.2.2 Partitioned data with replication

In our previous set of experiments the accuracy level of the global classi�er cannot

always be achieved. One possible problem is the lack of su�cient data in each disjoint

subset. To solve this problem, we allow each data partition to have some amount of

replicated data from other partitions. We prepare each learning task by generating

62

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

class-combiner
class-combiner (5%)

class-combiner (10%)
class-combiner (15%)
class-combiner (20%)
class-combiner (30%)

80

85

90

95

1 2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

class-combiner
class-combiner (5%)

class-combiner (10%)
class-combiner (15%)
class-combiner (20%)
class-combiner (30%)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

class-combiner
class-combiner (5%)

class-combiner (10%)
class-combiner (15%)
class-combiner (20%)
class-combiner (30%)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

class-combiner
class-combiner (5%)

class-combiner (10%)
class-combiner (15%)
class-combiner (20%)
class-combiner (30%)

Figure 5.4: Accuracy for the class-combiner scheme trained over varying amounts of

replicated data. � ranges from 0% to 30%.

63

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

class-att-combiner
class-att-combiner (5%)

class-att-combiner (10%)
class-att-combiner (15%)
class-att-combiner (20%)

80

85

90

95

1 2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

class-att-combiner
class-att-combiner (5%)

class-att-combiner (10%)
class-att-combiner (15%)
class-att-combiner (20%)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

class-att-combiner
class-att-combiner (5%)

class-att-combiner (10%)
class-att-combiner (15%)
class-att-combiner (20%)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

class-att-combiner
class-att-combiner (5%)

class-att-combiner (10%)
class-att-combiner (15%)
class-att-combiner (20%)

Figure 5.5: Accuracy for the class-attribute-combiner scheme trained over varying

amounts of replicated data. � ranges from 0% to 30%.

64

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

arbiter
arbiter (5%)

arbiter (10%)
arbiter (15%)
arbiter (20%)
arbiter (30%)

80

85

90

95

1 2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

arbiter
arbiter (5%)

arbiter (10%)
arbiter (15%)
arbiter (20%)
arbiter (30%)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

arbiter
arbiter (5%)

arbiter (10%)
arbiter (15%)
arbiter (20%)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

arbiter
arbiter (5%)

arbiter (10%)
arbiter (15%)
arbiter (20%)
arbiter (30%)

Figure 5.6: Accuracy for the arbiter scheme trained over varying amounts of replicated

data. � ranges from 0% to 30%.

65

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

bayesian-belief
bayesian-belief (5%)

bayesian-belief (10%)
bayesian-belief (15%)
bayesian-belief (20%)
bayesian-belief (30%)

80

85

90

95

1 2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

bayesian-belief
bayesian-belief (5%)

bayesian-belief (10%)
bayesian-belief (15%)
bayesian-belief (20%)
bayesian-belief (30%)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

bayesian-belief
bayesian-belief (5%)

bayesian-belief (10%)
bayesian-belief (15%)
bayesian-belief (20%)
bayesian-belief (30%) 60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

bayesian-belief
bayesian-belief (5%)

bayesian-belief (10%)
bayesian-belief (15%)
bayesian-belief (20%)
bayesian-belief (30%)

Figure 5.7: Accuracy for the bayesian-belief scheme trained over varying amounts of

replicated data. � ranges from 0% to 30%.

66

subsets of training data for the base classi�ers according to the following generative

scheme (Chan & Stolfo, 1996a):

1. Starting with N disjoint subsets, randomly choose from any of these sets one

example X, distinct from any other previously chosen in a prior iteration.

2. Randomly choose a number r from 1:::(N � 1), i.e. the number of times this

example will be replicated.

3. Randomly choose r subsets (not including the subset from which X was drawn)

and assign X to those r subsets.

4. Repeat this process until the size of the largest (replicated) subset is reached to

some maximum (as a percentage, �, of the original training subset size).

In the experiments reported here, � ranged from 0% to 30%. Again, we used

di�erent combinations of two learning algorithms (ID3 and CART) and two learning

tasks (Splice Junctions and Protein Coding Regions). Each set of incremental exper-

imental runs, however, chooses an entirely new distribution of replicated values. No

attempt was made to maintain a prior distribution of training data when increment-

ing the amount of replication. This \shot gun" approach provides us with some sense

of a \random learning problem" that we may be faced with in real world scenarios

where replication of information is likely inevitable or purposefully orchestrated.

The graphs in Figures 5.4 through 5.7 plot the results for the class-combiner, class-

attribute-combiner, arbiter, and bayesian-belief schemes. The results in all cases are

conclusive: replication essentially buys nothing! In each case no measurable improve-

ment in predictive accuracy is seen no matter which learning algorithm or combining

scheme is used.

These negative results for replication are in fact positive from the perspective of

computational performance! One may presume that applying a number of instances

of a learning algorithm to disjoint training data results in a set of base classi�ers each

67

biased towards its own partition of data. Combining two or more such biased base

classi�ers by meta-learning attempts to share knowledge among the base classi�ers

and to reduce each individual's bias. Replication of training data is an alternative

attempt to reduce this bias. Common or shared information replicated across subsets

of training data at the onset of learning attempts to provide each learned base classi�er

with a \common view" of the learning task. The results here show that meta-learning

from disjoint training data does an e�ective job of sharing knowledge among separate

classi�ers anyway. In fact, the overhead that may be attributed to replicated data

(since the same data is being treated multiple times by separate learning processes)

may be comfortably avoided, i.e. meta-learning on purely disjoint data seems to

achieve good performance, at perhaps optimal speeds due to optimal data reduction.

These rather surprising results are of course limited to the learning algorithms and

data sets used in this study. Further support for this behavior is found in experimental

results reported in Section 7.3.

5.3 Summary

We systematically compare schemes reported in the literature to our proposed

meta-learning techniques and demonstrate empirically that the arbiter scheme pro-

duces more accurate trained classi�ers than the other schemes. However, we observe

that our techniques (and others) cannot always maintain the baseline accuracy (of

the global classi�ers) when the number of data subsets increases. Moreover, partially

replicating some of the data from other subsets in each subset does not alleviate

the problem. As a result, from a multiprocessing perspective, each concurrent base

learning process need not consume more data than necessary.

All the techniques presented so far are one-level methods. They only perform

one level of processing to generate the integrating structures. In the next chapter we

consider the behavior of hierarchical meta-learning structures.

68

Chapter 6

Hierarchical Meta-Learning on

Partitioned Data

In this chapter we study more sophisticated techniques for combining predictions

generated by a set of base classi�ers, each of which is computed by a learning algorithm

applied to a distinct data subset. In the previous chapter we demonstrate that our

meta-learning techniques outperform the voting-based and statistical techniques in

terms of prediction accuracy. However, the one-level techniques cannot always achieve

the same level of accuracy as the global classi�er. Here we describe our hierarchical

(multi-level) meta-learning methods called arbiter tree and combiner tree (Chan &

Stolfo, 1993d; Chan & Stolfo, 1995b). We empirically compare these two schemes

and discuss the relative merits of each scheme. Surprisingly, we have observed that

combiner trees e�ectively boost the accuracy of the single global classi�er that is

trained on the entire data set, as well as the constituent base classi�ers.

We �rst present our hierarchical meta-learning methods in Sections 6.1 and 6.2.

Section 6.3 examines some related work. Evaluation of our schemes based on experi-

mental results are discussed in Sections 6.4 and 6.5.

69

A
12

A
34

A
14

T T T T
1 2 3 4

Classifiers

Training data subsets

Arbiters

C C C C
1 2 3 4

T

T T
3412

14

Figure 6.1: Sample arbiter tree.

6.1 Arbiter Tree

An arbiter tree is a hierarchical structure composed of arbiters that are computed

in a bottom-up, binary-tree fashion. (The choice of a binary tree is to simplify our

discussion. Higher order trees are also studied.) An arbiter is initially learned from

the output of a pair of base classi�ers and recursively, an arbiter is learned from

the output of two arbiters. For k subsets and k classi�ers, there are log

2

(k) levels

generated.

When an instance is classi�ed by the arbiter tree, predictions
ow from the leaves

to the root. First, each of the leaf classi�ers produces an initial classi�cation of the

test instance. From a pair of predictions and the parent arbiter's prediction, another

prediction is produced by an arbitration rule. This process is applied at each level

until a �nal prediction is produced at the root of the tree. We now proceed to describe

how to build an arbiter tree in detail.

Suppose there are initially four training data subsets (T

1

� T

4

), processed by

some learning algorithm, L. First, four classi�ers (C

1

� C

4

) are generated from four

instances of L applied to T

1

� T

4

. The union of the subsets T

1

and T

2

, U

12

, is

then classi�ed by C

1

and C

2

, which generates two sets of predictions, P

1

and P

2

. A

selection rule as detailed earlier generates a training set (T

12

) for the arbiter from the

predictions P

1

and P

2

, and the subset U

12

. The arbiter (A

12

) is then trained from

70

the set T

12

by algorithm L. Similarly, arbiter A

34

is generated from T

3

and T

4

and

hence all the �rst-level arbiters are produced. Then U

14

is formed by the union of

subsets T

1

through T

4

and is classi�ed by the arbiter trees rooted with A

12

and A

34

.

Similarly, T

14

and A

14

(root arbiter) are generated and the arbiter tree is complete.

The resultant tree is depicted in Figure 6.1.

This process can be generalized to arbiter trees of higher order. The higher the

order is, the shallower the tree becomes. In a parallel environment this translates

to faster execution. However, there will logically be an increase in the number of

disagreements (and hence data items selected for training) and higher communication

overhead at each level in the tree due to the arbitration of many more predictions at

a single arbitration site.

We note with interest that in a distributed computing environment, the union sets

need not be formed at one processing site. Rather, we can classify each subset by

transmitting each learned classi�er to each site which is used to scan the local data

set that is labeled with the classi�er's predictions. Each classi�er is a computational

object far smaller in size than the training sets from which they are derived. For

example, in a network computing environment each classi�er may be encapsulated as

an \agent" that is communicated among sites.

6.1.1 Discussion

Since an arbiter training set is constructed from the results of the arbiter's two

subtrees (more subtrees in higher order arbiter trees), each node in the arbiter tree is

a synchronization point. That is, arbitrary subtrees can be run asynchronously with

no communication until a pair of subtrees join at the same parent. The time to learn

an arbiter tree is proportional to the longest path in the tree, which is bounded by the

path with the most training data. To reduce the complexity of learning arbiter trees,

the size of the training sets for arbiters is purposefully restricted to be no larger than

the training sets used to compute base classi�ers. Thus, the parallel processing time

71

at each level of the tree is relatively equal throughout the tree. However, in several of

our experiments, this restriction on the allowable size of the training sets for arbiters

was removed to explore two key issues: whether higher accuracy could be achieved

by providing more information for each arbiter, and what might be the number of

disagreements so generated, and hence the size of training data that would naturally

be formed by our selection rules.

Notice that the maximum training set size doubles as one moves up one level in

the tree and is equal to the size of the entire training set when the root is reached.

Obviously, we do not desire forming a training set at the root as large as the original

training set. Indeed, meta-learning in this case is of no use, and at great expense.

Therefore, we desire a means to control the size of the arbiter training sets as we

move up the tree without a signi�cant reduction in accuracy of the �nal result.

Since the training sets selected at an arbiter node depends on the classi�cation

results from the two descendant subtrees during run time, the con�guration of an

arbiter tree cannot be optimized during compile time. The size of these sets (i.e., the

number of disagreements) is not known until the base classi�ers are �rst computed.

However, we may optimize the con�guration of a tree during run time by clever pairing

of classi�ers. The con�guration of the resulting tree depends upon the manner in

which the classi�ers and arbiters are paired and ordered at each level. Our goal here

is to devise a pairing strategy that favors smaller training sets near the root.

One strategy we may consider is to pair the classi�ers and arbiters at each level

that would produce the fewest disagreements and hence the smallest arbiter training

sets (denoted as min-size). Another possible strategy is to pair those classi�ers that

produce the highest number of disagreements (max-size). At �rst glance the �rst

strategy would seem to be more attractive. However, if the disagreements between

classi�ers are not resolved at the bottom of the tree, the data that are not commonly

classi�ed will surface near the root of the tree, which is also where there are fewer

choices of pairings of classi�ers to control the growth of the training sets. Hence, it

72

may be advantageous to resolve the disagreements near the leaves producing fewer

disagreements near the root. That is, it may be more desirable to pair classi�ers and

arbiters that produce the largest sets lower in the tree, which is perhaps counterin-

tuitive. These sophisticated pairing schemes might decrease the arbiter training set

size, but they might also increase the communication overhead in a distributed com-

puting environment. They also create synchronization points at each level, instead of

at each node when no special pairings are performed. A compromise strategy might

be to perform pairing only at the leaf level. This indirectly a�ects the subsequent

training sets at each level, but synchronization occurs only at each node and not at

each level.

6.2 Combiner Tree

The way combiner trees are learned and used is very similar to arbiter trees. A

combiner tree is trained bottom-up. A combiner, instead of an arbiter, is computed

at each non-leaf node of a combiner tree. To simplify our discussion here, we describe

how a binary combiner tree is used and trained. (Our experiments reported later

included higher order trees as well.)

To classify an instance, each of the leaf classi�ers produces an initial prediction.

From a pair of predictions, the composition rule is used to generate a meta-level

instance, which is then classi�ed by the parent combiner. This process is applied at

each level until a �nal prediction is produced at the root of the tree.

Another signi�cant departure from arbiter trees is that for combiner trees, a ran-

dom set of examples (a validation set) is selected at each level of learning in generating

a combiner tree instead of choosing a set from the union of the underlying data subsets.

Before learning commences, a random set of examples is picked from the underlying

subsets for each level of the combiner tree. To ensure e�cient processing, the size of

these random training sets is limited to the size of the initial subsets used to train

73

base classi�ers. Base classi�ers are learned at the leaf level from disjoint training

data. Each pair of base classi�ers produces predictions for the random training set at

the �rst level. Following the composition rule, a meta-level training set is generated

from the predictions and training examples. A combiner is then learned from the

meta-level training set by applying a learning algorithm. This process is repeated at

each level until the root combiner is created. Again, in a network computing envi-

ronment classi�ers may be represented as remote agent processes to distribute the

meta-learning process.

The arbiter and combiner tree strategies have di�erent impact on e�ciency. The

arbiter tree approach we have implemented requires the classi�cation of, possibly, the

entire data set at the root level. Signi�cant speed up might not be easily obtained.

The combiner tree approach, however, always classi�es a set of data that is bounded

by the size of a relatively small validation set. Therefore, combiner trees can be

generated more e�ciently than arbiter trees. In a later section, we also examine

arbiter training sets of bounded size. Nevertheless, it remains to be seen what impact

on accuracy either scheme may exhibit.

6.3 Related Work

Brodley (1995) and Tcheng et al. (1989) also build trees with a classi�er in each

of the tree nodes. Their top-down tree building (root to leaves) approach is the same

as the one used in common decision tree algorithms like ID3 (Quinlan, 1986). Like

training the tree, classi�cation of instances using the tree is also performed in a top-

down fashion. On the contrary, our arbiter and combiner trees are built bottom-up

(leaves to root) and classi�cation of instances is performed bottom-up as well. Their

approach in training is to recursively partition the space of examples and heuristically

choose a learning algorithm to generate a classi�er from each subspace. That is, the

system has to initially process the entire set of examples to generate the classi�er at

the root node. Their goal is to build a hybrid classi�er in a tree structure to improve

74

accuracy (not training e�ciency). On the other hand, our goal is to improve training

e�ciency and the tree structure is built to integrate base classi�ers learned from

data subsets at the leaf level. The entire set of examples is never used to generate a

classi�er that is part of the �nal tree structure|only subsets are used.

A number of experiments were performed on the arbiter tree and combiner tree

strategies. The experiments and their results for the arbiter tree strategy are discussed

next, followed by those for the combiner tree strategy.

6.4 Experimental Results for Arbiter Tree

We ran a series of experiments to test our strategies based on the splice junction

prediction task described in Section 4.2.1. Four di�erent learning algorithms (ID3,

CART,WPEBLS, and BAYES) were used to show that our strategies are applicable to

diverse algorithms. The prediction accuracy on the test set is our primary comparison

measure. All the empirical results presented in this paper are averages from �ve-fold

cross-validation runs (except in the experiments for random partitioning, which is

further discussed in Section 6.4.4). That is, the entire training set is divided into

�ve partitions, each partition takes turn in being the test set and the remaining

partitions constitute the training set. We varied the number of subsets from 2 to 64

and the equal-size subsets were disjoint with proportional partitioning of classes. The

accuracy for the global classi�er as \one subset."

Here we �rst compare the di�erent arbiter schemes. Then we examine the results

from bounded arbiter training sets and arbiter trees of di�erent orders (from binary

trees up to 8-ary trees). This is followed by our results achieved in the case that

arbiter training sets are unbounded under di�erent pairing schemes.

75

80

85

90

95

100

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

ID3

different
different-incorrect

voting

80

85

90

95

100

1 2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

CART

different
different-incorrect

voting

80

85

90

95

100

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

WPEBLS

different
different-incorrect

voting

80

85

90

95

100

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

BAYES

different
different-incorrect

voting

Figure 6.2: Results on di�erent arbiter schemes.

76

6.4.1 Bounded arbiter training sets

Two arbiter schemes (di�erent-arbiter and di�erent-incorrect-arbiter) were run on

the splice junction data set with the four learning algorithms. In addition, we applied

a simple voting scheme on the leaf classi�ers for comparison.

In Figure 6.2, for the two arbiter schemes, we observe that the accuracy slightly

decreased when the number of subsets increased. With 64 subsets, most of the learners

exhibited at most an 8% drop in accuracy, with the exception of BAYES. The sudden

drop in accuracy in BAYES was likely due to the lack of information in the training

data subsets. In the splice junction data set there are only � 40 training examples

in each of the 64 subsets. If we look at the case with 32 subsets (� 80 examples

each), all the learners sustained a drop in accuracy of at most 3%. This shows

that the data subset size cannot be too small. The voting scheme performed poorly.

Furthermore, the two arbiter schemes had comparable performance and since the

di�erent-arbiter scheme produces fewer examples in the arbiter training sets, it is the

preferred scheme. This scheme is also our default scheme{when a particular arbiter

scheme is not speci�ed, the di�erent-arbiter scheme is assumed.

6.4.2 Order of arbiter trees and training set size limit

We performed experiments on the splice junctions and protein coding regions

data to evaluate the arbiter trees of di�erent orders. Again, we varied the number

of subsets from 2 to 64 and measured the prediction accuracy on a disjoint test set.

The plotted results in Figure 6.3 are averages from 10-fold cross-validation runs.

We varied the order of the arbiter trees from two to eight. For the splice junction

data set the plots display a drop in accuracy when the number of subsets increases.

Also, the higher order trees are generally less accurate than the lower ones. However,

in the protein coding region data set experiments the accuracy is maintained, or

exceeded in some circumstances, regardless of the order of the trees.

77

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

80

85

90

95

1 2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

Figure 6.3: Accuracy for di�erent orders of arbiter trees and limits for training set

size.

78

Recall that at each tree level, the size of the arbiter training set is �xed to the size of

a data subset used in training the base classi�ers. If we relax the restriction on the size

of the data set for training an arbiter, we might expect an improvement in accuracy

at the expense in processing time. To test this hypothesis, a set of experiments

was performed to double the maximum training set size for the arbiters. As we

observe in Figure 6.3, by doubling the arbiter training set size, the original accuracy

is roughly maintained by the binary trees in the splice junction domain, regardless

of the learner. For 4-ary and 8-ary trees, the accuracy results show no signi�cant

improvement. However, this multi-level arbiter tree approach does demonstrate an

accuracy improvement over the one-level techniques, which generally cannot maintain

the accuracy obtained from the whole data set in our experiments.

6.4.3 Unbounded arbiter training sets

If we further relax the restriction on the size of the data set for training an arbiter,

we might expect additional improvement in accuracy, but decline in execution speed.

Again, the di�erent sizes are constant multiples of the size of a data subset. We

evaluated sizes that doubles and triples the subset size. In one set of experiments

the size limit was lifted. The results plotted in Figure 6.4 were obtained from using

the di�erent-arbiter scheme on the splice junction data using four di�erent learning

algorithms.

As we expected, by increasing the maximum arbiter training set size, higher ac-

curacy can be achieved. A signi�cant improvement is observed when the maximum

size is just two times the size of the original subsets. As discussed in the previous

set of experiment, doubling the set size roughly maintains the accuracy of the global

classi�er (except in for the BAYES algorithm with 64 subsets). Further increase in

size limit yields smaller improvement. When the maximum size is unlimited (i.e., al-

lowing each arbiter to be trained on the entire union set), the accuracy is the highest.

In fact, we observed an increase of 2% in accuracy for ID3 with 64 subsets.

79

80

85

90

95

100

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

ID3

Max x1
Max x2
Max x3

Unlimited

80

85

90

95

100

1 2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

CART

Max x1
Max x2
Max x3

Unlimited

80

85

90

95

100

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

WPEBLS

Max x1
Max x2
Max x3

Unlimited

80

85

90

95

100

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

BAYES

Max x1
Max x2
Max x3

Unlimited

Figure 6.4: Results on di�erent maximum arbiter training set sizes.

80

0

5

10

15

20

25

4 8 16 32 64

S
iz

e
 (

%
)

Number of subsets

ID3
CART

WPEBLS
BAYES

Figure 6.5: Largest set sizes with unlimited maximum arbiter training set size.

Next, we investigate the size and location of the largest arbiter training set in

the entire arbiter tree. (Recall, an arbiter training set is produced by a selection

rule.) This gives us a notion of the memory requirement at any processing site and

the location of the main potential bottleneck during meta-learning. Our empirical

results presented in Figure 6.5 indicate that the largest arbiter training set size was

never signi�cantly greater than 10% of the total training set (except for BAYES with

64 subsets) and always happened at the root level, independent of the number of

subsets at the leaves (that was greater than four). (Note that when the number

of subsets is two and four, the training set sizes are 50% and 25%, respectively, of

the original set at the leaves and become the largest in the tree.) This implies that

the bottleneck was in processing around 10% of the entire training data set at the

root level. This also implies that our arbiter tree strategy required only around 10%

of the memory used by the serial case at any single processing site. This has a

signi�cant impact on scalability. Suppose a single processor is limited in memory and

81

able to solve a learning task of size n. Our experiments suggest that meta-learning

allows that single processor to solve a problem of size 10n. (Strategies for reducing

the largest arbiter training set size even further are discussed in the next section.)

Recall that the accuracy level of this strategy is roughly the same as the serial case.

Thus, the arbiter tree strategy (with no restrictions on the arbiter training set size)

can perform the same job as the serial case with less time and memory without

parallelizing the learning algorithms. With restricted training set sizes, our strategies

can theoretically scale to arbitrarily large problems by setting the size restriction to

the memory capacity of a single processor and using more processors.

