
Private and Efficient Stable Marriages (Matching)1— a
DisCSP Benchmark

Timothy Atkinson † and Roman Bartak‡ and Marius C. Silaghi† and Erdal Tuleu † and Markus Zanker § 2

Abstract. We provide algorithms guaranteeing the highest level
of privacy by computing uniformly random solutions to stable mar-
riages problems. We also provide efficient algorithms extracting a
non-uniformly random solution and guaranteeing t-privacyfor any
threshold t. The most private solution is expensive and is based on a
distributed/shared CSP model of the problem. The most efficient ver-
sion is based on running the Gale-Shapley algorithm after shuffling
the men (or women) in the shared secret description of the problem.

We introduce an efficient arithmetic circuit for the Gale-Shapley
algorithm that can employ a cryptographic primitive we propose for
vector access with an arbitrary number of participants.

We introduce and employ a CSP model using onlyn variables for a
stable marriages problem withn men andn women. We compare the
power of a few common DisCSP frameworks by analyzing the way
in which they can model and solve our case problem, namely sta-
ble marriages. Participants want to find a stable matching asdefined
by their secret preferences and without leaking any of thesesecrets.
The classic CSP formalism allows for naturally modeling complex
preferences (ties, etc.). This offers a good DisCSP benchmark.

We show that both classic DisCSP frameworks, with private do-
mains and with private constraints, can be used to model thisprob-
lem. We show obtained models having several variables per agent.
However, we also show that the DisCSPs obtained with these frame-
works have a search space that is much higher than the one obtainable
with centralized CSPs models (foreboding poor behavior).

This highlights a previously unknown advantage of DisCSP
solvers based on secure simulations of arithmetic circuitson shared
secrets. Such solvers do not need to keep track of the initialmapping
of secrets to agents. They can be directly composed with other com-
putations on secrets which may be needed to process the solution of
the CSP, or to prepare its inputs. For example, this enables the use of
CSP models where we only have a variable specifying the husband
for each woman, while the spouse of each man can be obtained bya
subsequent computation processing the solution of the CSP.

An additional advantage of the solvers based on secure simulations
of arithmetic circuits is that it returns a solution picked randomly
among existing solutions. Besides the fact that this increases privacy
to a level ofrequested t-privacy, it also provides fairness to partic-
ipants. A real implementation of a described secure solution usable
by participants on distinct computers on the Internet is implemented
(by students in a class assignment) and is available on our web-site.

1 Fragments from this article were originally part of [27, 35,36].
2 †Florida Institute of Technology,‡Charles University Prague,§University

Klagenfurt

1 Introduction

The stable marriages problem consists of matching pairs outof two
distinct sets of participants [13]. One member of the pair should be-
long to the first set and the second member should belong to the
second set. The matching is stable if whenever one participant wants
to change her partner for a third one, the third participant prefers her
current partner to the change. The participants have a secret prefer-
ence (or tie) between any pair of potential partners.

Versions of these problems, without privacy requirements,have
been long known and studied. Techniques for the stable marriages
problem are used in US to assign hospitals to medical interns[37].
It is an example of constraint satisfaction problem (CSP). ACSP is
modeled as a set of variables and a set of constraints on the possi-
ble values of those variables. The CSP problem consists in finding
assignments for those variables with values from their domains such
that all constraints are satisfied. The CSP techniques require every
eventual participant to reveal its preferences (e.g. to a trusted server),
to compute the solution. Therefore, they apply only when thepartic-
ipants accept to reveal their preferences to the trusted party.

There exist frameworks and techniques to model and solve dis-
tributed CSPs (DisCSPs) with privacy requirements, namelywhen
the domains of the variables are private to agents [41], or when the
constraints are private to agents [33, 26, 32, 22, 17].

We show that the stable marriages problems can be modeled with
the two known types of distributed CSP frameworks, but the obtained
models are not efficient. A more efficient model is obtained using the
MPC-DisCSP framework introduced in [30].

We start introducing formally the CSP problem.

CSP. A constraint satisfaction problem(CSP) is defined by three
sets: (X, D, C). X = {x1, ..., xm} is a set of variables and
D = {D1, ..., Dm} is a set of finite domains such thatxi can take
values only fromDi = {vi

1, ..., v
i
di
}. C = {φ1, ..., φc} is a set of

constraints. A constraintφi limits the legality of each combination of
assignments to the variables of an ordered subsetXi of the variables
in X, Xi ⊆ X. An assignment is a pair〈xi, v

i
k〉 meaning that the

variablexi is assigned the valuevi
k.

