B-Tree Analysis

- Let $d=\left\lceil\frac{n}{2}\right\rceil$ and $e=\left\lceil\frac{n-1}{2}\right\rceil$
- Suppose that a B-Tree consists of $m \geq 1$ levels, where the root is level 0 .
- Then level i, where $1 \leq i \leq m-1$, must contain at least d^{i-1} nodes, otherwise some node at level $i-1$ or less would contain fewer than d children, which is not possible, or the root would have fewer than one child, which is also not possible.
- The total number of leaf nodes is therefore at least d^{m-2}.
- The total number of search key values k is therefore at least $\mathrm{e} d^{m-2}$, i.e., $k \geq e d^{m-2}$
- Dividing by e and taking the \log of both sides gives $m \leq 2+\log _{d}\left(\frac{k}{e}\right)$
- Thus, the height of the tree m is logarithmic in k, which is the number of search key values in the tree.
- Although this isn't constant time, note that d is typically quite large and, consequently, m is quite small.