In summary, when the arbiter training set size is bounded to the size of each initial

training data subset, a small degradation in prediction accuracy (at most 3%) was

observed with 32 subsets. A further increase in the number of subsets (64 subsets)

produced a much larger decline in accuracy. This indicates that each of the subsets

cannot be too small in the training of the initial classi�ers. Accuracy was preserved

when the bound on the size of the arbiter training set was lifted. However, we

observe that the size of the arbiter training sets was limited to about 10% of the

entire training set in the splice junction domain. Recall that the arbiter training

sets consist of \disagreed" instances, hence, classi�ers with higher error rates and/or

signi�cantly diverse behaviors will have a size limit larger than 10%.

6.4.4 Reducing the largest arbiter training set size

As mentioned in the previous section, we discovered that our scheme required at

most 10% of the entire training set at any processing site to maintain the same predic-

tion accuracy as in the global classi�er case for the splice junction data. However, the

percentage is dependent on several factors: the prediction accuracy of the algorithm

on the given data set, the partitioning of the data in the leaf subsets, and the pairing

of learned classi�ers and arbiters at each level.

82

Class partitioning

If the prediction accuracy is high, the arbiter training sets will be small because

the predictions will usually be correct and few disagreements will occur. In our

earlier experiments reported in (Chan & Stolfo, 1993d), the partitioning of data in

the subsets was random and later we discovered that half of the �nal arbiter tree was

trained on examples with only two of the three classes. That is, half of the tree was

not aware of the third class appearing in the entire training data. We postulate that if

the class partitioning in the subsets is proportional, the leaf classi�ers and arbiters in

the arbiter tree will be more accurate and hence the training sets for the arbiter will

be smaller. Indeed, results from experiments reported in here signi�cantly lower the

largest size observed from 30% to 10%. We ran additional experiments on training

sets with a more randomized partitioning scheme. A randomly chosen training set is

used in each run and the results averaged from �ve runs are presented in Figure 6.6.

As one might expect, a \truly randomized" partitioning scheme approximates our

proportional partitioning scheme and therefore the accuracy obtained using the two

schemes should be roughly the same. Indeed the accuracy curves in Figure 6.6 are

very close.

Classi�er Pairing

Some experiments were performed on the two pairing strategies applied only at

the leaf level and the results are shown in Figure 6.7. All these experiments used the

di�erent-arbiter scheme for meta-learning arbiters. Di�erent pairing schemes were

used with proportional partitioning and \non-random" partitioning of classes. In non-

random partitioning, examples are not proportionally partitioned according to their

classes and each partitioned subset is usually dominated by examples of a single class.

In addition, with the no (or \neighbor") pairing schemes, a class might be absent from

half of the arbiter tree. The pairing schemes with proportional partitioning did not

a�ect the arbiter training sets sizes signi�cantly and are not shown here. However,

83

80

85

90

95

100

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

ID3

Prop. part., different
Prop. part., different-incorrect

Random part., different
Random part., different-incorrect

80

85

90

95

100

1 2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

CART

Prop. part., different
Prop. part., different-incorrect

Random part., different
Random part., different-incorrect

80

85

90

95

100

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

WPEBLS

Prop. part., different
Prop. part., different-incorrect

Random part., different
Random part., different-incorrect

80

85

90

95

100

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

BAYES

Prop. part., different
Prop. part., different-incorrect

Random part., different
Random part., different-incorrect

Figure 6.6: Accuracy with di�erent class partitioning schemes.

84

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64

S
iz

e
 (

%
)

Number of subsets

ID3

Prop. part.
Non-rand part.

Non-rand part., max pair.
Non-rand part., min pair.

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64
S

iz
e

 (
%

)

Number of subsets

CART

Prop. part.
Non-rand part.

Non-rand part., max pair.
Non-rand part., min pair.

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64

S
iz

e
 (

%
)

Number of subsets

WPEBLS

Prop. part.
Non-rand part.

Non-rand part., max pair.
Non-rand part., min pair.

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64

S
iz

e
 (

%
)

Number of subsets

BAYES

Prop. part.
Non-rand part.

Non-rand part., max pair.
Non-rand part., min pair.

Figure 6.7: Arbiter training set size with di�erent class partitioning and pairing

strategies.

85

as shown in Figure 6.7, with non-random partitioning, both max-size and min-size

pairing scheme signi�cantly reduce the training set sizes in our experiments. Between

the two schemes, max-size pairing empirically exhibited greater reduction in set sizes

than min-size pairing. The largest arbiter training set sizes were around 10% of the

original data when the number of subsets was larger than eight (except for BAYES

with 64 subsets). (BAYES seemed to be not able to gather enough statistics on small

subsets, which can also be observed from results presented earlier). Note that when

the number of subsets is eight or fewer, the training sets for the leaf classi�ers are

larger than 10% of the original data set and become the largest in the arbiter tree.

As mentioned before, the two pairing schemes did not a�ect the sizes of the arbiter

training sets for the proportional partitioning. One possible explanation is that the

proportional partitioning scheme produced the smallest training sets possible and the

pairing schemes did not matter. In summary, proportional class partitioning tends

to produce the smallest training sets and the max-size pairing scheme can reduce the

set sizes in partitioning schemes that do not maintain the proportional partitioning

of classes.

In our discussion so far, we have assumed that the arbiter training set is unbounded

in order to determine how the pairing strategies may behave in the case where the

training set size is bounded. The max-size strategy aims at resolving con
icts near

the leaves where the maximum possible arbiter training set size is small (the union

of the two subtrees) leaving fewer con
icts near the root. If the training set size is

bounded at each node, a random sample (with the bounded size) of a relatively small

set near the root would be representative of the set chosen when the size is restricted.

6.5 Experimental Results for Combiner Tree

Here we consider the accuracy of combiner trees. In our experiments, we varied the

number of equi-sized subsets of training data from 2 to 64 ensuring each was disjoint

but with proportional distribution of examples of each class. We also varied the

86

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3/Class-combiner)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART/Class-combiner)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3/Class-combiner)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2) 60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART/Class-combiner)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

Figure 6.8: Accuracy for the class-combiner tree techniques.

87

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3/Class-attribute-combiner)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

80

85

90

95

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART/Class-attribute-combiner)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3/Class-attribute-combiner)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2) 60

65

70

75

1 2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART/Class-attribute-combiner)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

Figure 6.9: Accuracy for the class-attribute-combiner tree techniques.

88

order of the combiner trees from two to eight. Di�erent combinations of two learning

algorithms (ID3 and CART) and two learning tasks (Splice Junctions and Protein

Coding Regions) were employed. The results of our experiments on the combiner

trees (under two di�erent training strategies) are displayed in Figure 6.8 and 6.9.

The baseline accuracy for comparative evaluation is plotted as \one subset," meaning

the learning algorithms were applied to the entire training set in-toto to produce the

global classi�er. The plots are derived from the average of 10-fold cross-validation

runs.

Results from the class-combiner tree strategy displayed in Figure 6.8 show a drop

in accuracy in both data sets in most cases, compared to the global classi�er, when

the number of subsets increases. The drop varies from 3% to 15%. (The percentage

decrease in the amount of data in each training subset is far larger!) The binary

combiner trees are less accurate than higher order trees in this case. This might

be due to the lack of information for �nding correlations among only two sets of

predictions. As in the experiments for arbiter trees, we doubled the size of meta-level

training sets. Statistically signi�cant improvements were observed in the SJ data set

with CART as the learner.

In another experiment using the class-attribute-combiner tree strategy, Figure 6.9

suggests that the binary trees appear to maintain the accuracy of the global classi�er

except in the splice junctions data set with CART as the learner. Higher-order trees

were generally less accurate.

We note with interest that doubling the size of the training sets for combiners

improved accuracy signi�cantly. For the protein coding regions data set, the accu-

racy of the binary trees was consistently higher than that from the global classi�er;

i.e., this meta-learning strategy has demonstrated a means of boosting accuracy of a

single classi�er trained on the entire data set. The improvement is statistically sig-

ni�cant. This is a particularly interesting �nding since the information loss due to

data partitioning was more than recovered by the combiner tree. Thus, this scheme

89

demonstrates a means of integrating the collective knowledge distributed among the

individual base classi�ers.

6.6 Summary

We detailed two hierarchical meta-learning strategies: arbiter tree and combiner

tree. Empirical results from bounded arbiter training sets indicate that the strategies

are viable in speeding up learning algorithms with a small degradation in prediction

accuracy. In addition, the algorithms can scale to arbitrarily large problems by setting

the size limit of distinct training data subsets to the memory capacity of an individual

processor and increasing the number of processors. When the arbiter training sets are

unbounded, the strategies can preserve prediction accuracy with less training time

and required memory than the serial version. Schemes for reducing the size of arbiter

training sets were also discussed. In particular, proportional partitioning of classes in

the training subsets and a particular classi�er pairing schemes have been empirically

observed to reduce the size of arbiter training sets.

Also, the class-combiner tree scheme does not perform as well in maintaining

or boosting accuracy as the arbiter or class-attribute-combiner tree scheme. Rela-

tively less information in the meta-level training sets is likely the contributing factor.

Higher order trees are usually less accurate. This is probably due to the decrease in

opportunities for correcting predictions when the height of the tree decreases. The

relatively poor performance of one-level (non-tree) meta-learning techniques, in the

previous chapter, compared to the hierarchical (tree) strategies also provides support

for this observation. Increasing the size of the meta-level training sets improves the

accuracy of the learned trees, a likely result from the simple observation that more

data are available for training. The experimental data convincingly demonstrate that

doubling the training set size of the meta-level partitions is su�cient to maintain the

same level of accuracy as the global classi�er, and indeed may boost accuracy as well.

90

The reduced memory requirement and usage of multiple processors make our

strategies scalable to much larger problems, which will inevitably arise from the Hu-

man Genome Project and many other e�orts. Moreover, without the bene�t of multi-

ple processors, our strategies can still be used to handle problems larger than possible

on a single processor. Thus, by using meta-learning techniques, main-memory based

learning algorithms can scale to larger problems with or without the usage of multiple

processors.

91

Chapter 7

Local Meta-Learning with

Imported Remote Classi�ers

Frequently, local databases represent only a partial view of the all the data available.

For example, in detecting credit card fraud, a bank has information on its credit card

transactions, from which it can learn fraud patterns. However, the patterns learned

usually don't re
ect all the fraud patterns found in transactions at other banks. That

is, a bank might not know a fraud pattern that is prevalent at other banks.

One approach to solving this problem is to merge transactions from all databases

into one database and locate all the fraud patterns. It is not uncommon that a

bank has millions of credit card transactions; pooling transactions from all banks will

create a database of astronomical dimension. Learning fraud patterns from millions

of transactions already creates e�ciency problems, processing transactions from all

banks will probably be infeasible. In addition, transactions at one bank are usu-

ally proprietary because sharing them with other banks means giving away valuable

customer purchasing information, which can be used to generate future pro�ts. Ex-

changing transactions might also violate customers' privacy.

Another solution is to share the fraud patterns instead of the transaction data.

92

This approach bene�ts from a signi�cant reduction of information needed to be

merged and processed. Also, proprietary customer transaction information need not

be shared. You might now ask that if the data are proprietary, the fraud patterns

can also be proprietary. If the patterns are encoded in programs, the executables can

be treated as \black boxes." That is, by sharing the black boxes, one doesn't have to

worry about giving away valuable and proprietary information. The next question is

how we can merge the black boxes.

In this chapter we explore the use of meta-learning in improving the accuracy

performance of local learned models by merging them with ones imported from remote

sites (Chan & Stolfo, 1996b). That is, at each site, learned models from other sites

are also available. Furthermore, we investigate the e�ects on local accuracy when

the local underlying training data overlap with those at remote sites. This situation

arises in reality because, for example, the same person might be a customer at several

banks and/or the same person can commit the same credit card fraud at di�erent

banks. We next discuss how meta-learning can improve local learning. Sections 7.2

and 7.3 evaluate local meta-learning and the e�ect of data replication.

7.1 Local Meta-Learning

In previous chapters we assume a certain degree of \raw data" sharing. As we

discussed earlier, situations might arise when data sharing is not feasible, but sharing

of \black-box" learned models is. In this scenario a local site can \import" classi�ers

learned at remote sites and use them to improve local learning. The problem we face

is how we can take advantage of the imported \black-box" classi�ers. Our approach

is to treat it as an integration problem and use meta-learning techniques to integrate

the classi�ers.

Since only the local dataset, called T

i

at site i, is available at a site, we are

limited to that dataset for meta-learning. A classi�er, C

i

, is trained from T

i

locally

93

Remote
Dtabase 1

Classifier 1
Remote

Remote
Datbase 2

Classifier 2
Remote

Local
Database

Local
Classifier

Remote
Database n

Classifier n
Remote

Classifier 2
Remote

Classifier 1
Remote

Classifier n
RemoteLocal

Classifier

Meta-level
Training

Data

Local
Meta-

classifier

Figure 7.1: Local meta-learning at a site with three remote sites.

and a classi�er, C

j

where j 6= i, is imported from each site j. Using T

i

, each C

j

then

generates predictions P

ij

and C

i

produces P

ii

. P

ij

and P

ii

form the meta-level training

set according to the strategies described in Chapter 3. That is, the local and remote

classi�ers are treated as base classi�ers in our previous discussion. Once the meta-

level training set is created, the corresponding meta-classi�er is learned. Figure 7.1

94

Local
Data

Meta-level
Training

Data

... ...

Learner Learner

= Local

First
Half

C C

Remote
Classifier

Remote
Classifier

Remote
Predictions

Remote
Predictions

Second
Half

PP Predictions+

i2

Pii

T

T

C

C P

P

i1

i1

i2

j

k ik

ij

Ti2

i1

i

Figure 7.2: Generating local meta-level training data.

shows the relationship among various classi�ers and sites during local meta-learning.

However, the predictions P

ii

of the local classi�erC

i

on the local training set T

i

will

be more correct than the predictions, P

ij

, generated by the remote classi�ers because

C

i

was trained from T

i

. As a result, during meta-learning, the trained meta-classi�er

will heavily bias toward the local classi�er since the local classi�er predicts much

more accurately than the remote classi�ers (recall that the remote classi�ers were not

trained on the local dataset T

i

). For example, a local nearest-neighbor classi�er can

predict the local training set perfectly and the meta-learner will ignore all the remote

classi�ers. That is, we can't use the remote classi�ers to improve local learning, which

defeats the purpose of importing the remote classi�ers initially.

95

To resolve this situation, at the local site, we partition T

i

into two sets, T

i1

and T

i2

,

from which classi�ers C

i1

and C

i2

are trained. C

i1

then predicts on T

i2

and C

i2

on T

i1

.

The union of the two sets of predictions form the predictions for the local classi�er

(P

ii

). This method, called 2-fold cross-validation partitioning, tries to approximate

the behavior of C

i

on unseen data. The process of obtaining the predictions P

ij

from

the remote classi�ers remains unchanged. Figure 7.1 depicts this process of generating

local meta-level training data. Now, during meta-learning, remote classi�ers will not

be automatically ignored since the local classi�er is also judged on \unseen" data.

The next section discusses our experimental evaluation of the local meta-learning

approach.

7.2 Experimental Results

Di�erent combinations of four inductive learning algorithms (ID3, CART, BAYES,

and CN2) and four data sets (Splice Junctions, Protein Coding Regions, Protein Sec-

ondary Structures, and Arti�cial) were used in this set of experiments (as described in

Section 4.3). To simulate the multiple-site scenario, we divided the training set into

equi-sized subsets (each subset representing a site) and varied the number of subsets

(sites) from 2 to 64. We also ensured that each subset was disjoint but with propor-

tional distribution of examples of each class (i.e., the ratio of examples in each class

in the whole data set is preserved). The arbiter, class-combiner, and class-attribute-

combiner strategies were evaluated. The prediction accuracy on a separate test set is

our primary comparison measure. The di�erent strategies were run on the above four

data sets, each with the above four learning algorithms and the results are plotted in

Figures 7.3 through 7.6. The plotted accuracy is the average accuracy of local meta-

classi�ers over 10-fold cross-validation runs. In each run, m sites generate m local

classi�ers and m local meta-classi�ers. In the �gures, avg-base denotes the average

accuracy of the local/base classi�ers, which is our base line. Statistical signi�cance

was measured by using the one-sided t-test with a 90% con�dence value.

96

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

arbiter
class-combiner

class-att-combiner
avg-base

70

80

90

100

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

arbiter
class-combiner

class-att-combiner
avg-base

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (BAYES)

arbiter
class-combiner

class-att-combiner
avg-base

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CN2)

arbiter
class-combiner

class-att-combiner
avg-base

Figure 7.3: Accuracy for local meta-learning vs. number of subsets in the splice

junction domain.

97

60

65

70

75

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

arbiter
class-combiner

class-att-combiner
avg-base

60

65

70

75

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

arbiter
class-combiner

class-att-combiner
avg-base

60

65

70

75

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (BAYES)

arbiter
class-combiner

class-att-combiner
avg-base

60

65

70

75

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CN2)

arbiter
class-combiner

class-att-combiner
avg-base

Figure 7.4: Accuracy for local meta-learning vs. number of subsets in the protein

coding region domain.

98

40

50

60

70

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (ID3)

arbiter
class-combiner

class-att-combiner
avg-base

40

50

60

70

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (CART)

arbiter
class-combiner

class-att-combiner
avg-base

40

50

60

70

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (BAYES)

arbiter
class-combiner

class-att-combiner
avg-base

40

50

60

70

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (CN2)

arbiter
class-combiner

class-att-combiner
avg-base

Figure 7.5: Accuracy for local meta-learning vs. number of subsets in the secondary

structure domain.

99

50

60

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (ID3)

arbiter
class-combiner

class-att-combiner
avg-base

50

60

70

80

90

100

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (CART)

arbiter
class-combiner

class-att-combiner
avg-base

50

60

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (BAYES)

arbiter
class-combiner

class-att-combiner
avg-base

50

60

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (CN2)

arbiter
class-combiner

class-att-combiner
avg-base

Figure 7.6: Accuracy for local meta-learning vs. number of subsets in the arti�cial

domain.

100

When compared to the base accuracy, at least one of three local meta-learning

strategies yields signi�cantly higher accuracy in 13 out of the 16 cases (mostly at 4

or more subsets). Local meta-learning still has higher accuracy (not signi�cantly) in

2 of the 3 remaining cases. Larger improvement usually occurs when the size of the

local dataset is smaller (the number of subsets/sites are larger). In many cases the

arbiter scheme improves accuracy more than the two combiner strategies.

While many of the base classi�ers drop in accuracy when the dataset size gets

smaller, some of the meta-learning strategies roughly maintain the same level of

accuracy. One apparent example is the arbiter scheme using ID3 as the learner

in the Coding Regions dataset (Figure 7.4). The arbiter scheme stays above 70%

accuracy while the base accuracy drops to below 60%. The arbiter scheme maintains

the accuracy in 8 out of 16 cases. For the Coding Regions dataset, the arbiter scheme

improves local learning by a wide margin when the learners are ID3, CART, and CN2

(3 of the 4 learners).

The results obtained here are consistent with those from non-localmeta-learning in

previous chapters, where raw data can be shared among sites. Meta-learning improves

accuracy in a distributed environment and the arbiter scheme is more e�ective than

the two combiner techniques. Next, we investigate the e�ects on accuracy of local

meta-learning when di�erent sites possess some degree of common data.

7.3 Experimental Results on Data Replication

As we discussed previously, di�erent sites might have some overlapping data. To

simulate this phenomenon, we allow some amount of replication in each partition of

data. We prepare each learning task by generating subsets of training data for the

local/base classi�ers according to the same generative scheme in Section 5.2.2.

In the experiments reported here, � ranged from 0% to 40%, with 10% incre-

ments. Each set of incremental experimental runs, however, chooses an entirely new

101

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

class-combiner
10%
20%
30%
40%

70

80

90

100

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

class-combiner
10%
20%
30%
40%

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (BAYES)

class-combiner
10%
20%
30%
40%

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CN2)

class-combiner
10%
20%
30%
40%

Figure 7.7: Accuracy for the class-combiner scheme trained over varying amounts of

replicated splice junction data. � ranges from 0% to 40%.

102

60

65

70

75

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

class-combiner
10%
20%
30%
40%

60

65

70

75

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

class-combiner
10%
20%
30%
40%

60

65

70

75

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (BAYES)

class-combiner
10%
20%
30%
40%

60

65

70

75

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CN2)

class-combiner
10%
20%
30%
40%

Figure 7.8: Accuracy for the class-combiner scheme trained over varying amounts of

replicated protein coding region data. � ranges from 0% to 40%.

103

40

50

60

70

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (ID3)

class-combiner
10%
20%
30%
40%

40

50

60

70

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (CART)

class-combiner
10%
20%
30%
40%

40

50

60

70

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (BAYES)

class-combiner
10%
20%
30%
40%

40

50

60

70

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (CN2)

class-combiner
10%
20%
30%
40%

Figure 7.9: Accuracy for the class-combiner technique trained over varying amounts

of replicated secondary structure data. � ranges from 0% to 40%.

104

50

60

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (ID3)

class-combiner
10%
20%
30%
40%

50

60

70

80

90

100

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (CART)

class-combiner
10%
20%
30%
40%

50

60

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (BAYES)

class-combiner
10%
20%
30%
40%

50

60

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (CN2)

class-combiner
10%
20%
30%
40%

Figure 7.10: Accuracy for the class-combiner technique trained over varying amounts

of replicated arti�cial data. � ranges from 0% to 40%.

105

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (ID3)

class-attr-combiner
10%
20%
30%
40%

70

80

90

100

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CART)

class-attr-combiner
10%
20%
30%
40%

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (BAYES)

class-attr-combiner
10%
20%
30%
40%

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Splice Junctions (CN2)

class-attr-combiner
10%
20%
30%
40%

Figure 7.11: Accuracy for the class-attribute-combiner technique trained over varying

amounts of replicated splice junction data. � ranges from 0% to 40%.

106

60

65

70

75

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (ID3)

class-attr-combiner
10%
20%
30%
40%

60

65

70

75

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CART)

class-attr-combiner
10%
20%
30%
40%

60

65

70

75

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (BAYES)

class-attr-combiner
10%
20%
30%
40%

60

65

70

75

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Coding Regions (CN2)

class-attr-combiner
10%
20%
30%
40%

Figure 7.12: Accuracy for the class-attribute-combiner technique trained over varying

amounts of replicated protein coding region data. � ranges from 0% to 40%.

107

40

50

60

70

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (ID3)

class-attr-combiner
10%
20%
30%
40%

40

50

60

70

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (CART)

class-attr-combiner
10%
20%
30%
40%

40

50

60

70

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (BAYES)

class-attr-combiner
10%
20%
30%
40%

40

50

60

70

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Protein Secondary Structures (CN2)

class-attr-combiner
10%
20%
30%
40%

Figure 7.13: Accuracy for the class-attribute-combiner technique trained over varying

amounts of replicated secondary structure data. � ranges from 0% to 40%.