A tuple is an ordered set. The projection of a tupleǫ of assign-
ments over a tuple of variablesXi is denotedǫ|Xi

. A solution of a
CSP (X,D,C) is a tuple of assignments,ǫ∗, with one assignment for
each variable inX such that eachφi∈C is satisfied byǫ∗|Xi

. The
search space of a CSP is the Cartesian product of the domains of its
variables.

We consider that a set of participants are the source of such CSPs
and one has to find agreements for a solution, from the set of possi-
ble alternatives, that satisfies a set of (secret) requirements of the par-
ticipants. This view suggests a concept of a distributed CSP. Several



frameworks were proposed so far for Distributed ConstraintSatisfac-
tion [45, 6, 42]. Some versions consider that each agent ownsa con-
straint of the CSP [45, 38]. This constraint could model the private
information of the agent [33]. Other versions consider thateach agent
owns the domain of a variable while the constraints are shared [41].
The secret domains can also model some private constraints.

None of the two approaches, namely private variables or private
domains, can modelefficientlythe stable marriages problems. This
is because their private data does notdirectly constrain the alloca-
tion of the natural shared resources. An indirect relation exists with
such a constraint. Redundant variables need to be introduced in the
system. The advantage of a framework based on shared secret CSPs
will be stressed in this article, as it allows to avoid the redundant
variables. Classic CSP models allow for naturally modelingcomplex
preferences (e.g. ties, etc.).

2 Background

Related Work The stable marriages problem is an old and well
studied challenge [13]. Modeling this problem with CSPs hasbeen
discussed in [14]. Distributed approaches to solving the problem also
appeared in several works among which we mention [5]. We intro-
duced the problem of privacy in stable marriages problem in [36] as
an application of MPC-DisCSP1 algorithm. Other secure algorithms
developed for the problem appear in [16] which also uses Paillier
mixnets and, while being more efficient than our first versions, it
cannot offer requested t-privacy.

In several general multi-party computation (MPC) frameworks,
secretss from an algebraic structure F are distributed among par-
ticipants using sharing schemes. In a sharing scheme, each partic-
ipant Ai gets a share denoted[s]Fi , and at leastt participants are
required to reconstruct the secret from their shares. Arithmetic cir-
cuits can then be evaluated securely over these shares [3, 40, 15].
Our arithmetic circuits as well as our other protocols also work
with MPC schemes where the secret are encrypted with a homomor-
phic public key cypherE allowing additions of plaintext by opera-
tions on ciphertexts [7], and whose secret key is distributed amongt
servers/participants.

Cryptographic Primitives on Shared Secrets We use the follow-
ing primitives on secret shares:

• bits(x). Transform the shared secretx (with ℓ bits) into a vector
[x]B of ℓ shared secrets,[x]B = b0, b1, ..., bℓ, with possible values
{0,1} and representing the corresponding bits ofx [8].

• EXP (x, [y]B). This primitive computes raisesx at exponenty
wherey is shared on bits [9].

• +,−, ∗, =, ==, &&, ||, <. These operators are equivalent to the
corresponding “C” operators but work on shared secrets [8].

• a?b : c. This operator is implemented asa ∗ (b − c) + c.
• π=SHUFFLE(a). Generates and applies a secret random permuta-

tion π on vectora [29].
• UNSHUFFLE(b,π). Applies on vectorb the inverse of the secret

permutationπ previously applied on vectora [29].
• , firstInArray(a). Sets all 1’s in the array a to 0, except for the first

1 [31].
• firstInArrayIdx(a). Returns the index of the first 1 ina [28].

Can be implemented by first computing firstInArray(a), and then
PN

i=1
(ia[i]).

• y = a[x]. Reads iny the item at indexx in the arraya containing
N shared secrets. Can be implemented with arithmetic circuits us-
ing N equality tests,y =

PN
i=1

((x == i) ∗ a[i]). [24, 25] gave

an efficient version for 2-party computations. We propose next ef-
ficient algorithms for this operation with thresholdt.

• a[x] = y. Writesy at indexx in the array of shared secretsa.
We propose next an algorithm for this operation with threshold t
computations.

3 Accessing arrays at secret index

This can be done in constant rounds withN equality tests, but that is
asymptoticallylog(|F |) more expensive in communication than the
techniques proposed next.

3.1 Bit-based Access

A fast method we propose is based on bit decomposition and ex-
ponentiation with secret index [8, 9]. It works for accessing arrays
with size N < ℓ where ℓ = log2(|F |). Given the shared secret
index x for a vector of lengthN , first computed0, d1, ..., dℓ =
bits(EXP (2, [x]B)) by first running thebits algorithm [8] followed
by the secret exponentiation of [9], and followed again by thebits al-
gorithm of [8].

Now one can read the array item with
PN

i=0
(di ∗ a[i]).

One can writey in the arraya at indexx with
a[i] = a[i] + (y − a[i]) ∗ di,∀i ∈ [0..N ].

This version is much faster than the one above since it needs only
two expensivebits primitives instead ofN of them.

3.2 Mixnet-based secret index access

The next protocol achieves the result int rounds, wheret is the num-
ber of supposed trusted servers/participants. First, we assume that
x ∈ [0..(N − 1)] and is shared using an additive sharing with shares
either from the set of integersZ or from ZN . Transformations from
any sharing to sharing of this form was discussed in [21, 1].

Read at secret index To perform the operationy = a[x] where
a is an array ofN shared secrets, one can use a mixnet related to
the one we proposed in [29]. Each participantAj encrypts his shares
[a1]j , .., [aN ]j of the elements ofa using a homomorphic encryption
schemeEj for which it holds the secret key and which allows for
applying (+)F on its plaintext through some operation on cipher-
texts [29]. All shares are then passed through a mixnet formed by the
t participants holding shares ofx. EachAi generates a vectorz of N
random sharings of zero, and then for each input:

Ij,i = |Ej([a1]j), ..., Ej([aN ]j)|

computes the output to be sent to the next agent

Oj,i = |Ej([a1]j + [z1]j), ..., Ej([aN ]j + [zN ]j)| <<< [x]i

where[x]i is Ai’s share ofx and<<< [x]i denotes rotational shift
with [x]i positions. In the case of MPCs based on homomorphic
threshold encryptionE, the mixnet is run on ciphertexts (operations
remain the same but without involving shares):

Oi = |E(a1 + 0), ..., E(aN + 0)| <<< [x]i

Ai can prove that he shifted the arrays and did not simply replaced
them with new arrays, by generating an interactive zero knowledge
proof. The zero knowledge proof is based on generating a set of K



additional claims, consisting of vectors obtained with differentz and
different shifts.

Cj,k = |Ej([a1]j+[zk
1 ]j), ..., Ej([aN ]j+[zk

N ]j)| <<< sk, k = [1..K]

The verifiers specify a challenge bitck for eachk. For bitsck = 0,
the prover revealssk and all shares ofzk, showing that the claims
C∗,k are a rotation of the input. For bitsck = 1, the prover reveals
sk − [x]i and all shares ofz−zk, showing that the claim is a rotation
of the output.

At the end of the mix-net, the last agent in the chain broadcasts all
encrypted shares inO∗,t[1] and each participant decrypts its shares
obtaininga[x].

Write at a secret index To perform the operationa[x] = y where
a is an array ofN shared secrets, one can use a bidirectional mixnet
related to the one proposed in [29]. In Phase 1, each participantAj

encrypts his shares[a1]j , .., [aN ]j of the elements ofa using a ho-
momorphic encryption schemeEj for which it holds the secret key
and which allows for applying(+F ) on its plaintext. All shares are
then passed through a mixnet formed by thet participants holding
shares ofx. EachAi generates a vectorz of N random sharings of
zero, and then for each input:

Ii,j = |Ej([a1]j), ..., Ej([aN ]j)|

computes the output (to be sent to the next agent)

Oi,j = |Ej([a1]j + [z1]j), ..., Ej([aN ]j + [zN ]j)| <<< [x]i

where[x]i is Ai’s share ofx and<<< [x]i denotes rotational shift
with [x]i positions towards the left.

At the end of the mix-net, thetth participant in the chain obtains as
O∗,t[1] the encrypted shares ofa[x]. Now each participantAj sends
to At its share ofy encrypted withEj , andAt replacesOj,t[1] with
Ej([y]j).