108

50

60

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (ID3)

class-attr-combiner
10%
20%
30%
40%

50

60

70

80

90

100

2 4 8 16 32 64
A

c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (CART)

class-attr-combiner
10%
20%
30%
40%

50

60

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (BAYES)

class-attr-combiner
10%
20%
30%
40%

50

60

70

80

90

100

2 4 8 16 32 64

A
c
c
u

r
a

c
y
 (

%
)

Number of subsets

Artificial (CN2)

class-attr-combiner
10%
20%
30%
40%

Figure 7.14: Accuracy for the class-attribute-combiner technique trained over varying

amounts of replicated arti�cial data. � ranges from 0% to 40%.

109

distribution of replicated values. No attempt was made to maintain a prior distri-

bution of training data when incrementing the amount of replication. This \shot

gun" approach provides us with some sense of a \random learning problem" that we

may be faced with in real world scenarios where replication of information is likely

inevitable or purposefully orchestrated.

The same experimental setup was used as in the prior experiments. Results for the

replicated data scenario using the class-combiner and class-attr-combiner strategies

are plotted in Figures 7.7 through 7.14 (a total of 32 cases). 7 out of 32 cases show

signi�cant accuracy di�erence when the degree of replication increases; 6 of these 7

cases occur in the Coding Regions dataset. 20 out of 32 cases show no signi�cant

accuracy changes across all subset sizes and degrees of replication. The remaining 5

cases have some signi�cant accuracy di�erence at certain subset sizes.

In summary, the majority doesn't show signi�cant accuracy di�erence when the

degree of replication increases. This is contrary to one's intuition since one would

expect the accuracy to increase when the local sites have a higher percentage of all

the available data combined. That implies that local meta-learning is quite e�ective

in integrating models from remote sites without the help of replicated data. Our

�ndings here are consistent with those from one-local meta-learning in Section 5.2.2.

7.4 Summary

We have presented techniques for improving local learning by integrating remote

classi�ers through local meta-learning. Our experimental results suggest local meta-

learning techniques, especially the arbiter scheme, can signi�cantly raise the accuracy

of the local classi�ers. Furthermore, results from our data replication experiments

suggest local meta-learning can integrate local and remote classi�ers e�ectively with-

out having a larger share of global data at a local site.

110

Chapter 8

Analyzing the Integration of

Multiple Learned Classi�ers

In previous chapters we demonstrated the e�ectiveness of integrating multiple learned

classi�ers. In this chapter we de�ne and apply analytical metrics to gain a deeper

understanding of the e�ectiveness, which can then guide us to develop improvements

for our methods.

8.1 Notations

To facilitate the formal de�nitions of metrics discussed in this chapter, we adhere

to the following notations:

� n = number of unseen instances used for evaluation

� y

i

= i-th instance

� b = number of base classi�ers

� C

j

= j-th base classi�er

111

� C

j

(y

i

) = classi�cation of instance y

i

by base classi�er C

j

� OC = overall classi�er

� OC(y

i

) = classi�cation of y

i

by the overall classi�er OC

� c = number of classes

� class

k

= k-th class

� class(y

i

) = correct classi�cation of y

i

� OneIfTrue(pred) = a function that returns one if predicate pred is true and

zero otherwise. That is,

OneIfTrue(pred) =

8

>

<

>

:

1 if pred is true

0 otherwise

(8.1)

� � = overall prediction accuracy; formally,

� =

1

n

n

X

i

OneIfTrue(OC(y

i

) = class(y

i

)) (8.2)

� � = average prediction accuracy of base classi�ers; mathematically,

� =

1

b

b

X

j

1

n

n

X

i

OneIfTrue(C

j

(y

i

) = class(y

i

)) (8.3)

We next investigate some of the metrics we developed to analyze the di�erent

characteristics in integrating multiple learned classi�ers.

8.2 Metrics

Along with the de�nitions of metrics, empirical results using those metrics are

presented and discussed. The results are based on the di�erent permutations of 4

learning algorithms (ID3, CART, BAYES, and CN2) and 4 learning tasks (RNA Splice

Junctions, Protein Coding Regions, Protein Secondary Structures, and Arti�cial). 4

112

integrating schemes (class-combiner, class-attribute-combiner, arbiter, and weighted

voting) were used to merge base classi�ers trained from 8 data subsets. We did not

vary the number of data subsets in this evaluation because the variation generates

vastly di�erent base classi�ers. The 3 meta-learning schemes were used in a one-

level manner (Chapter 5), that is, not hierarchical. 10-fold cross validation runs

were performed for each of the 64 permutations. Many of the �gures below have

four plots, one for each integrating schemes. Within each plot, results from the 16

permutations of learning algorithms and tasks are plotted. When a general trend

is observed, a line is �tted to the 16 data points using the Marquardt-Levenberg

algorithm (Ralston & Rabinowitz, 1978; Press et al., 1988), a nonlinear least squares

curve �tting mechanism, available in the GNUFIT (Grammes, 1993) package.

Before we discuss the di�erent metrics used in this study. We �rst inspect how

the average accuracy of base classi�ers (�) a�ects the overall accuracy (�). Their

relationship is plotted in Figure 8.1. We observe that having highly accurate base

classi�ers is a de�nite contributing factor for achieving high overall accuracy.

8.2.1 Accuracy Di�erence and Improvement

In order to measure how well the integrating structures perform, we �rst de�ne

accuracy di�erence as the di�erence between the accuracy of the overall accuracy and

the average accuracy of base classi�ers. Formally,

accuracy difference = (� � �)� 100% (8.4)

Since di�erent permutations of data sets and learning algorithms yield diverse

levels of prediction accuracy, in Figure 8.2, we shows the wide range of accuracy

achieved by the base classi�ers among di�erent permutations, and the resulting ac-

curacy di�erence. Base classi�ers learned from the secondary structure data set have

an accuracy at around 45{60%, whereas those from the splice junction data set have

a higher range from 80{95%.

113

40

50

60

70

80

90

100

40 50 60 70 80 90 100

O
v
e

r
a

ll
 A

c
c
u

r
a

c
y
 (

%
)

Average accuracy of base classifiers (%)

class-combiner
linear fit

40

50

60

70

80

90

100

40 50 60 70 80 90 100

O
v
e

r
a

ll
 A

c
c
u

r
a

c
y
 (

%
)

Average accuracy of base classifiers (%)

class-attribute-combiner
linear fit

40

50

60

70

80

90

100

40 50 60 70 80 90 100

O
v
e

r
a

ll
 A

c
c
u

r
a

c
y
 (

%
)

Average accuracy of base classifiers (%)

arbiter
linear fit

40

50

60

70

80

90

100

40 50 60 70 80 90 100

O
v
e

r
a

ll
 A

c
c
u

r
a

c
y
 (

%
)

Average accuracy of base classifiers (%)

weighted voting
linear fit

Figure 8.1: Average accuracy of base classi�ers vs. overall accuracy.

114

0

5

10

15

20

40 50 60 70 80 90 100

A
c
c
u

r
a

c
y
 d

if
fe

r
e

n
c
e

 (
%

)

Average accuracy of base classifiers (%)

class-combiner

0

5

10

15

20

40 50 60 70 80 90 100

A
c
c
u

r
a

c
y
 d

if
fe

r
e

n
c
e

 (
%

)

Average accuracy of base classifiers (%)

class-attribute-combiner

0

5

10

15

20

40 50 60 70 80 90 100

A
c
c
u

r
a

c
y
 d

if
fe

r
e

n
c
e

 (
%

)

Average accuracy of base classifiers (%)

arbiter

0

5

10

15

20

40 50 60 70 80 90 100

A
c
c
u

r
a

c
y
 d

if
fe

r
e

n
c
e

 (
%

)

Average accuracy of base classifiers (%)

weighted voting

Figure 8.2: Average accuracy of base classi�ers vs. accuracy di�erence.

115

Moreover, we observe that the data points are quite scattered, suggesting that

the initial accuracy of base classi�ers does not have much e�ect on the amount of

improvement that can be achieved by the integrating structures. This might be due

to two opposing arguments. One side of the coin suggests it is harder to gain accuracy

from higher initial accuracy due to less room for improvement (imagine all the base

classi�ers have 100% accuracy). However, the other side of the coin suggests it is more

di�cult to gain accuracy from lower initial accuracy because of a weaker foundation

to build upon (imagine all the base classi�ers have 0% accuracy).

In an attempt to factor in the wide range of accuracy levels in the base classi�ers,

we de�ne relative accuracy di�erence or accuracy improvement as:

accuracy improvement =

accuracy difference

�

=

� � �

�

� 100% (8.5)

Figure 8.3 plots accuracy improvement against average accuracy of base classi�ers.

Ali and Pazzani (1996) use error ratio to measure the performance of the overall

classi�er. Error ratio is de�ned as the ratio between overall error and error of the

base classi�ers. That is, in our notations,

error ratio =

1� �

1� �

They also mentioned the option of using error di�erence ((1��)� (1��)), which is

the same as accuracy di�erence (�� �). They chose error ratio because they believe

that \it becomes increasingly di�cult to obtain reductions in error as the error of the

single model approaches zero."

8.2.2 Diversity

In information theory (Abramson, 1963), given the probabilities of di�erent events,

entropy measures the average amount of information required to represent each event.

For digital communication channels, amount of information is measured in bits. En-

tropy can also measure how random the di�erent events can occur. The larger the

116

0

5

10

15

20

25

30

40 50 60 70 80 90 100

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Average accuracy of base classifiers (%)

class-combiner

0

5

10

15

20

25

30

40 50 60 70 80 90 100

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Average accuracy of base classifiers (%)

class-attribute-combiner

0

5

10

15

20

25

30

40 50 60 70 80 90 100

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Average accuracy of base classifiers (%)

arbiter

0

5

10

15

20

25

30

40 50 60 70 80 90 100

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Average accuracy of base classifiers (%)

weighted voting

Figure 8.3: Average accuracy of base classi�ers vs. accuracy improvement.

117

entropy is, the probabilities are more evenly distributed (more random). The smaller

the entropy is, the probabilities are more biased (some events are more likely).

entropy = �

m

X

i

p

i

log(p

i

) (8.6)

where m is the number of events and p

i

is the probability of event i. The range of

entropy is [0, logm]. In this study, because m varies within our metrics, entropy is

usually normalized by logm. That is, normalized entropy has a range of [0, 1]. Also,

we use base 2 for logarithm.

Our �rst metric is called diversity. It measures how di�erent the base classi�ers

are based on their predictions. For each instance y

i

, the fraction of base classi�ers,

p

ik

, predicting class

k

is calculated as follows:

p

ik

=

1

b

b

X

j

OneIfTrue(C

j

(y

i

) = class

k

))

Using p

ik

, the entropy in the predictions for each instance is calculated, which is

then normalized by log c and averaged by the number of instances, n. That is,

diversity =

1

n

n

X

i

1

log c

c

X

k

�p

ik

log(p

ik

) (8.7)

The range of diversity is [0 ,1]. When the value of diversity grows, the predictions

from the base classi�ers are more evenly distributed and, therefore, more diverse.

Figure 8.4 plots how diversity a�ects the amount of accuracy improvement. The

four graphs, as mentioned previously, present results from the four schemes evaluated

in this study. The �tted line shows a general trend of the relationship between

diversity and accuracy improvement. We observe that, in all four graphs, accuracy

improvement increases with diversity. That is, larger improvement in accuracy can be

achieved by integrating more diverse base classi�ers. This result concurs with other

results in the literature. However, we formally de�ne and quantitatively measure

diversity using entropy.

Krogh and Vedelsby (1995) measures diversity, called ambiguity, by calculating

the mean square di�erence between the prediction made by the ensemble and the

118

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Diversity

class-combiner
linear fit

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Diversity

class-attribute-combiner
linear fit

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Diversity

arbiter
linear fit

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Diversity

weighted voting
linear fit

Figure 8.4: Diversity of base classi�ers vs. accuracy improvement.

119

base classi�ers. They proved that increasing ambiguity/diversity decreases overall

error. Our diversity metric does not involve the predictions generated by integrating

structures (ensemble) and only measures the variation among the base classi�ers.

Brodley and Lane (1996) measure diversity, called overlap, by counting the number

of instances that are classi�ed the same way by each of the base classi�ers. The

overlap metric does not di�erentiate instances that gather two di�erent predictions

from those that gather more.

Recent statistical work formulates classi�cation error via bias-variance decomposi-

tion. In short, bias measures, on the average over all possible training sets of a given

size, the error rate of the learned classi�ers and variance measures how di�erent the

learned classi�ers are when di�erent training sets are used. That is, classi�cation error

can be explained by errors caused by bias and variance. Kong and Dietterich (1995)

show that their error-correcting code method for combining binary classi�ers reduces

errors by correcting both bias and variance errors. Their decomposition is based on

the commonly used zero-one loss functions (misclassi�cation rates). Breiman (1996a)

explains that unstable methods/algorithms (those with high variance) bene�t from

aggregating/combining classi�ers learned from di�erent samples of the training set.

Kohavi and Wolpert (1996) provide a more robust decomposition that eliminates the

possibility of negative variance. Although not explicitly stated, Krogh and Vedelsby's

(1995) decomposition of squared classi�cation error follows the same spirit of bias-

variance decomposition and their ambiguity metric measures variance. Our diversity

metric tries to approximate the variance characteristics as well.

8.2.3 Coverage

Coverage (Brodley & Lane, 1996) measures the fraction of instances for which at

least one of the base classi�ers produces the correct predictions. That is, an instance

is not covered if and only if all the base classi�ers generate an incorrect prediction

for that instance. If an integrating method does not make a prediction other than

120

those from the base classi�ers, coverage is the maximum possible accuracy. That is,

coverage is an upper bound on accuracy for certain integrating methods. Formally,

coverage =

1�

1

n

n

X

i

OneIfTrue((C

1

(y

i

) 6= class(y

i

)) ^ (C

2

(y

i

) 6= class(y

i

)) ^

� � � ^ (C

b

(y

i

) 6= class(y

i

))) (8.8)

The range of coverage is [0 ,1]. Coverage of one means that each of the instances is

correctly predicted by at least one base classi�er. A zero coverage implies none of the

base classi�ers can correctly predict any of the instances.

Figure 8.5 depicts the relationship between coverage and accuracy improvement.

We observe that, in all four schemes, an increase in coverage implies larger accuracy

improvement. A high coverage is particularly important for integrating schemes that

utilize only the predictions generated by the base classi�ers because the upper bound

on accuracy for these schemes is coverage. One such scheme is voting|the �nal

prediction is always one of the predictions generated by the base classi�ers.

Coverage-possible accuracy improvement

As stated earlier, coverage provides an upper bound on accuracy improvement

assuming the integrating structure does not make a prediction other than the ones

from the base classi�ers. Although the assumption does not hold for our meta-learning

strategies, we would like to see how close our strategies can get to that upper bound

or maybe beat it. We note that the ultimate upper bound is 100% correct, not the

coverage; however, coverage provides a practical and sensible yardstick for comparison.

We de�ne coverage-possible accuracy improvement as the largest possible improvement

in accuracy provided by coverage. Formally,

coverage�possible accuracy improvement =

coverage � �

�

� 100% (8.9)

That is, the metrics measures the accuracy improvement obtained when an integrating

scheme achieves the coverage level of accuracy.

121

0

5

10

15

20

25

30

0.7 0.75 0.8 0.85 0.9 0.95 1

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Coverage

class-combiner
linear fit

0

5

10

15

20

25

30

0.7 0.75 0.8 0.85 0.9 0.95 1

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Coverage

class-attribute-combiner
linear fit

0

5

10

15

20

25

30

0.7 0.75 0.8 0.85 0.9 0.95 1

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Coverage

arbiter
linear fit

0

5

10

15

20

25

30

0.7 0.75 0.8 0.85 0.9 0.95 1

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Coverage

weighted voting
linear fit

Figure 8.5: Coverage of base classi�ers vs. accuracy improvement.

122

0

10

20

30

40

50

0 20 40 60 80 100

R
e

a
li
z
e

d
 a

c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Coverage-possible accuracy improvement (%)

class-combiner
y=x

0

10

20

30

40

50

0 20 40 60 80 100
R

e
a

li
z
e

d
 a

c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Coverage-possible accuracy improvement (%)

class-attribute-combiner
y=x

0

10

20

30

40

50

0 20 40 60 80 100

R
e

a
li
z
e

d
 a

c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Coverage-possible accuracy improvement (%)

arbiter
y=x

0

10

20

30

40

50

0 20 40 60 80 100

R
e

a
li
z
e

d
 a

c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Coverage-possible accuracy improvement (%)

class-combiner
y=x

Figure 8.6: Coverage-possible accuracy improvement vs. realized accuracy improve-

ment.

123

Figure 8.6 depicts the relationship between coverage-possible accuracy improve-

ment and realized accuracy improvement by the four integrating schemes. A linear

line, y = x, is also drawn in each graph. None of the cases achieve an improvement

larger than the coverage-possible. However, for the cases with smaller improvement,

�ve or six of them have improvement levels quite close to the coverage-possible ones.

8.2.4 Correlated error

Correlated error, introduced by Ali and Pazzani (1996), measures the fraction of

instances for which a pair of base classi�ers make the same incorrect prediction. The

fraction is calculated for each pair of base classi�ers (C

j

and C

k

):

1

n

n

X

i

OneIfTrue(C

j

(y

i

) = C

k

(y

i

) 6= class(y

i

))

This fraction is then summed and averaged over every possible pair of base classi�ers.

That is,

correlated error =

1

b� (b� 1) = 2

b

X

j

b

X

k=i+1

1

n

n

X

i

OneIfTrue(C

j

(y

i

) = C

k

(y

i

) 6= class(y

i

))(8.10)

The range of correlated error is [0, 1]. A value close to one indicates the errors made

by the base classi�ers are not likely to be independent.

Figure 8.7 depicts the relationship between the correlated error of base classi-

�ers and accuracy improvement. We observe a general decreasing trend in accuracy

improvement when correlated error increases. Our �ndings here are consistent with

those from (Ali & Pazzani, 1996).

Hansen and Salamon (1990) proved that for a neural-network ensemble, if the net-

works produce independent errors and have accuracy of at least 50%, the expected

ensemble error rate goes to zero as the number of networks approaches in�nity. Cor-

related error is attempt to characterize the degree of errors that are not independent.

124

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Correlated Error

class-combiner
linear fit

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Correlated Error

class-attribute-combiner
linear fit

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Correlated Error

arbiter
linear fit

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Correlated Error

weighted voting
linear fit

Figure 8.7: Correlated error of base classi�ers vs. accuracy improvement.

125

8.2.5 Specialty

Some base classi�ers might be biased toward certain classes. That is, they are

more accurate in predicting certain classes than others. How specialized the base

classi�ers are can contribute to the behavior of various integrating schemes.

A specialty metric for the base classi�ers is de�ned as follows. For each base

classi�er, we calculate its accuracy of predicting the di�erent classes. a

jk

is the

accuracy of classi�er j on class k. Formally,

a

jk

=

P

n

i

OneIfTrue(C

j

(y

i

) = class(y

i

) = class

k

)

P

n

i

OneIfTrue(class(y

i

) = class

k

)

For each classi�er, a

jk

is normalized by the sum of a

jk

, yielding p

jk

. The sum of

p

jk

is one.

p

jk

=

a

jk

P

k

a

jk

For each classi�er, using p

jk

, the entropy is calculated, normalized by log c. Spe-

cialty is average normalized entropy (Equation 8.6) over b classi�ers. Formally,

specialty = 1�

1

b

b

X

j

1

log c

c

X

k

�p

jk

log(p

jk

) (8.11)

The range of specialty is [0 ,1]. The larger the value is, the base classi�ers are more

biased and specialized to certain classes.

Figure 8.8 depicts the relationship between the specialty metric for the base clas-

si�ers and accuracy improvement. The �tted line indicates a slightly decreasing trend

in accuracy improvement when specialty increases. A closer inspection reveals that

there is an outlier with a .34 specialty value (generated by ID3 in the Secondary

Structure data set). When we �t the data points except the outlier, we observe that

the decreasing trend is reversed to an increasing trend for the two combiner schemes

(top two graphs). This result is consistent with the notion that combiners are trained

to recognize the behavior and relationship among base classi�ers. Class bias or spe-

cialization is one such behavior. Specialty seems to have little e�ect on the arbiter

and weighted voting schemes.

126

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Specialty

class-combiner
linear fit

linear fit (no outlier)

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Specialty

class-attribute-combiner
linear fit

linear fit (no outlier)

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Specialty

arbiter
linear fit

linear fit (no outlier)

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
c
c
u

r
a

c
y
 i
m

p
r
o

v
e

m
e

n
t

(
%

)

Specialty

weighted voting
linear fit

linear fit (no outlier)

Figure 8.8: Specialty of base classi�ers vs. accuracy improvement.

127

30

35

40

45

50

55

60

40 50 60 70 80 90 100

A
r
b

it
e

r
 A

c
c
u

r
a

c
y
 (

%
)

Average accuracy of base classifiers (%)

arbiter
linear fit

y=x

Figure 8.9: Average accuracy of base classi�ers vs. arbiter accuracy.

8.3 Analyzing Arbiters

In the previous sections we focus on analyzing the base classi�ers, here we con-

centrate on analyzing the behavior of the arbiter strategy.

8.3.1 Arbiter accuracy

Arbiter accuracy is de�ned as the accuracy of ARB on the unseen instances. Let

ARB be an arbiter and ARB(y

i

) be the ARB's classi�cation of y

i

. That is,

arbiter accuracy =

1

n

n

X

i

OneIfTrue(ARB(y

i

) = class(y

i

))� 100% (8.12)

Figure 8.9 plots the arbiter accuracy against the average accuracy of base classi-

�ers. We �rst observe that the arbiter accuracy is lower than the accuracy of base

classi�ers (to the right of the y = x line). Recall that the training set for an arbiter

128

contains examples that are confusing to the base classi�ers. In other words, examples

that are di�cult to learn from are in the arbiter training set. This likely attributes

to lower accuracy of the arbiters relative to the base classi�ers.

Furthermore, the arbiter accuracy demonstrates an increasing trend when the base

classi�ers are more accurate. A higher accuracy in the base classi�ers implies the

employed learning algorithm is closely suited for the involved data set. Accordingly,

the arbiter, essentially another classi�er, also has a higher accuracy.

8.3.2 Arbiter usage

We next examine how frequent an arbiter is utilized. Recall that an arbiter is

called upon when the majority of base classi�ers do not agree on the same prediction.

That is, an arbiter is not always used in determining the overall prediction. We de�ne

arbiter usage as the percentage of instances that do not have a majority prediction

and uses the arbiter's prediction as the overall prediction. Let p

1

; p

2

; � � � ; p

b

be the

predictions generated by the b base classi�ers and class count

k

be the number of

predictions that are of class k. That is,

class count

k

=

b

X

i

OneIfTrue(p

i

= class

k

):

Furthermore, let

no majority(p

1

; p

2

; � � � ; p

b

) =

8

>

<

>

:

false 9k class count

k

> b=2

true otherwise

(8.13)

Finally,

arbiter usage =

1

n

n

X

i

OneIfTure(no majority(C

1

(y

i

); C

2

(y

i

); � � � ; C

b

(y

i

)) ^ (OC(y

i

) = ARB(y

i

)))

�100% (8.14)

Figure 8.10 depicts arbiter usage against the average accuracy of base classi�ers.