In Phase 2, the mix-net is now run in the reverse direction with
O∗,t as input. EachAi generates a vectorz′ of N random sharings
of zero, and then for each input:

I ′
j,i = |Ej([a1]j), ..., Ej([aN ]j)|

computes the output

O′
j,i = |Ej([a1]j + [z′

1]j), ..., Ej([aN ]j + [z′
N ]j)| >>> [x]i

where[x]i is Ai’s share ofx and>>> [x]i denotes rotational shift
with [x]i positions towards the right. The resultO′

∗,i is the result
vectora.

Ai can prove that he shifted the arrays and did not simply replaced
them with new arrays, by generating an interactive zero knowledge
proof. This proof also shows that the rotation is with the same num-
ber of positions and in the reverse direction as the first phase. The
zero knowledge proof is based on generating a set ofK additional
claims, consisting of vectors obtained with differentz′ and the shifts
of the corresponding claims at the first phase.

C′
j,k = |Ej([a1]k+[z′k

1 ]j), ..., Ej([aN ]j+[z′k
N ]j)| >>> sk, k = [1..K]

The verifiers specify a challenge bitck for eachk in [1..K]. For bits
ck = 0, the prover revealssk and all shares ofz andz′k, showing
that at both phases the claimsCj,∗ andC′

j,∗ are a rotation of their
inputs. For bitsck = 1, the prover revealssk − [x]i and all shares of
z − zk andz′ − z′k, showing that at both phases the claimsCj,∗ and
C′

j,∗ are rotations of the output.
At the end of the mix-net, the last agent in the chain broadcasts

all encrypted shares inO′
∗,t and each participant decrypts its shares

obtaining the resulta.

3.3 Efficient arithmetic circuit

Here we show a compilation of the stable marriages problem into a
standard arithmetic circuit simulating the solution of [13].

The Algorithm 1 is equivalent to a circuit of size O(N4). The arith-
metic circuit in Algorithm 2 follows more exactly the Gale-Shapley
and makes usage of array access for two of theN factors, in the
asymptotic complexity.

algorithm SM-GS-AC2(prefM, prefW)
π=SHUFFLE(prefM);
for (i = 0; i < N2; + + i) do

for (k = 1; k≤N ; + + k) do
free[k] = (wife[k]==0);

m = firstInArrayIdx(free);
match = (m 6= 0);
nIndex = proposed[m] + 1;
proposed[m] = (match)?mIndex : 0;
w = (match)?prefM [m][nIndex] : 0; // select woman
H = (match)?h[w] : 0;
prefC = (match)?prefCrt[w] : 0;
prefN = prefW [w][m]; // this is expensive ;
match = ((H !=0)&&(prefN < prefC))?0 : match;
prefCrt[w] = (match)?prefN : prefC;
h[w] = (match)?m : 0;
wife[H ] = match?0 : wife[H ];
wife[m] = match?w : 0;

UNSHUFFLE(wife,π); // apply on vector wife the inverse
permutation ofπ; vector h can be recomputed from wife

Algorithm 2: Version of Algorithm 1 similar to Gale-Shapley

4 DisCSP Models for Stable Marriages Problems

We employ the distributed CSP framework, aiming to model effi-
ciently (i.e. with a reduced search space) the distributionof some
famous CSP problems, namely the stable marriages problems.Basi-
cally we argue to the return to a more CSP-like framework where no
direct association of the secret constraints to agents is required. Such
a setting is enabled by secret sharing. The relation betweensecrets
and participants is relevant at computation steps that are outside the
CSP solution (during secret sharing and secret reconstruction).

Stable Marriages The stable marriages problem is the problem of
finding a set of matches between a set of females,A1, ..., Am, and
a set of males,B1, ..., Bm, such that if any person from the set of
females,Ai, prefers some male,Bj , to the partner selected for her,
thenBj prefers his current partner toAi. If any male,Bi, prefers
some female,Aj , to the partner selected for him, thenAj prefers her
current partner toBi.

The stable marriages problem is an instance of stable match-
ings [30] that can be modeled with a lower number of variables. A
way of modeling the stable marriages problem as a CSP is to have
one variablexi for each female3, specifying the index of the male
assigned to her by the solution. The constraints are obtained by pre-
processing the input of participants about their preferences. The fact
that a personAi prefersBu toBv is specified by the boolean constant
(input) PAi

(u, v). The fact thatBi prefersAu to Av is specified by

3 Or male. Then, everything is defined symmetrically.



sharedsecret< [0..N ] > proposed[N+1](0); // previously proposed woman, by man index, initialized to 0
sharedsecret< [0..N ] > prefCrt[N+1](0); // preference for fiance, by woman index, initialized to 0
sharedsecret< [0..N ] > wife[N+1](0); // current fiancee, by man index, initialized to 0
sharedsecret< {0, 1} > free[N](1); // current fiancee, by man index, initialized to 0
sharedsecret< [0..N ] > h[N+1](0); // current fiance, by woman index, initialized to 0
sharedsecret< {0, 1} > cont; // bool: does the current man get engaged to his next preference?
sharedsecret< {0, 1} > test,match; // bool: intermediary test
sharedsecret< [0..N ] > w; // the woman currently addressed
sharedsecret< [0..N ] > prefC, prefN ; // preference of current woman for her fiance, resp. for new candidate
sharedsecret< [0..N ] > H ; // previous fiance of the current woman
int i; // current round
int j; // index of man currently proposing
int k; // counter
algorithm SM-GS-arithmetic-circuit (prefM, prefW)

sharedsecret< [1..N ] > prefM [N][N]; // the men’s preferences in order
sharedsecret< [1..N ] > prefW [N][N]; // the women’s preferences by man index, bigger is better
π=SHUFFLE(prefM); // shuffle matrix prefM, by a secret randompermutationπ on its first index
for (i = 0; i < N2; + + i) do

for (j = 1; j≤N ; + + j) do
cont = 1 − (wife[j]==0); // if already engaged then skip this man

1.1 proposed[j] = (cont)?proposed[j] : proposed[j] + 1; // try next woman
w = (cont)?wife[j] : prefM [j][proposed[j]]; // selected woman among those willing
H = h[w];
prefC = prefCrt[w]; // prefW[w][H]
for (k = 1; k≤N ; + + k) do

test = (k == w); // This loop can be replaced with array access for k=w
1.2 cont = cont?cont : (test)?((H !=0)&&(prefW [k][j] < prefC)) : 0;

// prefCrt[w] = (cont)?prefCrt[w] : prefW [w][j] i.e., update preference of w
prefCrt[k] = (cont||(1 − test))?prefCrt[k] : prefW [k][j]; // prefCrt[w] = (cont)?prefCrt[w] : prefW [w][j]
h[k] = (cont||(1 − test))?h[k] : j; // h[w] = (cont)?h[w] : j i.e., set fiance of w to j

for (k = 1; k≤N ; k + +) do
wife[k] = (cont||(k!=H))?wife[k] : 0; // wife[H ] = cont?wife[H ] : 0 i.e., set fiancee of H to 0

wife[j] = cont?wife[j] : w; // set fiancee of j to w

UNSHUFFLE(wife,π); // apply on vector wife the inverse permutation ofπ; vector h can be recomputed from wife

Algorithm 1: Stable Marriages: arithmetic circuit for the Gale-Shapley algorithm (two circuits, selected with findnext ratherthan try next).

the boolean constant (input)PBi
(u, v). There is a constraintφij be-

tween every pair of variablesxi andxj . In first order logic notation,
the constraint between each two variablesxi andxj is:

∀xi, xj : φij(xi, xj)
def
= (PAi

(xj, xi) ⇒ PBxj
(j, i)) ∧

(PAj
(xi, xj) ⇒ PBxi

(i, j)) ∧

(xi 6= xj) (1)

In this formulation, the preferences of an agent do not necessarily
require a total order on the possible spouses, naturally modeling ties,
incomplete lists, etc. Note that a total order is part of the common
definition of the stable marriages problem [13, 37].

It is possible to extend the stable marriages problem to the case
with an unequal number of males and females. In this case, it can be
modeled either:

• as a usual instance of the stable matching problem [30], withone
variable for the partner of each participant, each participant pub-
licly preferring to be alone rather then with somebody of thesame
type, or

• with variables only for females (or males), where the variables
have an additional value, 0, for specifying that the participant re-
mains single.

For the second case, there is a global constraint:

∀ǫ, φ(ǫ)
def
= (∀i, k : ((k 6= ǫ|{xi}) ∧ PAi

(k, ǫ|{xi})) ⇒

((k 6= 0) ∧ (∃j : (ǫ|{xj} = k) ∧ PBk
(j, i)))) ∧

(∀q, t : ǫ|{xq} 6= ǫ|{xt}) (2)

The main complication with this kind of CSPs is that the con-
straints are functions of secrets that cannot be easily elicited from
the participants. Distributed CSP frameworks are meant to address
such problems.