As expected, when the base classi�ers are highly accurate, their predictions frequently

129

0

5

10

15

20

25

30

40 50 60 70 80 90 100

A
r
b

it
e

r
 U

s
a

g
e

 (
%

)

Average accuracy of base classifiers (%)

arbiter
linear fit

Figure 8.10: Average accuracy of base classi�ers vs. arbiter usage.

reach a majority, and hence the arbiters are scarcely utilized. That is, the arbiters

are only used when the base predictions are vastly di�erent, which suggests some of

the base predictions are incorrect.

8.3.3 Arbiter e�ectiveness

Arbiter e�ectiveness calculates the rate an arbiter is correct when its prediction

is used in the overall prediction. That is, it measures how useful an arbiter is when

it is used. We de�ne

arbiter effectiveness =

n

X

i

OneIfTure(no majority(C

1

(y

i

); C

2

(y

i

); � � � ; C

b

(y

i

)) ^ (OC(y

i

) = ARB(y

i

))^

(ARB(y

i

) = class(y

i

)))

OneIfTure(no majority(C

1

(y

i

); C

2

(y

i

); � � � ; C

b

(y

i

)) ^ (OC(y

i

) = ARB(y

i

)))

�100% (8.15)

130

30

40

50

60

70

80

90

100

40 50 60 70 80 90 100

A
r
b

it
e

r
 E

ff
e

c
ti
v
e

n
e

s
s
 (

%
)

Average accuracy of base classifiers (%)

arbiter
linear fit

Figure 8.11: Average accuracy of base classi�ers vs. arbiter e�ectiveness.

The numerator is the number of times arbiter ARB's prediction is used as the over-

all prediction and is correct; the denominator is the number of times the arbiter's

prediction is used as the overall prediction.

Figure 8.11 plots arbiter e�ectiveness against the average accuracy of base classi-

�ers. We observe that arbiters are more e�ective when the average accuracy of base

classi�ers is higher. That is caused by lower arbiter usage and higher arbiter accuracy.

As mentioned previously, when the base classi�ers have a low accuracy, the arbiters

are more frequently used. In order to improve the arbiter e�ectiveness, we need to

improve the accuracy of arbiters. One approach is to more carefully choose the

training set for the arbiters when the base classi�ers are not very accurate. Another

approach is to use an alternative learning algorithm for the arbiter since the algorithm

used to generate the base classi�ers is not well suited for the particular data domain.

131

8.4 Summary

We de�ned four metrics (diversity, coverage, correlated error, and specialty) for

characterizing the base classi�ers and explored the e�ects of these characteristics

on the behavior of various integrating schemes. From our results, larger accuracy

improvement can be achieved by more diverse base classi�ers with higher coverage

and fewer correlated errors. For integrating schemes (combiner in our case) that

recognize relationships among the base classi�ers, more specialized base classi�ers can

result in larger improvement in accuracy. Analyses on the arbiter strategy shows that

when the base classi�ers are less accurate, the arbiter needs to be built more carefully.

132

Chapter 9

E�ciency and Scalability

So far in this thesis, we have been concentrating on the accuracy performance of

meta-learning. In this chapter we focus on the training time performance of meta-

learning. We refer to e�ciency as speed or how fast a system runs and scalability

as the ability of a system to handle increasing amounts of data without needing an

extra order of magnitude of increasing computational resources. Scalability is further

de�ned in Section 9.2.1.

We �rst analyze the training time complexity and performance of the individual

learning algorithms used in this thesis in a serial environment. We then examine the

speedup that can be obtained by utilizing meta-learning in a parallel and distributed

environment.

9.1 Serial Evaluation of Learning Algorithms

To evaluate the �ve learning algorithms (ID3, CART, BAYES, WPEBLS, CN2)

in a serial environment, we �rst formulate their theoretical time complexity and then

empirically investigate their speed with varying amounts of training data.

133

9.1.1 Theoretical time complexity

In the following discussion we sketch the worst-case time complexity for each of

the �ve algorithms to help clarify the potential bene�ts of scaling by meta-learning

techniques. For simplicity, we assume all the attributes of the training data have

discrete values. Let

� a = the number of attributes,

� v = the largest number of distinct values for an attribute (i.e,., the size of its

domain), and

� n = the number of training examples.

The time complexity of ID3 (Quinlan, 1986) is a function of the number of levels

in the decision tree it forms. The height of the tree is bounded by the number

of attributes, O(a). Since at each level O(a) attributes are evaluated with O(n)

examples, the time spent at each level is O(an). Therefore, the time complexity of

ID3 is O(a

2

n) in the worst case.

In CART (Breiman et al., 1984; Buntine & Caruana, 1991) the values of each

attribute at each node are grouped into two disjoint subsets. Hence, each non-leaf

node has only two branches and the learned tree has O(2

a

) nodes. At each node,

CART uses a greedy scheme to group the values of each attribute, which takes roughly

O(v) time. That is, O(av + an) time is needed to group a attributes and evaluate

a attributes for n examples. Although, CART employs a ten-fold cross-validation

scheme to select the splitting attribute, the scheme only adds a constant factor to the

time complexity at each node and hence the complexity remains at O(av + an). The

total time complexity for CART is therefore O((av + an)2

a

) in the worst case.

BAYES (Clark & Niblett, 1989) calculates the conditional probabilities for each

attribute value given a class and the probabilities for each class. O(av) conditional

probabilities are calculated and each takes O(n) time, hence O(avn) time is needed.

134

The class probabilities can be calculated in O(n) time. Therefore, the time complexity

of BAYES is O(avn+ n) or O(avn).

WPEBLS (Cost & Salzberg, 1993) calculates a set of value distance matrices

(VDMs) and a vector of weights for the exemplars. Each attribute has a VDM of size

v by v, which takes O(nv

2

) to calculate. For a attributes, O(anv

2

) time is needed

for a VDMs. The weight vector is incrementally updated and takes O(n

2

) time. The

time complexity for WPEBLS is therefore O(anv

2

+ n

2

) in the worst case.

The time complexity of CN2 (Clark & Niblett, 1989; Chan, 1988) is a function of

how many complexes (candidate antecedents (or LHS's) of a rule) are evaluated. Since

CN2 performs a general-to-speci�c beam search on the complexes, a �xed number of

complexes is retained at each specialization step. The beam size is called the star size,

which is denoted by s. At each specialization step, O(avs) complexes are generated.

Evaluating all the complexes against n examples takes O(avsn) time. The top s

complexes can be found in O(avs

2

) time. As a result, each step takes O(avs(n+ s))

time. This step could be repeated O(a) times to �nd a rule, which consequently takes

O(a

2

vs(n + s)) time to induce. Since at least one training example is covered by an

induced rule, O(n) rules can be produced. Accordingly, CN2's total time complexity

is O(a

2

vsn(n + s)). Because s is a �xed parameter and n is much larger than s,

the complexity can be reduced to O(a

2

vn

2

), which is quadratic in the number of

examples.

Since we are considering problems with potentially large amounts of data, the

dominating term is n. From the above analysis, onlyWPEBLS and CN2 are quadratic

in the number of training examples and the rest are linear with respect to the number

of examples. However, closer inspection reveals that v, the number of values of an

attribute, could be a function of n. One can easily see that some values of an attribute

which are present in a large data set might be absent from a small data set. That

is, in addition to n, v could be a signi�cant factor in time performance when large

amounts of data are used.

135

0.1

1

10

100

1000

10000

10 100 1000 10000 100000

C
P

U
 ti

m
e

(s
ec

)

Number of training examples

Splice junction data

ID3
CART

BAYES
WPEBLS

Figure 9.1: Training time vs. number of examples in splice junctions.

9.1.2 Empirical time performance

We performed two sets of experiments: the �rst set used the splice junction data

with training set size up to 100,000 examples, the second set used the arti�cial data

with set size up to 10 million when all algorithms exceeded the main memory.

Splice junctions

In a set of experiments we measured the CPU training time of ID3, CART,

BAYES, and WPEBLS with the number of training examples varying from 10 to

100,000 in the splice junction domain (examples were randomly selected and dupli-

cated from the original data set, which has 3,190 examples) (Chan & Stolfo, 1994).

Thus, the training sets contain many duplicate examples. The results in CPU time

on Sun IPXs are plotted in Figure 9.1. We observe that WPEBLS performed com-

paratively worse than the other three algorithms when more training examples were

presented. With 100,000 examples, WPEBLS did not �nish running after a couple

of days. ID3 and BAYES were generally faster than CART. BAYES was faster than

ID3 until the crossover at 500 examples. CART was slower than WPEBLS until the

136

training set grew to 1,000 examples.

Figure 9.2 depicts our results in four graphs. Each graph plots the CPU training

time against the number of training examples for a di�erent learning algorithm. Poly-

nomial curves are �tted to the data points to illustrate how the algorithms behave in

terms of speed. We tried linear (y = ax+ b), quadratic (y = ax

2

+ bx+ c), and cubic

(y = ax

3

+ bx

2

+ cx+d) equations for curve �tting, where x is the number of training

examples and y is training time in seconds. The curve approximations were computed

using GNUFIT (Grammes, 1993) with the Marquardt-Levenberg algorithm (Ralston

& Rabinowitz, 1978; Press et al., 1988), a nonlinear least squares �t mechanism. To

approximate the training speed with polynomial equations, we inspect how closely

the three polynomials �t the data points. Curve �tting errors near the bottom left

corner are less important since the values in question are much smaller due to the log

scale.

The three curves seem to �t ID3, equally well, hence ID3 appear to have linear

speed with up to 100,000 training examples. CART and BAYES seem to be close to

having linear speed. However, WPEBLS clearly exhibits superlinear speed|the linear

�tted curve does not �t at all. The quadratic and cubic curves �t much more closely.

(These two curves overlap in WPEBLS plot in Figure 9.2). Hence, WPEBLS' speed

appears to be quadratic in the number of examples. The �tted quadratic equation for

WPEBLS is y = :0000166x

2

+ :000916x+ :100 and it projects that WPEBLS takes

about 16.6 million CPU seconds (or 192 days or 6.4 months) to process 1 million

records.

Three of the algorithms appear to exhibit linear speed with up to 100,000 training

examples. We next investigate speed performance of the algorithms with much more

data.

137

0.1

1

10

100

1000

10000

10 100 1000 10000 100000

C
P

U
 t

im
e

 (
s
e

c
)

Number of training examples

SJ (ID3)

ID3
linear

quadratic
cubic

0.1

1

10

100

1000

10000

10 100 1000 10000 100000
C

P
U

 t
im

e
 (

s
e

c
)

Number of training examples

SJ (CART)

CART
linear

quadratic
cubic

0.1

1

10

100

1000

10000

10 100 1000 10000 100000

C
P

U
 t

im
e

 (
s
e

c
)

Number of training examples

SJ (BAYES)

BAYES
linear

quadratic
cubic

0.1

1

10

100

1000

10000

10 100 1000 10000 100000

C
P

U
 t

im
e

 (
s
e

c
)

Number of training examples

SJ (WPEBLS)

WPEBLS
linear

quadratic
cubic

Figure 9.2: Training time vs. number of examples in splice junctions with polynomial

curve �tting.

138

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

ps
ed

 ti
m

e
(s

ec
)

Number of training examples

Artificial data

ID3
CART

BAYES
CN2

Figure 9.3: Training time vs. number of examples in arti�cial data.

Arti�cial data

In the second set of experiments we measured the elapsed training time of ID3,

CART, BAYES, and CN2 with di�erent numbers of examples in the arti�cial domain.

The experiments were performed on HP 9000/735 workstations, which are faster than

the SUN IPX workstations used in the previous set of experiments. The number of

training examples was exponentially increased until the algorithms/operating system

reported insu�cient-memory errors. That is, they ran out of memory when the

training set got too large, which was expected for main-memory based algorithms.

Figure 9.3 plots the relative performance of the four algorithms. Each data point

is an average of �ve runs using data sets generated by di�erent seeds for the random

number generator. Since 4:6 � 10

17

di�erent examples are possible, the chances of

having duplicates in a data set with up to 10 million examples are quite low. ID3,

CART, and BAYES ran out of memory while processing 10 million records, and CN2

while processing 50,000 records. Memory resources do pose a limit on how much

data learning algorithms can digest. With fewer than 10,000 examples, BAYES was

the fastest, followed by ID3, CART, and CN2. Crossovers among ID3, CART, and

139

BAYES occur between 100,000 and 1 million examples. With 5 million examples,

CART was faster than ID3 and BAYES was the slowest.

ID3 completed processing 5 million records in about 2,800 seconds (47 minutes),

which is much less than Catlett's (1991) projection of several months for ID3 to

process 1 million records. The huge gap merits some explanation. First, the projection

was made �ve years ago, state-of-the-art processor speed has much improved since

then. Second, the arti�cial data set has only eight attributes, four of which are

numeric, and two (Boolean) classes, the data set Catlett used has seven numeric

attributes and nine classes. Since ID3 performs a sort on the values of numeric

attributes, symbolic attributes are faster to evaluate than numeric ones. Furthermore,

a nine-class problem is more complex than a two-class problem. Third, the arti�cial

data set has a well de�ned concept to learn|the Boolean expression that generates

it. The NASA shuttle data set Catlett used is real-world and the target concept is

potentially much more complex than the Boolean expression we used. Unfortunately,

we were not able to obtain the full data set from Catlett for our investigation to

validate the published result.

As in the previous set of experiments, we �tted linear, quadratic, and cubic equa-

tions to the training time of each algorithm and the plots are displayed in Figure 9.4.

We observed that none of the algorithms exhibited linear speed. The quadratic and

cubic curves �t ID3 and CART closely, hence, ID3 and CART appear to be quadratic.

BAYES does not appear to be linear or quadratic; the closest is the cubic approxi-

mation. The cubic curve �ts CN2 the closest, although the quadratic curve is also

close. The quadratic �tted polynomial for CN2 is y = :00000896x

2

+ :00420x+ 1:18

and it projects that CN2 takes about 9 million elapsed seconds (104 days or 3.5

months) to process 1 million records. The cubic �tted polynomial for CN2 is y =

:000000000597x

3

� :000000363x

2

+0:0398x� 19:5 and it projects that CN2 consumes

597 million elapsed seconds (18.9 years) to learn from 1 million examples. Recall that

CN2 did not have enough memory space to process 50,000 records. Even if su�cient

memory resources are provided for CN2 to process 1 million records, a period of 3.5

140

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

p
s
e

d
 t

im
e

 (
s
e

c
)

Number of training examples

Artificial (ID3)

ID3
linear

quadratic
cubic

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07
E

la
p

s
e

d
 t

im
e

 (
s
e

c
)

Number of training examples

Artificial (CART)

CART
linear

quadratic
cubic

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

p
s
e

d
 t

im
e

 (
s
e

c
)

Number of training examples

Artificial (BAYES)

BAYES
linear

quadratic
cubic

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

p
s
e

d
 t

im
e

 (
s
e

c
)

Number of training examples

Artificial (CN2)

CN2
linear

quadratic
cubic

Figure 9.4: Training time vs. number of examples in arti�cial data with polynomial

curve �tting.

141

months (quadratic approximation) or 18.9 years (cubic approximation) is a long time

to wait.

The results from these experiments reinforce our hypotheses on the behavior of

memory-based learning algorithms in the presence of large data sets in real life. First,

theoretical analysis provides a powerful tool to analyze time complexity and produces

close approximations. However, practical time performance might di�er from theo-

retical analysis, especially when worst case-analysis is used as we did. With large

amounts of data, one attributing factor is the characteristics of operating system's

memory management, which might elect to utilize secondary storage and result in

time-consuming memory transfers. Second, memory resources are limited and very

large data sets can exceed them; consequently, these learning algorithms are rendered

relatively useless when they are faced with too much information. Third, they exhibit

superlinear behavior with large amounts of data, which is particularly undesirable in

applications like data mining.

As we proposed in this thesis, data reduction and meta-learning techniques are

used to alleviate the problem of limited memory resource and prolonged execution

when large amounts of data are present. We next evaluate the e�ciency of our

proposed techniques in a parallel and distributed processing environment.

9.2 Parallel Evaluation of Hierarchical

Meta-learning

The hierarchical meta-learning strategy described in Chapter 6 is designed to

be utilized in a parallel and distributed processing environment. Here we analyze

and evaluate how the hierarchical meta-learning behaves with leaf classi�ers and

intermediate tree node classi�ers concurrently trained on multiple processors.

142

9.2.1 Notations and De�nitions

Before we evaluate our approach in a parallel and distributed environment, our

notations and de�nitions are described as follows:

� T

S

= serial execution time.

� T

P

= parallel execution time.

� p = number of processors.

� n = input size (number of training examples).

� W = problem size (work) (Kumar et al., 1994), which measures the total number

of computational units needed for serial execution. That is, T

S

=W � t

u

, where

t

u

is the time spent for a unit of computation. Hence, T

S

/ W . For instance,

a serial algorithm that is quadratic in input size has a problem size of n

2

or

W = n

2

.

� Speedup (S) is the number of times parallel execution is faster over serial exe-

cution with a �xed problem size. That is,

Speedup =

T

S

T

P

:

For this metric, T

S

is usually the time consumption for the fastest serial algo-

rithm, which could be the parallel algorithm running serially.

� Scaled speedup (Gustafson, 1988; Kumar & Gupta, 1994) provides a metric for

scalability. It measures the speedup of a parallel system when the problem size

increases linearly with the number of processors.

Scaled speedup =

T

S

(W � p)

T

P

(W � p)

; (9.1)

where T

S

and T

P

are expressed as functions of problem size. Parallel system with

linear or near-linear scaled speedup (with respect to p, the number of processors)

is considered scalable. Other scalability metrics can be found in (Kumar &

Gupta, 1994).

143

� E�ciency is how fast an algorithm runs, which is characterized by the algo-

rithm's time complexity. (We note that the term e�ciency can be used another

way in parallel computing|it measures how well a parallel algorithm utilizes

the available processors and is de�ned as the ratio of speedup to number of

processors or

S

p

.)

9.2.2 Speedup analysis

For simplicity reasons, we are going to focus our analysis on arbiter trees; similar

results can be obtained for combiner trees. Recall that the training set size for an

arbiter is restricted to be no larger than the training set size for a leaf classi�er

(Section 6.1). Hence, in a parallel environment, the amount of computation at each

level is approximately the same. Assume the number of data subsets of the initial

distribution is s and s = p (the number of parallel processors). (We note that when

s > p, s=p subsets are processed serially on each of the p processors and a di�erent

complexity will result.) Let d = n=p be the size of each data subset, where n is the

total number of training examples. Furthermore, assume the learning algorithm takes

O(n

2

) time (for example, WPEBLS or CN2) in the sequential case. In the parallel

case, if we have p processors, there are log(p) iterations in building the arbiter tree

and each takes O(d

2

) time. The total time is therefore O(d

2

log(p)), which is

O(

n

2

log(p)

p

2

) (9.2)

For the same parallel algorithm that is run sequentially, there are 2p� 1 (p+ p=2 +

� � �+2+1), or O(p), executions of the algorithm and each takes O(d

2

); the total time

is therefore O(d

2

p), which is

O(

n

2

p

) (9.3)

As a result, a potential O(

n

2

p

�

p

2

n

2

log(p)

) or

O(

p

log(p)

)

144

fold speedup can be achieved. Moreover, if we directly compare the parallel algorithm

to the pure serial algorithm, which is O(n

2

), the potential speedup is O(n

2

�

p

2

n

2

log(p)

)

or

O(

p

2

log(p)

)

fold, which is superlinear. The standard way of calculating speedup uses the fastest

serial algorithm. In our case, the serially run parallel algorithm is asymptotically

faster than the pure serial algorithm. Hence, the �rst speedup analysis provides

the proper measure. We include the second analysis as an indication of the speed

di�erence between the parallel approach and the pure sequential approach.

To simplify the previous discussion, we did not take into consideration the classi-

�cation time to generate the predictions, communication time to send the predictions

to one site, and construction time to generate the meta-level training sets. Here,

we consider a more detailed analysis, which includes the additional time consump-

tion, but yields, under certain conditions, the same time complexity as before using

a simpler analysis.

For the parallel case, when classi�cation time is also considered, at each level O(d)

instances have to be classi�ed in parallel on all processors. To generate the arbiters

at the �rst tree level, O(d) instances are classi�ed by the base classi�ers. To gen-

erate the arbiters at the second tree level, O(2d) instances are classi�ed because a

di�erent validation set is used and is classi�ed by both the base classi�ers and ar-

biters at the �rst tree level. Since there are log(p) levels, a total of O(d

(1+log(p)) log(p)

2

)

instances are classi�ed. That is the total classi�cation time is O(d

log(p)+log

2

(p)

2

). Send-

ing O(d) predictions to one site takes O(d) time so the total communication time

is O(d

log(p)+log

2

(p)

2

). O(d) time is needed to construct the meta-level training sets at

each level so O(d log(p)) time is need for log(p) levels. The overall time to build an

arbiter tree is the sum of the training time (Equation 9.2) (with a constant K

1

for

each example), classi�cation time (with a constant K

2

), communication time (with a

145

constant K

3

), and construction time (with a constant K

4

), which is

O(K

1

d

2

log(p) +K

2

d

log(p) + log

2

(p)

2

+K

3

d

log(p) + log

2

(p)

2

+K

4

d log(p)):

Since d is much larger than log(p) and K

1

(constant for training from an example) is

larger than K

2

, K

3

, and K

4

, the �rst term K

1

d

2

log(p) is the dominating term. That

is, the overall time consumption can be reduced to O(d

2

log(p)), which is O(

n

2

log(p)

p

2

).

When the parallel case in run serially, only classi�cation time and construction

time needs to be included. For generating the arbiters at the �rst level, p batches of

classi�cation are needed. For the second level. p+

p

2

batches are needed. For the root

level, p+

p

2

+ � � �+ 1 batches are needed. That is, a total of O(p log(p)) classi�cation

batches are needed. Since each batch takes O(d) time, the total classi�cation time is

O(dp log(p)). O(p) meta-level training sets are constructed and each takes O(d) time,

hence, the total construction time is O(dp). From above (Equation 9.3), excluding

the classi�cation and construction time, the training time is O(d

2

p). Hence, with the

additional time included, the total training time (using the constants as before) is

O(K

1

d

2

p+K

2

dp log(p) +K

4

dp)

Since d is much larger than p and log(p), and K

1

(constant for training from one

example) is larger than K

2

and K

4

, the �rst term K

1

d

2

log(p) is the dominating term.

That is, the overall time consumption can be reduced to O(d

2

p), which is O(

n

2

p

).

These analyses assume the classi�cation time to generate the arbiter training sets

is relatively small compared to the training time. However, this might not the case

for some algorithms. Since the number of processors needed for training an arbiter

tree is reduced in half at each level and only one processor is used at the root level,

the idle processors can be used to classify (Section 6.1) if the base classi�ers and

arbiters are communicated to other processors. Therefore, training and classifying

can be overlapped in execution if we induce more communication overhead. That

is, this method would be bene�cial if the base classi�ers and arbiters are not large.