4.1 DisCSP Benchmark: Stable Marriages

Modeling the stable marriages problem with DisCSPs with se-
cret constraints that are known to some agents (e.g., AAS case).
One can model the stable matching problem with secret constraints
known to some agents [45, 34] by choosing as variables,x1, ..., xm,
the index of the partner associated to each agent (that has tobe
computed) and using one additional boolean variable for each se-
cret preference,PAi

(u, v). The total number of boolean variables
is m3, m2 of them being actually fixed by public constraints (e.g.
PAi

(u, u) = 0). However, also taking into account the variables



x1, ..., xm, the total search space becomesO(mm2m3

). This is

O(2m3

) times worse than the centralized CSP formalization whose
search space is only O(mm).

4.2 Using MPC-DisCSP

In the previous part of this section we have exemplified CSP models
for the stable marriage problem. We have seen that it is difficult to
model efficiently these problems using existing private variable-, or
private constraint- oriented distributed constraint satisfaction frame-
works.

Let us use a framework for modeling distributed CSPs, where a
constraint is not (necessarily) a secret known to an agent, or public,
but can also be a secret unknown to all agents. We have introduced
such a framework in [30]. We refine it here by removing the require-
ment that inputs come straight from participants and that outputs are
revealed directly to participants, since this forbinds cases where the
solution of a CSP is just part of a chain of intermediary computa-
tions that can comprise several CSPs (such as in auctions). In the
new framework, secret inputs are assumed already shared at aprevi-
ous step, and are not associated to a participant. Outputs are also de-
livered in shared form, and are not necessarily revealed to somebody
immediately, but can be feed as inputs in other secure computations.

Definition 1 A MPC Distributed CSP (MPC-DisCSP) is defined
by six sets (A, X, D, C, I , O) and an algebraic structureF .
A={A1, ..., An} is a set of agents.X, D, and the solution are de-
fined like for CSPs.

I is a tuple ofα shared secret inputs (defined onF ). Each inputI
belongs toF .

Like for CSPs,C is a set of constraints. There may exist a public
constraint inC, φ0, defined by a predicateφ0(ǫ) on tuples of assign-
mentsǫ. However, each constraintφi, i>0, in C is defined as a set of
known predicatesφi(ǫ, I) over the secret inputsI , and the tuplesǫ
of assignments to all the variables in a set of variablesXi, Xi ⊆ X.

O={o1, ..., oω} is the set of outputs. Letm be the number of vari-
ables.oi : D1 × ... × Dm × I → F is a function receiving as
parameter a solution and the inputs and returning a secret output
(fromF ).

The following theorems of [30] apply because this frameworkis
more general (less specified) that the framework defined there.

Theorem 1 The framework in the Definition 1 can model any
distributed constraint satisfaction problems with private con-
straints [34].

Theorem 2 The framework in the Definition 1 can model distributed
constraint satisfaction problems with private domains [41].

Modeling the stable marriages problem as a MPC-DisCSP. To
model the stable marriages problem as a MPC-DisCSP, one has an
agent,Ai, for each female participantAi in the problem description.
Each participantBj is mapped to an agentAm+j . One hasm vari-
ables,x1, ..., xm, modeling the partners of the agentsA1, ..., Am. xi

specifies the index of the spouse assigned toAi by the solution, or
specifies0, if she remains alone. The inputsI are given by the set of
preferencesPAi

(u, v) andPBi
(u, v), specifying whetherAi prefers

Bu to Bv, respectively whetherBi prefersAu to Av, for eachu and
v. The setF for inputs and outputs is{true, false}.

The constraintφij between every pair of variablesxi andxj , is
defined as in Equation 1. The output functions fori ∈ [1..m] are

defined as:oi(ǫ)
def
= ǫ|{xi}. Namely, each female learns only the

index of the husband proposed to her. To return to each maleAm+i

the identity of the spouse proposed the him, the corresponding output

is om+i
def
= {k|xk = i}.

There is a public constraint:

φ0
def
= ∀i, j, xi 6= xj (3)

5 Private Stable Marriages Solutions

Theorem 3 Stable marriages problems can have several solutions.