Furthermore, we assume that the processors have equal performance and thus load

146

balancing and other issues in a heterogeneous environment raise interesting issues for

future work.

9.2.3 Scalability analysis

Now we measure the scalability of our approach using scaled speedup (Equa-

tion 9.1). From Equation 9.3, the problem size W is n

2

=p. To calculate the scaled

speedup, we �rst enlarge the problem size to W � p or n

2

=p� p, which is n

2

. That

is, when the parallel case is run serially, it takes

O(n

2

)

time to complete the enlarged problem. Let the enlarged input size be m. The

enlarged problem size is therefore m

2

=p. By equating the two expressions for the

enlarged problem size, n

2

= m

2

=p, we arrive at m = n

p

p. From the analysis above

(Equation 9.2), by substituting n with m or n

p

p, the parallel time complexity be-

comes O(

(n

p

p)

2

log(p)

p

2

), which is

O(

n

2

log(p)

p

):

The scaled speedup is therefore O(n

2

�

p

n

2

log(p)

), which is

O(

p

log(p)

):

Although the scaled speedup is sublinear with respect to the number of processors,

it is quite close to linear. That is, our approach is quite scalable.

For completeness, we also derive the scaled speedup with respect to the pure serial

algorithm. The problem size W is n

2

(quadratic learning algorithm). The enlarged

problem size is W � p, which is n

2

p. That is, the pure serial algorithms takes

O(n

2

p)

time to complete the enlarged problem. Let the enlarged input size be m. The en-

larged problem size is therefore m

2

. By equating the two expressions for the enlarged

147

problem size, n

2

p = m

2

, we arrive at m = n

p

p. From the analysis above (Equa-

tion 9.2), by substituting n with m or n

p

p, the parallel time complexity becomes

O(

(n

p

p)

2

log(p)

p

2

), which is

O(

n

2

log(p)

p

):

Therefore, the scaled speedup is O(n

2

p�

p

n

2

log(p)

), which is

O(

p

2

log(p)

):

Similar to the superlinearity of the regular speedup analysis, the scaled speedup is

also superlinear when the parallel algorithm is compared to the pure serial algorithm.

Again, we note that the fastest serial case should be used for speedup analysis; the

second analysis is presented for completeness.

An alternate scalability metric is memory-bound scaled speedup (Sun & Ni, 1993),

which measures the increase in possible problem size with increasing number of pro-

cessors, each with limited available memory. For our approach, this measure is linear

since adding one more processor translates to an increase in problem size of one more

subset of the training data that �ts on one processor. That is, our approach is scalable

according to the memory-bound scaled speedup metric. The next section describes

our experiments and results on the meta-learning strategies.

9.2.4 Empirical simulation

We ran a series of experiments to test our strategies based on the splice junc-

tion prediction task. Four di�erent learning algorithms (ID3, CART, WPEBLS, and

BAYES) were used. As in experiments with arbiter trees, we varied the number of

subsets from 2 to 64 and the equal-size subsets were disjoint with proportional par-

titioning of classes. Figure 9.5 and 9.6 plot our estimated speedup calculated from

measured timing statistics.

However, we measured the CPU time taken to generate each arbiter and approx-

imate the overall CPU time of meta-learning, had we executed the code in a parallel

148

0

5

10

15

1 2 4 8 16 32 64

S
pe

ed
up

Number of subsets (s)

ID3
CART

WPEBLS
BAYES
s/log(s)

Figure 9.5: Speedup of simulated parallel meta-learning over serial meta-learning.

environment. The approximation is calculated by summing over the longest time

needed to generate an arbiter at each level of the arbiter tree. As noted above, the

cost of classi�cation needed for selecting examples for the arbiter training sets is not

included. Also, the e�ects of communication and multiple I/O channels on speed are

not taken into account, as well as preprocessing such as data partitioning. In addi-

tion, since our training set of 2,500+ examples is still relatively small, we duplicated

each example ten times in each subset before learning begins. This also has the e�ect

of increasing the size of each arbiter training set by ten. Note that a training set

with 25,000+ examples is still a relatively small set, but due to the limitation of the

current serial implementation, much larger sets require more computer resources than

currently available to us.

In Figure 9.5 we plot the speedup of the parallel meta-learning case (approx-

imated) with respect to the time for meta-learning using only one processor. In

Figure 9.6 we plot the speedup of the approximation of the parallel meta-learning

case with respect to the time used by the pure sequential algorithm (without meta-

learning). The plotted results are from arbiter trees trained with the di�erent selection

rule and the arbiter training set size limited to the size of the initial training subset

149

1

2

3
4
5

10

100

400

1 2 4 8 16 32 64

S
pe

ed
up

Number of subsets (s)

ID3
CART

WPEBLS
BAYES

Figure 9.6: Speedup of simulated parallel meta-learning over pure serial learning.

size. All timing statistics were obtained from an Sun IPX workstation.

As shown in Figure 9.5, speedup was observed in all cases as expected. All speedup

curves approximate O(p= log(p)), derived in Section 9.2.2. Compared to the pure

sequential version of the algorithms (Figure 9.6), our strategies posted small speedup,

except in the WPEBLS case, which showed, as expected, superlinear speedup. The

small speedup observed in the other three algorithms is mainly due to the relatively

small data set we were using (25,000+ training examples) and their low order time

complexities (Section 9.1.1). In addition, the overhead of invoking the training and

classi�cation processes becomes signi�cant when the data set is small, which is the

case in our experiments. Next, we discuss our parallel implementation and empirical

experiments on very large data sets.

9.2.5 Parallel implementation

The hierarchical meta-learning strategies were implemented on a parallel and dis-

tributed platform based on the message-passingmodel. To satisfy our goal of portabil-

ity, we chose PVM (Parallel Virtual Machine) (Geist et al., 1993) to provide message

150

P1 P2

P2

P3 P4

P4

P4

P5 P6

P6

P7P0

P0

P0

P0

Processors P0 - P7

Second Level

Root Level

First Level

Leaf Level

Figure 9.7: Processor allocation for each node in a binary arbiter/combiner tree with

8 leaf nodes.

passing support|PVM supports a common interface for message passing among ma-

chines of diverse architectures. The computing platform we used consists of eight

HP 9000/735 workstations on a dedicated FDDI (Fiber Distribution Data Interface)

network.

Figure 9.7 depicts how the 8 processors (P0-P7) are allocated to a binary ar-

biter/combiner tree with 8 leaf nodes. At the leaf level, the 8 processors generate 8

base classi�ers, which are then used to produce predictions on the validation set. At

the �rst tree level, 4 of the 8 processors become parent processors and each of them

receives predictions from its 2 respective child processors, one of which is the parent

processor itself. The other 4 processors are left idle. Each parent processor then gen-

erates the meta-level training set and the meta-level classi�er. Then, at the second

tree level, 2 of the 4 processors become parent processors. The process is repeated

until the meta-classi�er at the root is formed.

Because of the hierarchical nature of an arbiter/combiner tree, it is unavoidable

to leave half of the active processors more or less idle when each level of the tree is

formed. That is, not all the processors are in use at all times. Also, each node in an

151

arbiter/combiner tree is a synchronization point, which reduces parallelism. However,

individual subtrees are independent of each other and are built asynchronously.

With 8 processors, we only experimented with binary trees. Higher-order trees

would require more processors (for example, a two-level 4-ary tree would need 16

processors). Although we are limited to 8 physical processors, we can always simulate

multiple virtual processors on each processor (which is not included in this study).

9.2.6 Experiments on the parallel implementation

To reduce the need of transferring large data �les across the network from remote

�le systems, we stored the necessary data for each processor on its local �le system.

However, some of the local �le systems are small on our 8-processor system. Hence,

the size of the data �les is limited by the smallest local �le system among the 8

processors. Currently, we can run parallel experiments on all 8 processors with up 5

million examples.

We varied the number of examples from 1,000 to 5 million. The time results

reported here measure the elapsed time between the start and the end of the learn-

ing process, which includes the communication overhead among processors. Data

preparation and distribution prior to learning are not included in our time measure-

ments. Each plotted point is the average of �ve runs on di�erent data sets produced

by our arti�cial data generator using di�erent random seeds. We ran experiments

using di�erent combinations of learning algorithms (ID3, CART, BAYES, and CN2)

and hierarchical meta-learning schemes (arbiter tree, class-combiner tree, and class-

attribute-combiner tree).

Figure 9.8 plots the elapsed learning time against the number of training examples.

Both axes are in log scale. Each plot in the �gure shows the results from a learning

algorithm used in the three di�erent hierarchical meta-learning schemes. The plots

for CART and CN2 stop at 100,000 examples because CART started to core dump

152

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

ps
ed

 ti
m

e
(s

ec
)

Number of training examples

Artificial data (ID3)

arbiter tree
class-combiner tree

class-attribute-combiner tree

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

ps
ed

 ti
m

e
(s

ec
)

Number of training examples

Artificial data (CART)

arbiter tree
class-combiner tree

class-attribute-combiner tree

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

ps
ed

 ti
m

e
(s

ec
)

Number of training examples

Artificial data (BAYES)

arbiter tree
class-combiner tree

class-attribute-combiner tree

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

ps
ed

 ti
m

e
(s

ec
)

Number of training examples

Artificial data (CN2)

arbiter tree
class-combiner tree

class-attribute-combiner tree

Figure 9.8: Training time for parallel meta-learning on 8 processors (grouped by

learning algorithms).

and CN2 ran out of memory with 500,000 or more examples.

As expected, the class-attribute-combiner tree scheme takes more processing time

the class-combiner tree scheme since the meta-level training set in the �rst scheme

includes the original attributes of the training examples. The arbiter-tree scheme

seems to be between the two combiner tree schemes. Although the arbiter-tree scheme

usually create fewer examples in the meta-level training set, each example has all the

attributes from the original training data.

We group the timing results by hierarchical meta-learning schemes in Figure 9.9.

Both axes are in log scale. Each plot shows the results from a hierarchical meta-

learning scheme using the four di�erent learning algorithms. We observe that, as

expected, CN2 takes longer than the other three learning algorithms in processing

the training data. Furthermore, CN2's time consumption increases more rapidly than

153

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

ps
ed

 ti
m

e
(s

ec
)

Number of training examples

Artificial data (arbiter tree)

ID3
CART

BAYES
CN2

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

ps
ed

 ti
m

e
(s

ec
)

Number of training examples

Artificial data (class-combiner tree)

ID3
CART

BAYES
CN2

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

E
la

ps
ed

 ti
m

e
(s

ec
)

Number of training examples

Artificial data (class-attribute-combiner tree)

ID3
CART

BAYES
CN2

Figure 9.9: Training time for parallel meta-learning on 8 processors (grouped by

schemes).

154

the others'. These results are consistent with the empirical timing results from serial

execution.

Figure 9.10 shows the speedup of our parallel meta-learning implementation on 8

processors over pure serial learning. We note that superlinear speedup (more than 8

in our case) is possible because we are using the pure serial learning case for compari-

son. Experiments were not performed on running the parallel meta-learning schemes

serially (because as we see later, some pure serial algorithms are quite e�cient with

relatively large data sets). Each graph presents results from a hierarchical meta-

learning scheme using the four di�erent learning algorithms. Because CART core

dumped with di�erent number of examples in the serial and parallel cases, only the

speedup for training from 1,000 to 10,000 examples can be calculated. Since CN2

ran out of memory with more than 10,000 examples, speedup for CN2 can only be

computed for processing 1,000 to 10,000 examples.

Substantial speedup is observed for CN2 with as few as 5,000 examples. CART

shows some, but not sizeable, speedup at the few data points we can gather. However,

for ID3 and BAYES, we observe that the parallel meta-learning schemes are not

worthwhile until the training set contains more than one million examples. The

parallel case is not faster than the serial case with up to about 1 million examples

(speedup � 1). With 5 million examples, ID3 shows some speedup while BAYES

achieves substantial speedup. Because the class-combiner tree scheme takes less time

than the other two schemes, larger speedup is obtained.

CN2's superlinear time requirement leads to large speedup in a parallel environ-

ment. ID3 and BAYES are quite e�cient in processing up to about 1 million examples

in a serial environment. That is, parallel meta-learning is greatly bene�cial to super-

linear learning algorithms like CN2 in terms of speed. In terms of scalability, parallel

meta-learning is bene�cial to ID3 and BAYES when the memory requirement for

processing large amounts of data is getting close to or exceeds the available resources

on one processor (sizable speedup was obtained with 5 million examples).

155

0.5

1

2

4

8

16

32

1000 10000 100000 1e+06 1e+07

S
pe

ed
up

Number of training examples

Artificial data (arbiter tree)

ID3
CART

BAYES
CN2

0.5

1

2

4

8

16

32

1000 10000 100000 1e+06 1e+07

S
pe

ed
up

Number of training examples

Artificial data (class-combiner tree)

ID3
CART

BAYES
CN2

0.5

1

2

4

8

16

32

1000 10000 100000 1e+06 1e+07

S
pe

ed
up

Number of training examples

Artificial data (class-attribute-combiner tree)

ID3
CART

BAYES
CN2

Figure 9.10: Speedup of parallel meta-learning on 8 processors over serial learning.

156

Our current parallel implementation is used to demonstrate the utility of hierar-

chical meta-learning in a parallel and distributed environment. Re�nements of the

implementation is left for future work. For example, the tradeo� between classi�-

cation time (during training) and communication time for exchanging classi�ers and

meta-classi�ers was not studied. We mentioned earlier that communicating the clas-

si�ers among the processors can make use of the idle processors for classi�cation while

the active ones are used for training. This method is advantageous if the communi-

cation time is small compared to the classi�cation time. Because we are limited to

8 processors, some of our results will improve when more processors are available|

higher degree of parallelism, higher order trees, larger data sets... Furthermore, if we

relax our portability goal, using customized platform-dependent message-passing rou-

tines rather than portable ones reduces communication overhead among processors

and improves overall time performance.

9.3 Summary

The theoretical time complexity of �ve learning algorithms was analyzed. WPE-

BLS and CN2 clearly exhibit superlinear complexity with respect to the number of

training examples. Although ID3, CART, and BAYES show linear complexity with

respect to training set size, practical time performance indicates superlinear behav-

ior. That is, all �ve algorithms exhibit superlinear time performance when very large

training sets are encountered. In fact, at a certain point, the learning algorithms

ran out of memory and terminated abnormally. Quadratic approximations estimate

that CN2 would take 3.5 months, and WPEBLS 6.4 months, to process one million

training examples if they were given su�cient memory resources. Certainly, these

estimates will change with more powerful machines in the future.

Theoretical speedup and scalability of our hierarchical meta-learning schemes were

analyzed. Empirical results from our parallel implementation show that CN2 (and

probably WPEBLS) bene�ts greatly from our methods. Other superlinear-time learn-

157

ing algorithms like genetic algorithms and neural networks can also bene�t much

from our methods. Parallel hierarchical meta-learning is more advantages for ID3

and BAYES when their memory requirement for processing large amounts of data is

getting close to or exceeds the available resources on one processor.

158

Chapter 10

Multistrategy Meta-Learning

The objective here is to improve prediction accuracy by exploring the diversity of

multiple learning algorithms through meta-learning. This is achieved by a basic

con�guration which has several di�erent base learners and one meta-learner that

learns from the output of the base learners. The meta-learner may employ the same

algorithm as one of the base learners or a completely distinct algorithm. The training

set for the meta-learner (meta-level training data) varies according to the strategies

described in Section 3.4 and is quite di�erent from the original training set. We

experimented with three types of meta-learning strategies (combiner, arbiter, and

hybrid). Each base-learner generates a base classi�er and the meta-learner generates

a meta-classi�er. Note that the meta-learner does not aim at picking the \best" base

classi�er; instead it tries to combine the classi�ers. That is, the prediction accuracy of

the overall system is not limited to the most accurate base classi�er. It is our intention

to generate an overall system that outperforms the underlying base classi�ers.

We �rst study, in Section 10.1, multistrategy meta-learning on unpartitioned data,

where base classi�ers are trained on the whole data set. We then explore, in Sec-

tion 10.2, multistrategy meta-learning on partitioned data, where base classi�ers are

trained on disjoint data subsets. Lastly, in Section 10.3, we compare our combiner

strategy with the related stack generalization proposed by Wolpert (1992). The com-

159

Training

Data

Training

Data

Training

Data

Training

Data

C2

L2

C3

L3

Cn

Ln

C1

L1

Meta-Learning

...

Figure 10.1: Multistrategy Meta-learning on Unpartitioned Data

parison is based on whole (unpartitioned) data sets.

10.1 Multistrategy Meta-learning on Unpartitioned

Data

Here we investigate multistrategy meta-learning on whole (unpartitioned) data

sets (Chan & Stolfo, 1993a). Each of the base learners is provided with the entire

training set of raw data. That is, a di�erent learning algorithm is applied to the entire

data set to generate the base classi�ers and then learn a meta-classi�er to integrate the

base ones. Figure 10.1 depicts this approach. This is a common approach adopted by

much of the work in using multiple algorithms to improve overall prediction accuracy.

However, we try to learn correlations rather than using di�erent variations of voting.

The predictions used in the training set of the meta-learner were generated by a

two-fold cross validation scheme. The training set is �rst split in two halves. Each

of the three base classi�ers were trained on the �rst half and the second half is used

160

to generate predictions. Similarly, each base classi�er is trained on the second half

and the �rst half is used to generate predictions. The predictions from the two halves

are merged and then used in constructing the training set for the meta-learner. The

objective is to mimic the behavior of the learned classi�ers when unseen instances

are classi�ed. That is, the meta-learner is trained on predictions of unseen instances

in the training set. The base learners are also trained on the entire training set to

generate base classi�ers, which are then used with the learned meta-classi�er in the

classi�cation process.

10.1.1 Experiments

We performed experiments on the di�erent schemes for the combiner, arbiter,

and hybrid strategies. Four inductive learning algorithms: ID3, CART, WPEBLS

and BAYES and two data sets: secondary structures (SS) and splice junctions (SJ)

were used in the experiments. Di�erent combinations of three base and one meta-

learner are explored on the two data sets and the results are presented in Tables 10.1

through 10.4. Each table has two subtables and each subtable presents results from

a di�erent combination of base learners. Results for the two data sets with single-

strategy classi�ers are displayed in Table 10.5. In addition, we experimented with a

windowing scheme used in Zhang's (1992) work, which is speci�c to the secondary

structure data. This scheme is similar to the class-combiner scheme described above.

However, in addition to the three predictions present in one training example for

the meta-learner, the guesses on either side of the three predictions in the sequence

(windows) are also present in the example. We denote this scheme as class-window-

combiner (or class-window-combiner in the tables).

Furthermore, several non-meta-learning approaches were applied for comparison.

vote is a simple voting scheme applied to the predictions from the base classi�ers. freq

predicts the most frequent correct class with respect to a combination of predictions

161

Table 10.1: Summary of prediction accuracy (%) for secondary structures (SS)

(Part 1).

Base learners: ID3, CART & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 56.3+ 55.8+ 55.7+ 55.1

class-attribute-combiner 60.3+ 55.4 48.7 48.5

binary-class-combiner 55.6+ 56.6+ 56.6+ 52.7

class-window-combiner 56.9+ 54.5 49.9 50.6

di�erent-arbiter 60.7+ 56.4+ 56.1+ 53.3

di�erent-incorrect-arbiter 59.8+ 56.4+ 53.9 52.4

di�erent-class-attribute-hybrid 60.5+ 56.5+ 55.7+ 54.4

di�erent-incorrect-class-attribute-hybrid 59.1+ 56.4+ 54.1 53.1

vote 56.3+

freq 56.5+

vote-b 57.1+

Base learners: BAYES, ID3 & CART

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 61.4 62.1 62.1 57.3

class-attribute-combiner 62.1 61.0 51.0 50.4

binary-class-combiner 61.1 61.9 61.7 54.4

class-window-combiner 60.7 60.1 52.5 53.3

di�erent-arbiter 62.2+* 57.2 57.6 57.6

di�erent-incorrect-arbiter 60.8 58.3 57.7 56.6

di�erent-class-attribute-hybrid 62.1 61.5 58.9 58.5

di�erent-incorrect-class-attribute-hybrid 60.4 58.6 58.0 56.7

vote 60.6

freq 62.1

vote-b 60.9

Keys:

* better than the best single strategy

+ better than the best base classi�er

162

Table 10.2: Summary of prediction accuracy (%) for secondary structures (SS)

(Part 2).

Base learners: BAYES, ID3 & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 60.4 62.1 62.1 55.9

class-attribute-combiner 61.9 60.6 51.0 52.6

binary-class-combiner 60.5 61.8 61.8 55.2

class-window-combiner 59.9 59.5 51.4 52.9

di�erent-arbiter 62.0 57.4 57.3 55.7

di�erent-incorrect-arbiter 60.8 59.0 56.6 54.4

di�erent-class-attribute-hybrid 61.6 60.7 57.9 56.8

di�erent-incorrect-class-attribute-hybrid 60.8 59.3 56.1 54.6

vote 59.3

freq 62.2+*

vote-b 59.3

Base learners: BAYES, CART & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 60.7 62.1 61.8 56.8

class-attribute-combiner 61.4 60.5 50.4 50.9

binary-class-combiner 60.5 61.7 61.3 52.6

class-window-combiner 59.7 57.9 52.6 54.2

di�erent-arbiter 62.0 58.1 57.4 54.6

di�erent-incorrect-arbiter 61.4 58.6 56.8 52.0

di�erent-class-attribute-hybrid 61.1 60.3 58.0 56.1

di�erent-incorrect-class-attribute-hybrid 59.4 59.1 59.1 59.2

vote 59.6

freq 60.7

vote-b 60.9

in the training set

1

. That is, for a given combination of predictions (m

c

combinations

for m classes and c classi�ers), freq predicts the most frequent correct class in the

training data. vote-b is a simple voting scheme applied to the predictions from the

binary base classi�ers.

We note that we did not repeat the experiments over many di�erent training and

1

freq was suggested by Wolpert (1993).

163

Table 10.3: Summary of prediction accuracy (%) for splice junctions (SJ) (Part 1).

Base learners: ID3, CART & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 95.1+ 94.8 94.8 72.7

class-attribute-combiner 96.6+* 95.0+ 95.9+ 95.5+

binary-class-combiner 95.1+ 94.4 94.4 74.1

di�erent-arbiter 96.4+ 94.7 95.5+ 95.3+

di�erent-incorrect-arbiter 96.6+* 95.8+ 95.8+ 95.5+

di�erent-class-attribute-hybrid 96.1+ 94.5 94.8 95.3+

di�erent-incorrect-class-attribute-hybrid 95.9+ 94.2 95.0+ 95.0+

vote 95.0+

freq 95.0+

vote-b 95.1+

Base learners: BAYES, ID3 & CART

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 95.6 96.6+* 95.3 74.3

class-attribute-combiner 97.2+* 96.4 95.0 96.9+*

binary-class-combiner 95.8 96.2 96.2 75.2

di�erent-arbiter 96.9+* 95.3 95.6 95.9

di�erent-incorrect-arbiter 96.9+* 95.5 95.9 96.2

di�erent-class-attribute-hybrid 95.8 94.5 95.1 95.9

di�erent-incorrect-class-attribute-hybrid 95.3 94.2 94.8 95.5

vote 95.6+

freq 95.9+

vote-b 95.6

Keys:

* better than the best single strategy

+ better than the best base classi�er

test sets so our results presented here may or may not be due to statistical variation.

10.1.2 Results

There are two ways to analyze the results. First, we look at whether the employ-

ment of a meta-learner improves accuracy with respect to the underlying three base

164

Table 10.4: Summary of prediction accuracy (%) for splice junctions (SJ) (Part 2).

Base learners: BAYES, ID3 & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 97.2+* 96.9+* 96.9+* 73.7

class-attribute-combiner 97.6+* 96.9+* 95.9 96.1

binary-class-combiner 96.6+* 96.1 96.1 75.6

di�erent-arbiter 96.2 95.6 95.8 96.1

di�erent-incorrect-arbiter 96.1 95.3 96.6+* 95.6

di�erent-class-attribute-hybrid 95.6 94.4 94.5 95.0

di�erent-incorrect-class-attribute-hybrid 95.1 94.4 94.2 95.0

vote 97.0+*

freq 97.0+*

vote-b 96.1

Base learners: BAYES, CART & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 97.0+* 96.6+* 95.3 73.7

class-attribute-combiner 97.2+* 96.4 95.3 96.2

binary-class-combiner 96.1 96.2 96.2 76.2

di�erent-arbiter 96.7+* 95.0 96.2 96.2

di�erent-incorrect-arbiter 96.6+* 95.0 95.8 96.2

di�erent-class-attribute-hybrid 94.8 94.2 94.7 94.5

di�erent-incorrect-class-attribute-hybrid 94.7 94.2 94.5 94.8

vote 97.0+*

freq 96.9+*

vote-b 96.2

Table 10.5: Prediction accuracy (%) of single-strategy classi�ers

Data Set/Algorithm BAYES ID3 CART WPEBLS

Secondary Structure (SS) 62.1 55.4 50.8 48.1

Splice Junction (SJ) 96.4 93.9 94.8 94.4

165

classi�ers. (The presence of an improvement is denoted by a `+' in the tables.) For

both sets of data, improvements were always achieved when BAYES was used as the

meta-learner and the other three learning algorithms we used as the base learners,

regardless of the meta-learning strategies.

Now let us consider various combinations of meta-learner and strategies with any

of base learning algorithms. For the SJ data, a higher or equal accuracy was con-

sistently attained when BAYES was the meta-learner in the class-attribute-combiner

strategy. Similarly, higher accuracy was attained when ID3 served as the meta-learner

in the class-combiner and class-attribute-combiner strategies, regardless of the base

learners used. Improvements were also observed in the vote and freq strategies. For

the SS data, none of the various combinations of meta-learners and strategies attained

a consistent improvement in overall accuracy.

Next, we consider whether the use of meta-learning achieves higher accuracy than

the most accurate single-strategy learner (BAYES). (The presence of an improvement

is denoted by a `*' in the tables.) For the SJ data, an improvement was consistently

achieved when BAYES served as the meta-learner in the class-attribute-combiner

strategy, regardless of the base learners used. In fact, when the base learners were

BAYES, ID3, and CART, the overall accuracy was the highest obtained. For the SS

data, almost all the results did not outperform BAYES as a single-strategy learner.

In general, the combiner strategies performed more e�ectively than the arbiter and

hybrid strategies. To our surprise, the hybrid schemes did not improve the arbiter

strategies. In addition, Zhang's (1992) class-window-combiner strategy for the SS

data did not improve accuracy with the base and meta-learners used here. His study

employed a neural net algorithm and di�erent Bayesian and nearest-neighbor learners

than those reported here.

The two data sets chosen represent two di�erent kinds of data sets: one is di�cult

to learn (SS) (50+% accuracy) and the other is easy to learn (SJ) (90+% accuracy).

Our experiments indicate that some of our meta-learning strategies improve accuracy

166

in the SJ data and are more e�ective than the non-meta-learning strategies. However,

in the SS data, both meta-learning and non-meta-learning strategies are comparable.

This can be attributed to the quality of predictions from the base classi�ers for the

two data sets. Consider the statistics we gathered from the predictions for the test set

from classi�ers trained by BAYES, ID3, andWPEBLS (other combinations of learners

have similar statistics). In the SJ data set, on 89% of the instances all predictions

from the three learned classi�ers were correct, on 7% two predictions were correct,

on 2% only one, and on 1% none (all incorrect). In the SS data set, on 29% of the

instances all three predictions were correct, on 33% only two, on 18% only one, and on

20% none. The high percentage of having one or none correct out of three predictions

in the SS data set might greatly hinder the ability of meta-learning to work. One

possible solution is to increase the number of base classi�ers to lower the percentage

of having one or none correct predictions.

10.1.3 Discussion

Unlike Wolpert (1992) and Zhang et al.'s (1992) reports, we present results from

all the combinations of presented strategies, base learners, and meta-learners. We

have shown that improvements can be achieved consistently with a combination of a

meta-learner and collection of base learners across various strategies in both data sets.

Similarly, better results were achieved for various combinations of di�erent strategies

and meta-learners across all base learners in the SJ data set. Improvements on the

already high accuracy obtained from the base learners in the SJ data set re
ects the

viability of the meta-learning approach.

As mentioned in the previous section, the combiner schemes generally performed

more e�ectively than the arbiter or hybrid schemes. This suggests that combining the

results is more bene�cial than arbitrating among them. In addition, the training set

for the combiner strategy includes examples derived from the entire original training

set, whereas the one for the arbiter or hybrid strategy includes only examples chosen

167

by a selection rule from the original set. That is, the training set for the arbiter or

hybrid strategy is usually smaller than the one for the combiner strategy and hence

contains less information. (This crucial fact may not be exhibited in larger learning

tasks with massive amounts of data.)

Among the combiner schemes, the class-attribute-combiner scheme generally per-

formed more e�ectively than the others. This might be due to the additional informa-

tion (attribute vectors) present in the training examples, suggesting that information

from the predictions alone is not su�cient to achieve higher prediction accuracy.

To our surprise, the binary-class-combiner scheme did not perform more e�ectively

than the class-combiner scheme. We postulate that more specialized binary classi�ers

would provide more precise information for the meta-learner. However, that was not

the case in our experiments.

We also postulate that a probabilistic learner like BAYES would be a more e�ective

meta-learner due to the relatively low regularity in the training data for meta-learners

and its probabilistic means of combining evidence. Our empirical results indeed show

that BAYES is a more e�ective meta-learner.

10.2 Multistrategy Meta-learning on Partitioned

Data

Here we use meta-learning to combine di�erent learners to improve prediction

accuracy and speed (Chan & Stolfo, 1993c). The dual objectives are to improve ac-

curacy using multiple algorithms and to speed up the learning process by parallel and

distributed processing in a divide-and-conquer fashion. Multiple learning algorithms

are used on di�erent subsets of the data and meta-learning is applied to the base-

classi�ers generated from the di�erent subsets. That is, instead of utilizing the same

learning algorithm to train the base classi�ers (as in previous chapters), di�erent

algorithms are employed. Figure 10.2 illustrates this approach.

168

Meta-Learning

C1 C2 C3 Cn

T1 T2 T3 Tn

Training

Data

L1 L2 L3 Ln

...

Figure 10.2: Multistrategy meta-learning on partitioned data.

10.2.1 Issues

Load balancing is essential in minimizing the overall training time due to the vari-

ance in completion times of di�erent algorithms. However, we have to determine how

to allocate the data subsets as well as the processors. One approach is to evenly dis-

tribute the data among the learners and allocate processors according to their relative

speeds. Another approach is that each learner has the same number of processors

and data are distributed accordingly. That is, we have to decide whether we allocate

a uniform number of processors or a uniform amount of data to each learner. Since

the amount of data a�ects the quality of the learned concepts, it is more desirable to

evenly distribute the data so that the learners are not biased at this stage. That is,

slower learners should not be penalized with less information and thus they should

be allocated more processors.

169

This raises the question of whether data should be distributed at all; that is, should

each learner have all the data (as discussed in the previous section)? Obviously, if

each learning algorithm has the entire set of data, it would be slower than when it

has only a subset of the data. It is also clear that the more data each learner has,

the more accurate the generated concepts will be. Thus, there is a tradeo� between

speed and quality. But in problems with very large databases, we may have no choice

but to distribute subsets of the data.

Another question is what the data distribution is for the data subsets. The subsets

can be disjoint or overlapped according to some scheme. We prefer disjoint subsets

because it allows the maximum degree of parallelism. The classes represented in the

subsets can be distributed randomly, uniformly, or according to some scheme. Since

maintaining the same class distribution in each subset as in the entire set does not

create the potential problem of missing classes in certain subsets, it is our preferred

distribution scheme.

10.2.2 Experiments

Our approach was empirically evaluated with four inductive learning algorithms

(ID3, CART, WPEBLS and BAYES) and two data sets (splice junctions and sec-

ondary structures).

The base-learners are �rst trained on the data subsets and the whole training set

is then classi�ed by the learned base-classi�ers. Since the base-learners are trained on

only part of the whole training set, classifying the rest of the set mimics the behavior

of the learned classi�ers when unseen instances are classi�ed. That is, the meta-

learner is partially trained on predictions of unseen instances in the training set. The

base-classi�ers' predictions on the training set are used in constructing the training

set for the meta-learner.

We performed experiments on the di�erent schemes for the combiner, arbiter, and

170

Table 10.6: Summary of prediction accuracy (%) for the secondary structure data

(Part 1).

Base learners: ID3, CART & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 53.1 51.8 51.8 53.8

class-attribute-combiner 58.0+ 50.8 48.5 49.1

binary-class-combiner 52.8 52.4 52.2 52.2

di�erent-arbiter 55.2+ 54.4+ 54.1+ 54.3+

di�erent-incorrect-arbiter 55.2+ 53.7 54.5+ 54.1+

di�erent-class-attribute-hybrid 55.5+ 54.9+ 54.4+ 54.3+

di�erent-incorrect-class-attribute-hybrid 55.0 54.1+ 54.1+ 54.0+

class-window-combiner 56.5+ 54.7+ 51.8 53.4

vote 54.7+

freq 51.9

Base learners: BAYES, ID3 & CART

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 57.9 53.8 54.5 54.9

class-attribute-combiner 58.8 54.5 50.9 52.2

binary-class-combiner 57.9 57.4 57.2 54.8

di�erent-arbiter 59.5 58.8 58.5 58.1

di�erent-incorrect-arbiter 59.0 58.6 58.5 58.4

di�erent-class-attribute-hybrid 59.1 58.8 58.6 58.6

di�erent-incorrect-class-attribute-hybrid 58.9 58.8 58.6 58.9

class-window-combiner 58.0 55.8 53.0 53.6

vote 58.5

freq 57.1

Keys:

+ better than the 3 base classi�ers (subsets)

* better than all 4 classi�ers (subsets)

hybrid strategies. Di�erent combinations of three base and one meta-learner were

explored on the two data sets and the results are presented in Tables 10.6 through

10.9. Each table has two subtables and each subtable presents results from a di�erent

combination of base learners. The �rst column of a subtable denotes the di�erent

schemes and the next four columns denote the four di�erent meta-learners. Results

171

Table 10.7: Summary of prediction accuracy (%) for the secondary structure data

(Part 2).

Base learners: BAYES, ID3 & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 54.7 53.8 53.4 56.5

class-attribute-combiner 59.7 53.0 49.0 50.3

binary-class-combiner 57.4 54.8 54.9 54.4

di�erent-arbiter 58.0 57.6 57.2 57.5

di�erent-incorrect-arbiter 57.9 57.4 57.5 57.4

di�erent-class-attribute-hybrid 57.8 57.8 57.6 57.7

di�erent-incorrect-class-attribute-hybrid 58.0 57.8 57.6 57.5

class-window-combiner 59.4 56.8 53.6 53.4

vote 57.8

freq 54.0

Base learners: BAYES, CART & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 55.7 54.0 53.1 54.9

class-attribute-combiner 59.3 53.0 49.7 49.8

binary-class-combiner 55.3 52.4 53.9 54.3

di�erent-arbiter 57.2 56.8 56.8 56.6

di�erent-incorrect-arbiter 57.0 56.5 56.6 56.3

di�erent-class-attribute-hybrid 57.3 56.9 56.8 56.7

di�erent-incorrect-class-attribute-hybrid 57.0 56.4 56.4 56.5

class-window-combiner 59.2 55.3 53.4 55.2

vote 57.2

freq 54.0

for the two data sets with single-strategy classi�ers are displayed in Table 10.10. In

addition, we experimented with a windowing scheme used in Zhang et al.'s (1992)

work, which is speci�c to the SS data. This scheme is similar to the class-combiner

scheme. However, in addition to the three predictions present in one training example

for the meta-learner, the guesses on either side of the three predictions in the sequence

(windows) are also present in the example. We denote this scheme as class-window-

combiner in the tables.

172

Table 10.8: Summary of prediction accuracy (%) for the splice junction data (Part

1).

Base learners: ID3, CART & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 95.1+ 95.0+ 95.0+ 71.5

class-attribute-combiner 96.2+* 94.8+ 94.8+ 95.0+

binary-class-combiner 95.8+* 96.1+* 95.6+ 75.5

di�erent-arbiter 95.1+ 95.0+ 95.1+ 95.1+

di�erent-incorrect-arbiter 95.1+ 95.1+ 95.1+ 95.1+

di�erent-class-attribute-hybrid 95.1+ 95.0+ 95.1+ 95.1+

di�erent-incorrect-class-attribute-hybrid 95.1+ 95.1+ 95.1+ 95.1+

vote 95.1+*

freq 95.6+*

Base learners: BAYES, ID3 & CART

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 94.5 95.9+* 95.5 73.7

class-attribute-combiner 96.7+*! 96.1+* 95.5 95.1

binary-class-combiner 95.5 95.6 95.0 76.0

di�erent-arbiter 95.0 95.0 95.0 95.0

di�erent-incorrect-arbiter 95.0 94.5 94.5 95.0

di�erent-class-attribute-hybrid 95.0 95.0 95.0 94.8

di�erent-incorrect-class-attribute-hybrid 95.0 94.8 94.8 94.8

vote 95.0

freq 95.8+*

Keys:

+ better than the 3 base classi�ers (subsets)

* better than all 4 classi�ers (subsets)

! better than all 4 classi�ers (full set)

Furthermore, two non-meta-learning approaches were applied for comparison. vote

is a simple voting scheme applied to the predictions from the base classi�ers. freq

predicts the most frequent correct class with respect to a combination of predictions

in the training set

2

. That is, for a given combination of predictions (m

c

combinations

2

freq was suggested by Wolpert (1993).

173

Table 10.9: Summary of prediction accuracy (%) for the splice junction data (Part

2).

Base learners: BAYES, ID3 & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 95.8+* 95.5 95.1 72.7

class-attribute-combiner 97.0+*! 95.5 95.1 95.6

binary-class-combiner 96.2+* 95.1 95.0 76.5

di�erent-arbiter 95.9+* 95.9+* 95.9+* 95.5

di�erent-incorrect-arbiter 95.9+* 95.9+* 95.9+* 95.9+*

di�erent-class-attribute-hybrid 95.9+* 95.9+* 95.9+* 95.5+*

di�erent-incorrect-class-attribute-hybrid 95.9+* 95.8+* 95.8+* 95.8+*

vote 95.9+*

freq 95.3

Base learners: BAYES, CART & WPEBLS

Meta-learner

Scheme BAYES ID3 CART WPEBLS

class-combiner 96.7+*! 95.9+* 96.1+* 72.4

class-attribute-combiner 97.2+*! 95.9+* 95.9+* 95.8+*

binary-class-combiner 95.9+* 94.8 95.6 93.6

di�erent-arbiter 96.9+*! 96.9+*! 96.9+*! 96.7+*!

di�erent-incorrect-arbiter 96.9+*! 96.9+*! 96.6+*! 96.7+*!

di�erent-class-attribute-hybrid 96.9+*! 96.9+*! 96.9+*! 96.7+*!

di�erent-incorrect-class-attribute-hybrid 96.9+*! 96.7+*! 96.7+*! 96.7+*!

vote 96.9+*!

freq 96.7+*!

Table 10.10: Single-strategy Prediction Accuracy (%)

Data set/Algorithm BAYES ID3 CART WPEBLS

Secondary Structure (SS) (full set) 62.1 55.4 50.8 48.1

Average of 3 subsets 60.2 53.9 49.5 47.2

Splice Junction (SJ) (full set) 96.4 93.9 94.8 94.4

Average of 3 subsets 95.7 88.9 94.1 93.4

174

for m classes and c classi�ers), freq predicts the most frequent correct class in the

training data.

We note that we did not repeat the experiments over many di�erent training and

test sets so our results presented here may or may not be due to statistical variation.

10.2.3 Results

There are three ways to analyze the results. First, we consider whether the em-

ployment of a meta-learner improves accuracy with respect to the underlying three

base classi�ers learned on a subset. (The presence of an improvement is denoted by

a `+' in the tables.) For the SJ data, improvements were almost always achieved

when the combinations of base learners are ID3-CART-WPEBLS (an improvement

from 94.1% up to 96.2%) and BAYES-CART-WPEBLS (from 95.7% up to 97.2%),

regardless of the meta-learners and strategies. For the SS data, when the combination

of base-learners is ID3-CART-WPEBLS, more than half of the meta-learner/strategy

combinations achieved higher accuracy than any of the base learners (an improvement

from 53.9% up to 58.0%).

Second, we examine whether the use of meta-learning achieves higher accuracy

than the most accurate classi�er learned from a subset (BAYES in this case). (The

presence of an improvement is denoted by a `*' in the tables.) For the SJ data, the

class-attribute-combiner strategy with BAYES as the meta-learner always attained

higher accuracy (an improvement from 95.7% up to 97.2%), regardless of the base

learners and strategies. For the SS data, all the results did not outperform BAYES

as a single base learner.

Third, we study whether the use of meta-learning achieves higher accuracy than

the most accurate classi�er learned from the full training set (BAYES in this case).

(The presence of an improvement is denoted by a `!' in the tables.) For the SJ data,

class-attribute-combiner strategy with BAYES as the meta-learner almost always at-

175

tained higher accuracy (from 96.4% up to 97.2%), regardless of the base learners and

strategies. For the SS data, all the results did not outperform BAYES.

In general, class-attribute-combiner is the more e�ective scheme and BAYES is the

more successful meta-learner. Therefore, it reinforces our conjecture that combining

results are more e�ective than arbitrating among them and predictions alone may

not be enough for meta-learning. Compared to the results obtained and described in

the previous section, smaller improvements were observed here. This is mainly due

to the smaller amount of information presented to the base learners. Surprisingly,

the hybrid schemes did not improve the arbiter strategies. Also, Zhang's (1992)

class-window-combiner strategy for the SS data did not improve accuracy with the

base and meta-learners used here. He uses a neural net, and di�erent Bayesian and

exemplar-based learners.

As mentioned in the previous section, the combiner schemes generally performed

more e�ectively than the arbiter or hybrid schemes. This suggests that combining

the base predictions is more bene�cial than arbitrating among them. In addition,

the training set for the combiner strategy includes examples derived from the entire

original training set, whereas the one for the arbiter or hybrid strategy includes only

examples chosen by a selection rule from the original set. That is, the training set

for the arbiter or hybrid strategy is usually smaller than the one for the combiner

strategy and hence contains less information. (This lack of information may not be

exhibited in larger learning tasks with massive amounts of data.)

Among the combiner schemes, the class-attribute-combiner scheme performed

more e�ectively than the others. This might be due to the additional information

(attribute vectors) present in the training examples, suggesting that information from

the predictions alone is not su�cient to achieve higher prediction accuracy. To our

surprise, the binary-class-combiner scheme did not perform more e�ectively than the

class-combiner scheme. We postulated that more specialized binary classi�ers would

provide more precise information for the meta-learner. However, this was not exhib-

176

ited in our experimental results.

We also postulated that a probabilistic learner like BAYES would be a more

e�ective meta-learner due to the relatively low regularity in the training data for

meta-learners. Our empirical results indeed show that BAYES is a more e�ective

meta-learner.

10.3 Comparing Multistrategy Combiner with

Stacked Generalization

Wolpert's (1992) stacked generalization is very similar to our combiner strategy

(the class-combiner scheme in particular) with multiple learning algorithms for train-

ing base-classi�ers. The di�erence is how the meta-level (level-1 in Wolpert's terms)

training set is generated. In both methods cross-validation partitioning is used to

generate the meta-level training set.

k-fold cross-validation partitioning involves making k pairs of training and test

sets. To generate the k pairs, the original training set T is �rst partitioned into k

subsets: T

1

, T

2

, ..., T

k

. Then each of these subsets becomes a test set of a pair and

the union of the remaining subsets becomes the training set of the pair. For example,

when T

2

is the test set of a pair, the union of T

1

, T

3

, T

4

, ..., T

k

forms the training set

of the pair. A classi�er is learned from the training set of each pair and is applied

to the test set of the pair. That is, from k pairs of training and test sets, k sets

of predictions are obtained. Note that in each pair, the training and test sets are

disjoint. That is, the predictions from each pair are made on \unseen" data that are

not involved in training.

The predictions from the k pairs provides an approximation of how predictions are

made on unseen data by a classi�er learned from the whole original training set. In

both our combiner strategy and stacked generalization, these predictions constitute

177

part of the meta-level training set.

Our combiner strategy uses 2-fold cross-validation partitioning, whereas stacked

generalization uses n-fold, where n is the number of training examples. That is,

combiner uses two pairs of training and test sets to generate the meta-level training

set, whereas stacked generalization uses n pairs. When k is n, the test set in each

pair has only one example and the training set has n � 1 examples. Intuitively,

n-fold cross-validation partitioning provides a closer approximation, and hence more

accurate meta-level training data, than 2�fold. However, n-fold is clearly much more

computationally expensive than 2-fold. The tradeo�s are further discussed through

the following experimental results (Fan et al., 1996).

10.3.1 Experiments

Three inductive learning algorithms (ID3, CART, and BAYES) and two molec-

ular biology sequence analysis data sets (secondary structures and splice junctions)

were used in our experiments. Results for combiner and stacked generalization were

obtained from 5-fold cross validation runs. Di�erent combinations of three base and

one meta-learner were applied to the two data sets and the results are shown in the

Table 10.11. Table 10.12 shows the prediction accuracy of individual algorithms for

the two data sets.

10.3.2 Results

There are several ways to look at the results. First, we see if the employment of

both combiner and stacked generalization improves prediction accuracy with respect

to the underlying three base classi�ers. As shown in Table 10.12, the accuracy of

single-strategy classi�ers (ID3 and CART) on secondary structures is around 57%.