Proof. Namely take four agents withPA1
(1, 2), PA2

(2, 1),
PB1

(2, 1), PB2
(1, 2). q.e.d.

If there exist several solutions, the agents will prefer notto reveal
more then one of them. The remaining solutions would only reveal
more secret preferences:

• Typically there is no other fair way, except randomness, to break
the tie between several solutions.

• If the single solution that is returned is selected as the first one
in some given lexicographic order on the variables and domains
of the problem, then additional information is leaked concerning
the fact that tuples placed lexicographically before the suggested
solution do not satisfy the constraints [26].

As it follows, if it is known that a certain problem has only one
solution, then any technique is acceptable among either:

• Finding and returning all solutions using the technique in [20], or
• Returning only the first solution (e.g. by sequentially checking

each tuple in lexicographical order until a solution is found).

Otherwise, strong privacy requirements make techniques returning
a random solution [26] desirable, despite their potential of having a
lower efficiency.

5.1 General Scheme

We will note that the main difference between the MPC-DisCSP
framework, and the DisCSPs with secret constraints that areknown
to some agents, is that now the constraints need to be computed dy-
namically from secrets inputs.

The techniques solving DisCSPs with private constraints can be
used as a black box, except for sharing and reconstruction steps.
Namely, instead of simply sending encrypted Shamir shares of one’s
constraint, those shares of the constraints have to be computed from
the secret inputs of the agents. We replace the sharing and reconstruc-
tion with with simulations of arithmetic circuit evaluation which will
compute eachφk(ǫ, I) for each tupleǫ and for the actual inputsI .
This step is calledpreprocessing.

Similarly, instead of just reconstructing the assignmentsto vari-
ables in a solutionǫ, one has to design and execute secure computa-
tions of the functionsok(ǫ). This step is calledpost-processing.

AssumeA is some algorithm using Shamir’s secret sharing for
securely finding a solution of a CSP (with secret constraintsknown
to some agents). The generic extension of the algorithmA to solve
problems in the MPC-DisCSP framework is:



• Preprocessing:Share the secrets inI with Shamir’s secret sharing
scheme. Compute eachφk(ǫ|Xk

, I) for each tupleǫ|Xk
and for

the actual inputsI by designing it as an arithmetic circuit and
simulating securely its evaluation. The public constraintφ0 can
be shared by any agent.

• Run the algorithmA as a black-box, for finding a solutionǫ∗
shared with Shamir’s secret sharing scheme, for a CSP with pa-
rameters (i.e. constraints) shared with Shamir’s secret sharing
scheme.

• Post-processing:Compute eachoi(ǫ∗) by designing it as an arith-
metic circuit and simulating securely its evaluation. Reveal the re-
sult ofoi(ǫ∗) only toAi.

5.2 Pre- and post- processing for stable marriages
problems

In the remaining part of the article we will prove that it is possible
to design the needed preprocessing and post-processing to solve our
example of DisCSPs: stable marriages, using the general scheme de-
fined above.

Preprocessing for the stable marriages problem. Some simple
arithmetic circuits can implement the preprocessing for the stable
marriages problem.

Each variablexi specifies the index of the male associated to
the femaleAi. The input of each femaleAi specifies a prefer-
ence valuePAi

(j, k) for each pair of males,(Bj , Bk). Each male
Bi specifies a preference valuePBi

(j, k) for each pair of females
(Aj , Ak). PAi

(j, k)=1 if and only if Ai prefersBj to Bk. Other-
wisePAi

(j, k)=0. PBi
(j, k)=1 if and only if Bi prefersAj to Ak.

OtherwisePBi
(j, k)=0. A constraintφij is defined between each

two variablesxi andxj . φij [u, v] is the acceptance value of the pair
of matches:(Ai, Bu), (Aj , Bv). One synthesizesm(m− 1)/2 con-
straints:

φi,j [u, v] =

8

>

>

<

>

>

:

0 if u = v

(1 − PAi
(v, u) ∗ (1 − PBv (j, i)))∗

(1 − PAj
(u, v) ∗ (1 − PBu(i, j))) if u 6= v

The public constraintφ0 (same as in Equation 3) restricts each pair
of assignments:

∀ǫ, ǫ=(〈xi, u〉, 〈xj , v〉) : φ0(ǫ)
def
= (u 6= v)

specifying that it is not possible for two persons to be associated to
the same spouse in a solution.

Post-processing for the stable marriages problem. The stable
marriages problem requires a post-processing phase to compute and
reveal to each male the spouse proposed to him. Remember that
the variables specify only the spouse for each female. The function

om+i
def
= {k|xk = i} can be computed with the following arithmetic

circuit.

om+i =
m

X

k=1

((xk == i)?k : 0)

An implementation for this constraints, written as class assign-
ment by students in Spring 2005, is available online at [19].

6 DisCSP Model based on Global Constraints

It can be noted that since in Equation 2 the variables are constrained
to take distinct values, the arithmetic circuit can be written in a simple
equivalent form:

φ (〈xǫ1 , u1〉, ..., 〈xǫn , un〉) =
8

>

>

<

>

>

:

0, whenui=uj andui 6= 0
Qn

i=1
((1 − PAi

(0, ui)) ∗ otherwise
Qm

k=1,k 6=ui
(1 − PAi

(k, ui)∗

(1 −
Pn

j=1,uj=k(PBk
(j, i)))))

The total number of multiplications needed to construct this global
constraint isO(mnm+1), namelymn multiplications for each of the
nm tuples. A public constraint for this problem is:

φ0(〈xǫ1 , u1〉, ..., 〈xǫn , un〉)
def
=



0, whenui=uj andui 6= 0
1, otherwise

Search Space size for DisCSP modelsNote that the complexity
analysis here is based on the assumption of using only basic addition
and multiplication secure primitives. It can be easily shown that by
using other primitives, such as first-in-array, CSPs are solvable in a
linear number of rounds [8].

For a problem with size of the search spaceΘ andc constraints, the
number of messages for finding all solutions with secure techniques
similar to the one in [20] is given by(c − 1)Θ multiplications of
shared secrets (n(n−1) messages for each such multiplication).

For the stable marriages problem modeled with the MPC-DisCSP
framework,Θ=mm and c=1 for the version with a single global
constraint, orc=m2/2 for the version with binary constraints. For
the case with binary constraints, it yields a complexity ofO(mm+2).
As mentioned before, the preprocessing has complexityO(m4) mul-
tiplications between shared secrets, resulting in a total complexity
O(m2(mm + m2)).

Solving the same problem with the same algorithm but mod-
eled with the classic DisCSP framework with private constraints,
Θ = mm2m3

andc = m, for one global constraint from each agent.
There is no preprocessing, but the total complexity isO(mm+12m3

).

The MPC-DisCSP framework behaves better sincem << 2m3

.
The comparison is similar for other secure algorithms, likeMPC-
DisCSP1 [26] whose complexity is given byO(dm(c+m)Θ) multi-
plications between shared secrets.

7 Conclusions

DisCSPs [4, 38, 18, 44, 11, 23] are a very active research area. Pri-
vacy has been recently stressed in [2, 12, 39, 10, 43] as an important
goal in designing algorithms for solving DisCSPs.

In this article we have investigated how versions of an old and fa-
mous problem, the stable marriages problem [13, 37], can be solved
such that the privacy of the participants is guaranteed except for what
is leaked by the selected solution. Techniques for this problem are
currently applied to college admissions and medical interns assign-
ments in US. Our technique uses secure simulations of arithmetic
circuit evaluations.

We note that the stable marriages problems can be modeled with
existing distributed constraint satisfaction frameworks, but not very
efficiently. We have therefore stressed the advantages of the MPC-
DisCSP distributed constraint satisfaction framework that can model



such problems with the same search space size as the classic central-
ized CSP models. Form participants in the stable matching prob-
lem, the size of the search space in the DisCSP model achievedwith
MPC-DisCSP isO((m/2)m/2) while the previous framework with
private constraints yields DisCSP instances with a size of the search
space ofO(mm2m3

). In certain existing secure algorithms for solv-
ing DisCSPs, the number of exchanged messages is fix and directly
proportional to the search space size. In other algorithms the num-
ber of rounds is constant but the size of the messages is proportional
to the search space. This explains the importance of the sizeof the
search space in an obtained CSP model. Both mentioned types of se-
cure algorithms offering requested t-privacy make this property of a
problem instance particularly relevant.

A more efficient solution (but selecting solutions with non-
uniform randomness) is proposed with an arithmetic circuitsimulat-
ing the Gale-Shapley algorithm on a shuffled version of the problem.
Its complexity isO(n4).
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