The accuracy of both combiner and stacked generalization is about 61%. That is an

improvement of 4% or 173 (out of 4325) more examples correctly classi�ed. In the

178

Table 10.11: Prediction accuracy of combiner and stack generalization for secondary

structure and splice junction data

Results from secondary structures

Base learners: ID3, CART & BAYES

Meta-learner in Stacked Generalization Meta-learner in Combiner

accuracy in percentage(%)

Fold ID3(%) CART(%) BAYES(%) ID3(%) CART(%) BAYES(%)

1 59.6 60.0 61.4 60.0 60.0 61.1

2 62.3 59.7 61.3 62.6 62.6 61.5

3 62.7 62.7 62.5 62.8 62.7 62.1

4 60.3 60.3 60.0 60.7 60.8 60.8

5 59.7 60.1 59.2 60.9 60.9 60.7

� 60.9 60.6 60.9 61.4 61.4 61.2

� 1.5 1.2 1.3 1.2 1.2 0.6

Results from splice junctions

Base learners: ID3, CART & BAYES

Meta-learner in Stacked Generalization Meta-learner in Combiner

accuracy in percentage (%)

Fold ID3(%) CART(%) BAYES(%) ID3(%) CART(%) BAYES(%)

1 95.6 95.8 94.8 95.0 95.1 94.8

2 96.1 96.4 95.8 96.4 96.9 95.6

3 95.5 95.5 96.2 95.8 95.8 96.4

4 96.7 96.2 96.2 96.6 96.2 96.1

5 95.0 95.6 93.9 95.1 95.6 93.9

� 95.8 95.9 95.4 95.8 95.9 95.4

� 0.7 0.4 1.0 0.7 0.7 1.0

splice junction data set (also shown in Table 10.12), the improvement of combiner and

stacked generalization (with average accuracy of around 95.5%) over single classi�ers

(ID3 and CART, average accuracy is around 92%) is 3.5%. These improvements are

signi�cant (more than one standard deviation). We also notice that in both the SS

and SJ data sets, the best single-strategy classi�er is BAYES. The accuracy of both

combiner and stacked generalization is close to that of BAYES. For the two particular

data sets under study and the particular combination of learning algorithms, we could

pick BAYES instead of using combiner or stacked generalization. However, if we do

not know apriori which learning algorithm generates the most accurate classi�er,

179

Table 10.12: Prediction accuracy single-strategy classi�ers on secondary structures

and splice junction data

Single Classi�er Accuracy on SS

Learner

Fold ID3(%) CART(%) BAYES(%)

1 56.1 57.6 60.0

2 52.9 57.1 62.5

3 54.1 57.2 62.7

4 52.2 57.1 60.8

5 56.6 56.9 61.4

� 56.4 57.2 61.5

� 1.9 0.3 1.2

Single Classi�er Accuracy on SJ

Learner

Fold ID3(%) CART(%) BAYES(%)

1 90.1 93.4 95.1

2 91.2 84.8 96.9

3 90.4 94.0 95.3

4 89.7 94.5 95.3

5 88.4 93.9 94.5

� 90.0 94.1 95.4

� 1.0 0.6 0.9

combiner and stack generalization has demonstrated that they can achieve at least

the same level of accuracy as the most accurate underlying learning algorithm.

Second, we see which of combiner and stacked generalization has a higher accu-

racy improvement. The two methods are comparable, but combiner performs a little

better. For the secondary structure data set, combiner has an average of 0.5% higher

accuracy than stacked generalization 1% standard deviation, so their accuracy are

essentially the same. For the splice junction data set, their accuracy levels are nearly

the same.

Third, we examine the correlation between these two methods. We have applied

a simple approach to determine the number of examples that:

� they both correctly label,

180

Table 10.13: Summary of correlation analysis between combiner and stacked gener-

alization.

Results on SS

Meta-learner: ID3 Meta-learner: CART

Fold SC CI IC SI DI Fold SC CI IC SI DI

1 2560 17 35 1699 14 1 2595 0 0 1730 0

2 2677 18 30 1594 6 2 2397 185 308 1325 110

3 2619 94 95 1493 24 3 2713 0 0 1612 0

4 2310 298 314 1280 123 4 2533 77 97 1579 39

5 2376 205 256 1395 93 5 2460 141 172 1486 66

Meta-learner: BAYES

Fold SC CI IC SI DI

1 2402 252 241 1336 94

2 2452 201 206 1394 72

3 2407 295 278 1253 92

4 2309 288 321 1270 137

5 2277 283 349 1272 144

Results on SJ

Meta-learner: ID3 Meta-learner: CART

Fold SC CI IC SI DI Fold SC CI IC SI DI

1 604 6 2 24 2 1 604 7 3 24 0

2 610 3 5 20 0 2 611 4 7 16 0

3 605 4 6 22 1 3 605 4 6 23 0

4 610 7 6 15 0 4 612 2 2 22 0

5 595 11 12 20 0 5 609 1 1 27 0

Meta-learner: BAYES

Fold SC CI IC SI DI

1 605 0 0 33 0

2 610 1 0 27 0

3 614 0 1 22 1

4 613 1 0 24 0

5 599 0 0 39 0

Notes:

� SC: Same Correct, or both of stacked generalization and combiner predict correctly.

CI: Correct/Incorrect, or stacked generalization correctly predicts but combiner incorrectly

labels

IC: Incorrect/Correct, or stacked generalization incorrectly labels, while combiner correctly

labels

SI: Same Incorrect, or stacked generalization and combiner make the same wrong labels

DI: Di�erent Incorrect, both are incorrect, but their answers are di�erent

� Results are shown in number of predictions on �ve test sets.

181

� one method can label correctly, but the other cannot,

� they both give the same wrong answer, and

� they both give wrong but di�erent answers.

Correlation analysis results are shown in Table 10.13. The results indicate that the

two methods are very close to each other. In most of the cases they either both give

the correct answer or both give the same wrong answer, indicating that they both

have e�ectively learned the same knowledge.

Fourth, we display the training cost of both methods in Table 10.14. As expected,

the di�erence in their training cost is huge. For the SS data set, while combiner

spent no more than 7 minutes to learn, stacked generalization spent about 9 days.

For the SJ data set, combiner took half a minute to learn, but stacked generalization

took nearly 6 hours and a half. There are orders of magnitude di�erence in e�ciency

performance for comparable accuracy gain.

Finally, we examine the meta-level (or level-1 in Wolpert's terms) training set.

Each meta-level training example is composed of the predictions generated by the

base classi�ers using the class-combiner scheme. The meta-level training set can be

divided into components, each of which originated from a base classi�er. That is, in

the meta-level training set, the predictions generated by a base classi�er constitutes

a component, which we call meta-component training data. In our case the meta-

level training set has predictions from base classi�ers generated by ID3, CART, and

BAYES. That is, we have three sets of meta-component training data.

The accuracy of meta-component training data is measured by comparing them

to the correct labels of the original training examples. The closer the accuracy of

meta-component training data is to the accuracy of a single-strategy classi�er, the

more accurate it approximates the behavior of the base classi�er. Intuitively, stacked

generalization produces a closer approximation than combiner. (Recall that, in gen-

erating the meta-component training data in stacked generalization, the prediction

182

Table 10.14: Training time (CPU seconds) for combiner and stacked generalization.

Results on SS

Combiner

Fold ID3 CART BAYES

1 336.9 340.4 336.8

2 340.7 344.4 340.7

3 346.1 349.6 346.3

4 340.3 344.5 340.3

5 351.0 354.7 351.1

� 343.0 346.7 343.0

Results for SJ

Stacked Generalization Combiner

Fold ID3 CART BAYES ID3 CART BAYES

1 23720.4 +0.50 -0.16 30.6 30.93 29.9

2 23865.7 +0.50 -0.16 29.8 30.3 30.0

3 23442.9 +0.50 -0.16 31.6 31.2 30.1

4 23784.3 +0.50 -0.16 30.5 30.2 30.0

5 23805.9 +0.50 -0.16 29.9 30.7 29.8

� 23723.8 23724.3 23723.7 30.5 30.7 30.0

Notes:

� The training cost of stacked generalization for the SS data set is huge, we did not have exclusive

use of the machines to measure it. The method we used to estimate its cost is to measure

the time used to generate 1000 meta-level training data. The estimate we give below is the

result made by multiplying the actual time for 1000 items by 17.3 (1,7300/1,000=17.3) plus

the time to learn the 3 base classi�ers and meta classi�er. Stacked generalization, therefore,

requires 771,760 seconds (nearly 9 days) for the SS data set.

� For the SJ data set, we could not measure the training cost for stacked generalization for

di�erent meta-learner(ID3, CART and BAYES) from start, that would require a lot of com-

puter resources. We accurately measured the time cost of stacked generalization using ID3 as

the meta-learner from start, estimated the case for CART as the meta-learner by adjusting

the di�erence ID3 versus CART to learn the meta-classi�er. The di�erence was that it took

0.50 seconds more for CART to learn the meta-level training data than ID3. Using the same

method, we estimated the training cost of having BAYES as the meta-learner.

� Also, only CPU time of learning is measured.

183

Table 10.15: Summary of accuracy of meta component data for Secondary Structure

and Splice Junction(%)

Results on SS

Base learner in Stacked Generalization Base learner in Combiner

Fold ID3(%) CART(%) BAYES(%) ID3(%) CART(%) BAYES(%)

1 54.0 56.9 62.6 49.3 55.3 61.4

2 55.3 56.8 62.3 49.8 55.5 60.2

3 53.7 57.5 61.9 50.0 56.7 60.2

4 55.9 57.5 62.2 52.4 55.5 61.2

5 57.3 57.3 62.2 53.2 55.5 61.0

� 55.2 57.9 62.2 50.9 55.7 60.8

� 1.5 0.5 0.3 1.74 0.6 0.6

Results on SJ

Base learner in Stacked Generalization Base learner in Combiner

Fold ID3(%) CART(%) BAYES(%) ID3(%) CART(%) BAYES(%)

1 90.3 94.2 95.5 88.6 94.4 95.2

2 90.8 94.3 95.2 86.2 91.3 94.4

3 91.5 94.3 95.7 87.5 93.5 94.8

4 90.8 94.1 95.4 88.4 94.1 95.7

5 91.7 94.4 95.8 88.7 94.4 95.4

� 91.0 94.3 95.5 87.9 93.5 95.1

� 0.6 0.1 0.2 1.05 1.3 0.5

of an example is made by a classi�er trained from the remaining n� 1 examples.)

By comparing Table 10.15 with the single-strategy classi�ers' accuracy in Ta-

ble 10.12, we can see that the accuracy of the meta-component training data of

stacked generalization is closer to the accuracy of a single-strategy classi�er than that

of combiner, which means it closely mimics the behavior of single-strategy classi�ers.

The accuracy of the stacked generalization's meta-component training data and the

accuracy of single-strategy classi�er di�ers by no more than 1%, but the accuracy

of the combiner's meta-component training data and the accuracy of single classi�er

di�ers by as much as 5%. However, this seems not to boost the accuracy obtained

from stacked generalization more than the accuracy obtained from combiner. That

is, closer approximation did not seem to produce more accurate meta-classi�ers. This

is an interesting �nding.

184

10.3.3 Discussion

It may be intuitive to guess that the accuracy boost of stacked generalization will

be more than that of combiner. However, the empirical results we obtained do not

support this intuition. There may be three possible explanations for this, all requiring

further study:

1. One argument is that the correlation of meta-component training data actually

decides the overall accuracy boost. The accuracy of meta-component training

data that re
ect the behavior of the base classi�ers may not be the decisive

factor. We performed correlation analysis at the meta-classi�er level.

2. Another explanation is that the complexity (or the di�culty to learn) of the

meta-level training data may also be important. The meta-level training data of

stacked generalization may actually re
ect the behavior of the base classi�ers,

but the relationship among the base classi�ers is very subtle and very di�cult

for the meta-learner to learn e�ectively, so the overall accuracy did not improve

as much as we would hope. Specialized learning algorithms may be developed

for the sole purpose of learning how to integrate classi�ers.

3. Con
icts in the meta data may contribute to the problem. As an example, look

at Figure 10.3. In the �rst example, there is a data element that ID3 labels 1,

CART labels 2, BAYES labels 0, but the actual answer is 1. In the second case,

ID3, CART and BAYES give the same predictions as in the �rst example, but

this time the true answer is 2. This means that the mapping from attribute

vector to label is not one to one. This would be very di�cult for any algorithm

to learn the correct answer; even a human may not be able to do it correctly.

This kind of example represents con
icts in the training data. Decision tree

algorithms, like ID3 and CART, can be very sensitive to con
icts. BAYES

is better equipped to handle con
icts because of its probabilistic nature. We

need to see how many con
icts there are in the meta-level training data of both

combiner and stacked generalization. One approach that can reduce (but may

185

Correct Class ID3 CART BAYES

1 1 2 0

2 1 2 0

Figure 10.3: Con
icts in meta-level training data

not eliminate) the number of con
icts is to introduce more base learners. This

method is not applicable if the number of base classi�ers cannot be increased.

However, the binary-class-combiner scheme in Section 3.4.1 can be used to gen-

erate multiple base classi�ers for each base learner. Another approach is to

include the attribute vector of each example in the meta-level training data

as described in the class-attribute-combiner scheme (Section 3.4.1). If all the

attribute vectors are unique, the meta-level training set will be free of con
icts.

Earlier we introduced the idea of k-fold meta-learning. Our results indicate that

the accuracy boost of k=2 (combiner) and k=n (stacked generalization) are similar.

So is k arbitrary or is there a k that will lead to signi�cant maximal accuracy gain?

How much is this gain? Do we pay for what we get? If the accuracy boost with

di�erent k is almost equivalent, k=2 or combiner is obviously the preferred choice{

accurate and cheap. Breiman (1996b) studied the e�ects of changing k to the accuracy

of stacking regression (real-value) estimators. He found that k = 10 achieves com-

parable accuracy as k = n. His results may or may not apply to classi�ers (discrete

estimators).

10.4 Summary

We also studied meta-learning with the use of multiple learning algorithms to

improve the overall predictive accuracy. Our empirical results indicate that mul-

tistrategy meta-learning produced slightly higher accuracy than the most accurate

underlying learning algorithm, but the improvement is not statistically signi�cant.

186

However, meta-learning is usually at least as accurate as the best base learning algo-

rithm. Often times, one does not know apriori which learning algorithm can generate

the most accurate classi�er without extensive experimentation. Multistrategy meta-

learning provides a mechanism to avoid the extra work and generates a meta-classi�er

that is at least as e�ective as the best classi�er.

From the comparison of multistrategy class-combiner and stacked generalization,

we discover that they achieved the same level of accuracy even though n-fold cross-

validation (CV) partitioning used in stacked generalization provides a closer base-

classi�ers' approximation than 2-fold CV partitioning used in combiner. However, the

cost of n-fold CV partitioning is much higher than 2-fold CV partitioning. Moreover,

correlation analysis indicates that both methods learned similar concepts. Hence,

combiner compares favorably to stack generalization.

187

Chapter 11

Conclusion

With the rapid advance in computer networking technology, more and more data will

be accessible with the touch of a few key stokes, mouse clicks, or even a few uttered

words, hand gestures, eye movements, or brain waves. Analyzing and gaining knowl-

edge from this massive collection of information is an important and increasingly

di�cult task. Algorithms are limited by their time/space complexity and computers

are limited by their hardware resources. Although processor speed and memory ca-

pacity increase at an amazing pace, data generated and gathered by more powerful

computers grow at an even faster pace. Consequently, for instance, on the world wide

web, information is so abundant that search engines were developed to help us locate

information we seek. Recently, \meta (super)" search engines, like MetaCrawler (Sel-

berg & Etzioni, 1996), are emerging that locate information by searching a number

of search engines.

In this thesis we attempt to address the problem of e�ciently and accurately

analyzing massive amounts of data using inductive learning algorithms. Our proposed

meta-learning approach and its diverse speci�c techniques have been systematically

evaluated and compared. In Section 11.1 we summarize our �ndings from this thesis

investigation. Possible future research directions are discussed in Section 11.2.

188

11.1 Results and Contributions

We proposed meta-learning as an uni�ed approach for integrating multiple learn-

ing processes or algorithms. This approach encompasses the use of learning algorithms

to learn how to integrate results from multiple learning systems e�ciently and ac-

curately. Meta-learning is intended to be scalable (by data reduction partitioning),

extensible (algorithm-independent), and portable (architecture-independent). That

is, our goal is to devise a general mechanism that can be used for the wide variety of

learning algorithms and computer architectures. This led us to focus our attention

on integrating predictions from classi�ers and coarse-grain parallelism. We demon-

strated that meta-learning can be used to improve speed and accuracy for a wide

range of inductive learning algorithms.

We identi�ed three meta-learning strategies: combiner, arbiter, and hybrid. The

combiner strategy tries to learn the relationship and correlations among the base

classi�ers. The arbiter strategy, however, attempts to learn from instances that are

confusing to the base classi�ers. The hybrid strategy seeks to synergistically integrate

the combiner and arbiter strategies. Speci�c schemes within these strategies were

developed and detailed, most notably the class-combiner, class-attribute-combiner,

and di�erent-arbiter schemes. A substantial number of experiments were performed

to systematically evaluate these schemes under diverse circumstances with di�erent

collections of constituent learning algorithms and tasks.

Our empirical results indicate that a simple classi�er learned from a sample ran-

domly selected from the original data set could not achieve the same level of accuracy

as the classi�er trained from the entire original data set (the global classi�er). That

is, to achieve the global classi�er's level of accuracy, we need more data than a small

random sample and integration of classi�ers learned for disjoint subsets could be

bene�cial. We systematically compared our meta-learning schemes with common

voting-based and Bayesian techniques in the literature and the results show that our

arbiter scheme outperformed the others. Although the integration techniques yielded

189

signi�cantly higher accuracy than a classi�er learned from a random subset, the global

classi�er's level of accuracy was not always achieved. To raise the e�ectiveness of our

approach, we partially replicated data across the subsets. Unexpectedly, improve-

ment was generally not observed. However, this result demonstrates that the subsets

can remain disjoint to allow the highest degree of parallelism.

Thus, a more sophisticated hierarchical approach was devised. Two strategies

were developed: arbiter tree and combiner tree. Di�erent classi�ers are learned in

a bottom-up tree fashion. Empirical results indicate that hierarchical meta-learning

could usually achieve the same level of accuracy as the global classi�er. No degra-

dation in accuracy was always achieved when the training sets at each level were

allowed to double in size. For some of the trees generated by the class-attribute-

combiner scheme, to our surprise, a signi�cantly higher accuracy was achieved. This

further demonstrates the viability of our hierarchical meta-learning approach.

We also investigated the di�erent aspects of arbiter trees. Results indicate that

lower-order trees were more e�ective and accurate than higher-order ones. This seems

mainly attributed to the increase in the number of opportunities in correcting the base

classi�ers since there are more levels in the lower order trees to �lter and compose

good training data. Proportional class partitioning in the base-level training sets

yielded more accurate trees than non-proportional partitioning. When the meta-

level training set size at each level of the tree was unbounded, accuracy could always

be maintained and only about 30% of the entire data set was needed at any time.

Proportional class partitioning reduced the percentage to around 10%. That is, a site

can process a larger learning task (about 10 times in the domain we studied) without

increasing memory resources. At the leaf level, pairing base classi�ers that disagree

the most could also reduce the percentage. Resolving disagreements at the leaf level,

rather than piling them higher in the tree, seems to be the contributing factor.

Data can be distributed across remote sites belonging to diverse organizations.

These organizations might be reluctant to share \raw data" due to proprietary or

190

con�dentiality reasons. However, they might be willing to share \black-box" models.

In our case, the black-boxes are encoded classi�ers, whose content is not revealed.

Meta-learning techniques were applied to improve a local classi�er by importing re-

mote black-box classi�ers. Our results show that meta-learning can signi�cantly

improve the accuracy of a local classi�er. We also studied the e�ects of data overlap

among sites. In many cases the degree of overlap did not a�ect the amount of accu-

racy improvement for the local classi�er. In other cases additional accuracy gain was

observed.

We de�ned four metrics (diversity, coverage, correlated error, and specialty) for

characterizing the base classi�ers and explored the e�ects of these characteristics

on the behavior of various integrating schemes. From our results, larger accuracy

improvement can be achieved by more diverse base classi�ers with higher coverage and

fewer correlated errors. For integrating schemes that recognize relationships among

the base classi�ers, more specialized base classi�ers can result in larger improvement

in accuracy. Analyses on the arbiter strategy show that when the base classi�ers are

less accurate, the arbiter needs to be built more carefully.

The theoretical time complexity of �ve learning algorithms were analyzed. WPE-

BLS and CN2 clearly exhibit superlinear complexity with respect to the number of

training examples. Although ID3, CART, and BAYES show linear complexity with

respect to training set size, practical time performance indicates non-linear behav-

ior. That is, all �ve algorithms exhibit non-linear time performance when very large

training sets are encountered. In fact, at a certain point, the learning algorithms

ran out of memory and terminated abnormally. Quadratic approximations estimate

that CN2 would take 3.5 months, and WPEBLS 6.4 months, to process one million

training examples if they were given su�cient memory resources.

Results from our parallel implementation of the hierarchical meta-learning schemes

show that CN2 (and probably WPEBLS) bene�ts greatly from our methods. Other

non-linear-time learning algorithms like genetic algorithms and neural networks can

191

also bene�t much from our methods. Parallel hierarchical meta-learning is more

advantages for ID3 and BAYES when their memory requirement for processing large

amounts of data is getting close to or exceeds the available resources on one processor.

We also studied meta-learning with the use of multiple learning algorithms to

improve the overall predictive accuracy. Our empirical results indicate that mul-

tistrategy meta-learning produced slightly higher accuracy than the most accurate

underlying learning algorithm, but the improvement is not statistically signi�cant.

However, meta-learning is usually at least as accurate as the best base learning algo-

rithm. Often times, one does not know a-priori which learning algorithm can generate

the most accurate classi�er without extensive experimentation. Multistrategy meta-

learning provides a mechanism to avoid the extra work and generates a meta-classi�er

that is at least as e�ective as the best classi�er.

From the comparison of multistrategy class-combiner and stacked generalization,

we discover that they achieved the same level of accuracy even though n-fold cross-

validation (CV) partitioning used in stacked generalization provides a closer base-

classi�ers' approximation than 2-fold CV partitioning used in combiner. However, the

cost of n-fold CV partitioning is much higher than 2-fold CV partitioning. Moreover,

correlation analysis indicates that both methods learned similar concepts. Hence,

combiner compares favorably to stack generalization.

11.2 Research Directions

Here we discuss some possible research directions based on this thesis work.

The hierarchical meta-learned tree structures are rather complicated and proba-

bly di�cult for human inspection. Simplifying the structures without signi�cantly

degrading the overall accuracy would be bene�cial. One idea is to measure the sim-

ilarity among base classi�ers and prune those that are closely related. The pruning

process can be performed in a hill-climbing manner, where related classi�ers are re-

192

moved one by one until the overall accuracy is signi�cantly reduced.

In this thesis the learning algorithms used for meta-learning are \o�-the-shelf"

algorithms and are the same as the base learning algorithms. More specialized meta-

level attributes and algorithms can be devised. Learning algorithms that search M-

of-N (Murphy & Pazzani, 1991) and other counting-related concepts might be useful

in locating e�ective combining rules. Constructive induction techniques (Matheus &

Rendell, 1989; Rendell, 1990) could also be bene�cial in creating potentially relevant

attributes. Moreover, learning algorithms that can incorporate weighted or proba-

bilistic predictions from the base classi�ers would produce more e�ective combining

rules.

More diverse learning algorithms (for instance, genetic algorithms and neural net-

works) and learning tasks can be enlisted for larger-scale empirical evaluation, which

will probably further increase the generality of our results obtained in this thesis.

Since we could not, regrettably, secure a massive \real-world" data set, an arti�cial

data generator was used to generate arbitrarily large data sets for our scaling exper-

iments. Demonstrating similar results on a massive non-arti�cial data set would be

an interesting addition.

To gain a deeper understanding of the reasons why meta-learning works, more

sophisticated analysis tools are needed. With our current analysis tools, it is not

clear when a particular meta-learning strategy performs better than another. Fur-

thermore, a theoretical foundation like the hypothesis boosting work by Schapire

(1990) would be a substantial contribution. We note that theoretical learning models

(PAC (Valiant, 1984) for example) represent a class of algorithms that might not be

close to the actual learning algorithms used in practice. However, work on bridging

theory and practice is emerging|Dietterich et al (1996) applied the weak learn-

ing framework, introduced by Schapire (1990), to understand C4.5 (Quinlan, 1993).

Moreover, recent statistical work on bias-variation decomposition, for example (Kong

& Dietterich, 1995), provides some insights on the source of errors for integrating

193

multiple learned models. Similar approaches can help explain the behavior of our

meta-learning strategies.

For meta-learning on partitioned data, most of the results were obtained from

using only a single learning algorithm. Employing multiple di�erent algorithms in-

creases the diversity of base classi�ers and might improve the overall accuracy.

In parallel meta-learning, a study on the tradeo� between classi�cation time (dur-

ing training) and communication time for exchanging classi�ers and meta-classi�ers

can be fruitful. We mentioned earlier that communicating the classi�ers among the

processors can make use of the idle processors for classi�cation while the active ones

are used for training. This method is advantageous if the communication time is

small compared to the classi�cation time. Because we are limited to 8 processors,

some of our results will probably improve when more processors are available|higher

degree of parallelism, higher order trees, larger data sets... Studies in a heterogeneous

computing environment would introduce interesting load balancing issues that are not

addressed in our current study in a homogeneous computing environment.

Learning algorithms and meta-learning techniques can be encapsulated in agents

that can be sent across information networks. Using the new network-based architecture-

independent language Java (Arnold & Gosling, 1996), learning and meta-learning

agents can roam around the internet with ease. Databases on the network can be

reached by these agents and the learned classi�ers can then be encapsulated in agents

to perform further analyses.

On a rather unrelated note, it is my belief that electronic computers might hit

a ceiling in terms of gaining intelligence. Modern computers are still very much

controlled by their creators and execute prescribed steps. Biochemical computers

might be the source of future \real" intelligent computing. Adleman (1994) success-

fully demonstrated a rudimentary molecular computer. A Directed Hamiltonian Path

problem was encoded in DNA sequences. Through biochemical interactions, solutions

to the problem were searched via trillions of molecules in a massively parallel manner.

194

The solutions were then extracted through DNA analyses. Soon afterwards, Lipton

(1995) showed how to use DNA to solve more general combinatorial problems. This

might be the dawn of a new computing era.

11.3 Final Remarks

Partly because of this work, we identi�ed a community of researchers and devel-

opers, and organized a well-participated workshop on integrating multiple learned

models (brie
y described in Section 2.5). Research in this area might become more

re�ned in the future because of a focused forum for exchanging ideas and peer reviews.

Recently, ARPA awarded Prof. Stolfo and his colleagues a research grant to

study the techniques described here in a fraud detection application. Learning and

meta-learning agents written in Java will travel to di�erent database sites to learn

characteristics of fraudulent transactions. This indicates some degree of con�dence

and maturity in this area of research. It is our hope that our techniques and others'

will be much improved in the not so distant future.

Learning never ceases, nor should it.

195

Bibliography

Abramson, N. (1963). Information Theory and Coding. New York, NY: McGraw-

Hill.

Adleman, L. (1994). Molecular computation of solutions to combinatorial problems.

Science, 266, 1021{1024.

Aha, D. & Kibler, D. (1989). Noise-tolerant instance-based learning algorithms.

Proc. IJCAI-89 (pp. 794{799).

Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms.

Machine learning, 6, 37{66.

Ali, K. & Pazzani, M. (1996). Error reduction through learning multiple descrip-

tions. Machine Learning. to appear.

Arnold, K. & Gosling, J. (1996). The Java Programming Language. Reading, MA:

Addison-Wesley.

Booker, L., Goldberg, D., & Holland, J. (1989). Classi�er systems and genetic

algorithms. Arti�cial Intelligence, 40, 235{282.

Boose, J. (1986). Expertise Transfer for Expert System Design. Amsterdam,

Netherlands: Elsevier.

Boswell, R. (1990). Manual for CN2 version 6.1. Turing Institure. Int. Doc. IND:

TI/MLT/4.0T/RAB/1.2.

196

Bratko, I. & Muggleton, S. (1995). Applications of inductive logic programming.

Commmunications of the ACM, 38(11), 65{70.

Breiman, L. (1994). Bagging Predictors. (Technical Report 421), Berkeley, CA:

Dept. of Statistics, Univ. of California.

Breiman, L. (1996a). Bias, variance, and arcing classi�ers. (technical report,

Berkeley, CA: Statistics Dept., U. of California.

Breiman, L. (1996b). Stacked regressions. Machine Learning, 24, 41{48.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classi�cation

and Regression Trees. Belmont, CA: Wadsworth.

Brodley, C. (1995). Recursive automatic bias selection for classi�er construction.

Machine Learning, 20, 63{94.

Brodley, C. & Lane, T. (1996). Creating and exploiting coverage and diversity.

Work. Notes AAAI-96 Workshop Integrating Multiple Learned Models (pp. 8{14).

Brunk, C. & Pazzani, M. (1995). A lexically based semantic bias for theory revision.

Proc. 12th Intl. Conf. Mach. Learning (pp. 81{89).

Buntine, W. & Caruana, R. (1991). Introduction to IND and Recursive Partition-

ing. NASA Ames Research Center.

Carbonell, J. (1989). Introduction: Paradigms for machine learning. Arti�cial

Intelligence, 40, 1{9.

Catlett, J. (1991). Megainduction: A test
ight. Proc. Eighth Intl. Work. Machine

Learning (pp. 596{599).

Catlett, J. (1992). Peepholing: Choosing attributes e�ciently for megainduction.

Proc. Ninth Intl. Conf. Machine Learning (pp. 49{54).

197

Chan, P. (1988). A critical review of CN2: A polythetic classi�er system. (Tech-

nical Report CS-88-09 (Master's paper)), Nashville, TN: Department of Computer

Science, Vanderbilt University.

Chan, P. (1991). Machine Learning in Molecular Biology Sequence Analysis. (Tech-

nical Report CUCS-041-91), New York, NY: Department of Computer Science,

Columbia University.

Chan, P. & Stolfo, S. (1993a). Experiments on multistrategy learning by meta-

learning. Proc. Second Intl. Conf. Information and Knowledge Management (pp.

314{323).

Chan, P. & Stolfo, S. (1993b). Meta-learning for multistrategy and parallel learning.

Proc. Second Intl. Work. Multistrategy Learning (pp. 150{165).

Chan, P. & Stolfo, S. (1993c). Toward multistrategy parallel and distributed learn-

ing in sequence analysis. Proc. First Intl. Conf. Intelligent Systems for Molecular

Biology (pp. 65{73).

Chan, P. & Stolfo, S. (1993d). Toward parallel and distributed learning by meta-

learning. Working Notes AAAI Work. Knowledge Discovery in Databases (pp.

227{240).

Chan, P. & Stolfo, S. (1994). Toward Scalable and Parallel Learning: A Case Study

in Splice Junction Prediction. (Technical Report CUCS-032-94), New York, NY:

Department of Computer Science, Columbia University. (Presented at the ML94

Workshop on Machine Learning and Molecular Biology).

Chan, P. & Stolfo, S. (1995a). A comparative evaluation of voting and meta-

learning on partitioned data. Proc. Twelfth Intl. Conf. Machine Learning (pp.

90{98).

Chan, P. & Stolfo, S. (1995b). Learning arbiter and combiner trees from partitioned

data for scaling machine learning. Proc. Intl. Conf. Knowledge Discovery and Data

Mining (pp. 39{44).

198

Chan, P. & Stolfo, S. (1996a). Scaling learning by meta-learning over disjoint

and partially replicated data. Proc. Ninth Florida AI Research Symposium (pp.

151{155).

Chan, P. & Stolfo, S. (1996b). Sharing learned models among remote database

partitions by local meta-learning. Proc. Second Intl. Conf. Knowledge Discovery

and Data Mining (pp. 2{7).

P. Chan, S. Stolfo, & D. Wolpert (Eds.) (1996). Working Notes for the AAAI-

96 Workshop on Integrating Multiple Learned Models for Improving and Scaling

Machine Learning Algorithms, Portland, OR.

Chesseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). Au-

toclass: A bayesian classi�cation system. Proc. Fifth Intl. Conf. Machine Learning

(pp. 54{64).

Clark, P. & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning,

3, 261{285.

Clearwater, S. & Provost, F. (1990). RL4: A tool for knowledge-based induction.

Proc. Second Intl. IEEE Conf. Tools for AI (pp. 24{30). IEEE CS Press.

Cost, S. & Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning

with symbolic features. Machine Learning, 10, 57{78.

Craven, M. & Shavlik, J. (1993). Learning to represent codons: A challenge problem

for constructive induction. Proc. IJCAI-93 (pp. 1319{1324).

Craven, M. & Shavlik, J. (1994). Machine learning approaches to gene recognition.

IEEE Expert, 9(2), 2{10.

Danyluk, A. (1991). Gemini: An integration of analytical and empirical learning.

Proc. First Intl. Work. Multistrategy Learning (pp. 191{206).

DeJong, K. (1988). Learning with genetic algorithms: An overview. Machine

Learning, 3, 121{138.

199

DeLisi, C. (1988). The human genome project. American Scientist, 76, 488{493.

Dietterich, T. & Bakiri, G. (1991). Error-correcting output codes: A general

method for improving multiclass inductive learning programs. Proc. AAAI-91 (pp.

572{577). AAAI Press.

Dietterich, T. & Bakiri, G. (1995). Solving multiclass learning problems via error-

correcting output codes. J. AI Research, 2, 263{286.

Dietterich, T., Kearns, M., & Mansour, Y. (1996). Applying the weak learning

framework to understand and improve C4.5. Proc. Thirteenth Intl. Conf. Machine

Learning (pp. 96{104).

Dietterich, T. & Michalski, R. (1983). A comparative review of selected methods

for learning from examples. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.),

Machine Learning: An Arti�cial Intelligence Approach, (pp. 331{363). Morgan

Kaufmann.

Domingos, P. (1995). Rule induction and instance-based learning: A uni�ed ap-

proach. Proc. IJCAI-95 (pp. 1226{1232).

Domingos, P. (1996). Using partitioning to speed up speci�c-to-general rule induc-

tion. Work. Notes AAAI-96 Workshop Integrating Multiple Learned Models (pp.

29{34).

Drucker, H., Schapire, R., & Simard, P. (1993). Boosting performance in neural

networks. Intl. J. Pat. Recog. Art. Intel., 7, 705{719.

Duda, R. & Hart, P. (1973). Pattern classi�cation and scene analysis. New York,

NY: Wiley.

Fahlman, S. & Hinton, G. (1987). Connectionist architectures for arti�cial intelli-

gence. Computer, 20, 100{109.

200

Fan, D., Chan, P., & Stolfo, S. (1996). A comparative evaluation of combiner

and stacked generalization. Working Notes AAAI-96 Work. Integrating Multiple

Learned Models (pp. 40{46).

Fayyad, U., Weir, N., & Djorgovski, S. (1993). SKICAT: A machine learning

system for automated cataloging of large scale sky surveys. Proc. Tenth Intl. Conf.

Machine Learning (pp. 112{119).

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering.

Machine Learning, 2, 139{172.

Flann, N. & Dietterich, T. (1989). A study of explanation-based mehtods for

inductive learning. Machine Learning, 4, 187{266.

Freund, Y. (1992). An improved boosting algorithm and its implications on learning

complexity. Proc. 5th Work. Comp. Learning Theory (pp. 391{398).

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., & Sunderam, V.

(1993). PVM 3 user's guide and reference manual. (Technical Report ORNL/TM-

12187), Oak Ridge, TN: Oak Ridge National Laboratory.

Goodman, R. & Smyth, P. (1989). The induction of probabilisitc rule sets{the

itrule algorithm. Proc. Sixth Intl. Work. Machine Learning (pp. 129{132).

Grammes, C. (1993). Gnu�t v1.2. (Available at

ftp://ftp.dartmouth.edu/pub/gnuplot/gnu�t12.tar.gz).

Gustafson, J. (1988). Reevaluating Amdahl's law. Comm. ACM, 31(5), 532{533.

Hansen, L. & Salamon, P. (1990). Neural network ensembles. IEEE Trans. Pattern

Analysis and Mach. Itell., 12, 993{1001.

Hernandez, M. & Stolfo, S. (1995). The merge/purge problem for large databases.

Proc. SIGMOD-95 (pp. 127{138).

Hinton, G. (1989). Connectionist learning procedures. Arti�cial Intelligence, 40,

185{234.

201

Holder, L. (1991). Selection of learning methods using an adaptive model of knowl-

edge utility. Proc. First Intl. Work. Multistrategy Learning (pp. 247{254).

Hunter, L. (1993). Molecular biology for computer scientists. In L. Hunter (Ed.),

Arit�cial Intelligence and Molecular Biology, chapter 1, (pp. 1{46). AAAI Press.

Kohavi, R. & John, G. (1995). Automatic parameter selection by minimizing esti-

mated error. Proc. 12th Intl. Conf. Mach. Learn. (pp. 304{312).Morgan Kaufmann.

Kohavi, R. & Wolpert, D. (1996). Bias plus variacne decomposition for zero-one

loss functions. Proc. Thirteenth Intl. Conf. Machine Learning (pp. 275{283).

Kong, E. B. & Dietterich, T. (1995). Error-correcting output coding corrects bias

and variance. Proc. Twelfth Intl. Conf. Machine Learning (pp. 313{321).

Krogh, A. & Vedelsby, J. (1995). Neural network ensembles, cross validation, and

active learning. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in Neural

Info. Proc. Sys. 7 (pp. 231{238). MIT Press.

Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to parallel

computing: Design and analysis of algorithms. Redwood City, CA: Benjamin-

Cummings.

Kumar, V. & Gupta, A. (1994). Analyzing scalability of parallel algorithms and

architectures. J. Parallel & Distributed Computing, 22, 379{391.

Kwok, S. & Carter, C. (1990). Multiple decision trees. Uncertainty in Ariti�cial

Intelligence 4 (pp. 327{335).

Langley, P., Iba, W., & Thompson, K. (1992). An analysis of bayesian classi�ers.

Proc. AAAI-92 (pp. 223{228).

Langley, P. & Sage, S. (1994). Induction of selective bayesian classi�ers. Proc.

Tenth Conf. Uncertainty in AI (pp. 399{406).

Langley, P. & Simon, H. (1995). Applications of machine learning and rule induc-

tion. Communications of the ACM, 38(11), 54{64.

202

Lewin, B. (1987). Genes. New York, NY: John Wiley & Son.

Lippmann, R. (1987). An introduction to computing with neural nets. IEEE ASSP

Magazine, 5(2), 4{22.

Lipton, R. (1995). Using DNA to solve NP-complete problems. Science, 268,

542{545.

Littlestone, N. &Warmuth, M. (1989). The weighted majority algorithm. (Technical

Report UCSC-CRL-89-16), Santa Cruz, CA: Computer Research Lab., Univ. of

California.

Matheus, C., Chan, P., & Piatesky-Shapiro, G. (1993). Systems for knowledge

discovery in databases. IEEE Trans. Knowledge and Data Engineering, 5(6), 903{

913.

Matheus, C. J. & Rendell, L. A. (1989). Constructive induction on decision trees.

Proc. of IJCAI-89 (pp. 645{650).

Merz, C. & Murphy, P. (1996). UCI repository of machine learning databases

[http://www.ics.uci.edu/�mlearn/mlrepository.html]. Dept. of Info. and Computer

Sci., Univ. of California, Irvine, CA.

Michalski, R. (1983). A theory and methodology of inductive learning. In R. Michal-

ski, J. Carbonell, & T. Mitchell (Eds.),Machine Learning: An Arti�cial Intelligence

Approach, (pp. 83{134). Morgan Kaufmann.

Michalski, R. & Stepp, R. (1983). Learning from observation: Conceptual cluster-

ing. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine Learning: An

Arti�cial Intelligence Approach, (pp. 331{363). Morgan Kaufmann.

Michalski, R. S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multipurpose

incremental leaning system AQ51 and its testing application to three medical do-

mains. Proc. AAAI-86 (pp. 1041{1045).

203

Mitchell, T. (1980). The Need for Biases in Learning Generalizaions. (Technical

Report CBM-TR-117): Dept. Comp. Sci., Rutgers Univ.

Mitchell, T. (1982). Generalization as search. Arti�cial Intelligence, 18, 203{226.

Murphy, P. & Pazzani, M. (1991). ID2-of-3: constructive induction of M-of-N

concepts for discriminators in decisions trees. Proc. Eigth Intl. work. Machine

Learning (pp. 183{187).

Naik, D. & Mammone, R. (1992). Meta-neural networks that learn by learning.

Proc. IJCNN (pp. I:437{442).

Nakata, K., Kanchisa, M., & DeLisi, C. (1985). Prediction of splice junctions in

mRNA sequences. Nucl. Acids Res., 13, 5327{5340.

Optiz, D. & Shavlik, J. (1996). Generating accurage and diverse members of a

neural-network ensemble. In D. Touretzky, M. Morzer, & M. Hasselmo (Eds.),

Advances in Neural Info. Proc. Sys. 8. MIT Press. to appear.

Ourston, D. & Mooney, R. (1990). Changing the rules: A comprehensive approach

to theory re�nement. Proc. AAAI-90 (pp. 815{820).

G. Piatesky-Shapiro & W. Frawley (Eds.) (1991). Knowledge discovery in

databases. Cambridge, MA: AAAI Press.

Pomerleau, D. (1992). Neural network perception for mobile robot guidance. PhD

thesis, Pittsburgh, PA: School of Computer Sci., Carnegie Mellon Univ. (Tech.

Rep. CMU-CS-92-115).

Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. (1988). Numerical recipies

in C: The art of scienti�c computing. Cambridge, UK: Cambridge University Press.

Provost, F. & Aronis, J. (1996). Scaling up inductive learning with massive paral-

lelism. Machine Learning, 23, 33{46.

Provost, F. & Hennessy, D. (1996). Scaling up: Distributed machine learning with

cooperation. Proc. AAAI-96. AAAI Press. 74-79.

204

Qian, N. & Sejnowski, T. (1988). Predicting the secondary structure of globular

proteins using neural network models. J. Mol. Biol., 202, 865{884.

Quinlan, J. R. (1979). Induction over large data bases. (Technical Report STAN-

CS-79-739): Comp. Sci. Dept., Stanford Univ.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81{106.

Quinlan, J. R. (1993). C4.5: programs for machine learning. San Mateo, CA:

Morgan Kaufmann.

Ralston, A. & Rabinowitz, P. (1978). A �rst course in numerical analysis. New

York, NY: McGraw-Hill.

Rendell, L. (1990). Feature construction for concept learning. In D. P. Benjamin

(Ed.), Change of Representation and Inductive Bias, (pp. 327{353). Kluwer Aca-

demic.

Rivest, R. (1987). Learning decision lists. Machine Learning, 2, 229{246.

Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5, 197{

226.

Schleif, R. (1986). Genetics and Molecular Biology. Reading, MA: Addison-Wesley.

Selberg, E. & Etzioni, O. (1996). Multi-service search and comparison using the

MetaCrawler. Proc. Fourth Intl. World Wide Web Conf.

Silver, B., Frawley, W., Iba, G., Vittal, J., & Bradford, K. (1990). ILS: A framework

for multi-paradigmatic learning. Proc. Seventh Intl. Conf. Machine Learning (pp.

348{356).

Stan�ll, C. & Waltz, D. (1986). Toward memory-based reasoning. Comm. ACM,

29(12), 1213{1228.

Stolfo, S., Galil, Z., McKeown, K., & Mills, R. (1989). Speech recognition in

parallel. Proc. Speech Nat. Lang. Work. (pp. 353{373).

205

Sun, X. & Ni, L. (1993). Scalable problems and memory-bounded speedup. J.

Parallel & Distributed Comp., 19, 27{37.

Tcheng, D., Lambert, B., Lu, C.-Y., & Rendell, L. (1989). Building robust learning

systems by computing induction and optimization. Proc. IJCAI-89 (pp. 806{812).

Towell, G. & Shavlik, J. (1993). The extraction of re�ned rules from knowledge-

based neural networks. Machine Learning, 13, 71{101.

Towell, G., Shavlik, J., & Noordewier, M. (1990). Re�nement of approximate

domain theories by knowledge-based neural networks. Proc. AAAI-90 (pp. 861{

866).

Utgo�, P. (1989). Incremental induction of decision trees. Machine Learning, 4,

161{186.

Valiant, L. (1984). A theory of the learnable. Comm. ACM, 27, 1134{1142.

Wah, B. (1993). High performance computing and communications for grand chal-

lenge applications: Computer vision, speech and natural language processing, and

arti�cial intelligence. IEEE Trans. Know. Data. Eng., 5(1), 138{154.

Wirth, J. & Catlett, J. (1988). Experiments on the costs and bene�ts of windowing

in ID3. Proc. Fifth Intl. Conf. Machine Learning (pp. 87{99).

Wolpert, D. (1992). Stacked generalization. Neural Networks, 5, 241{259.

Wolpert, D. (1993). Personal communication.

Xu, L., Krzyzak, A., & Suen, C. (1992). Methods of combining multiple classi�res

and their applications to handwriting recognition. IEEE Trans. Sys. Man. Cyb.,

22, 418{435.

Zhang, X., Mckenna, M., Mesirov, J., & Waltz, D. (1989). An E�cient Imple-

mentation of the Backpropagation Algorithm on the Connection Machine CM-2.

(Technical Report RL89-1): Thinking Machines Corp.

206

Zhang, X., Mesirov, J., & Waltz, D. (1992). A hybrid system for protein secondary

structure prediction. J. Mol. Biol., 225, 1049{1063.

