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Abstract. We present a method for detecting and describing features
in vector flow fields. Our method models flow fields locally using a linear
combination of complex monomials. These monomials form an orthog-
onal basis for analytic flows with respect to a correlation-based inner-
product. We investigate the invariance properties of the coefficients of
the approximation polynomials under both rotation and scaling opera-
tors. We then propose a descriptor for local flow patterns, and developed
a method for comparing them invariantly against rigid transformations.
Additionally, we propose a SIFT-like detector that can automatically de-
tect singular flow patterns at different scales and orientations. Promising
detection results are obtained on different fluid flow data.

1 Introduction

Detecting patterns in vector flow fields is key to many computer vision and engi-
neering applications including texture analysis [16], fingerprint classification [6,
14], and fluid dynamics [4, 17]. In principle, singular flow-pattern detection is
similar to the interest point detection problem in scalar images [13]. However,
the number of flow-field descriptor approaches in the computer vision literature
is relatively limited. In this paper, we introduce a novel scale-rotation invariant
framework for detecting singular patterns in vector flow data.

Vector field data usually originate from continuous physical processes such as
motion and dynamic textures. As a result, model-based approaches for singular
pattern detection are common in the literature. For example, template-matching
approaches using correlation [17] or filtering operations [14] are generally robust.
However, pattern detected by these approaches are often restricted to the tem-
plate’s size and shape. Another class of singular-pattern detection methods are
based on locally-affine flow-field models [16]. An extension to a nonlinear flow
model was proposed by Ford et al. [8], and most recently Kihl et al. [11] improved
it further to detect multi-scale singular points. Finally, flow fields can also be
represented using complex functions. For instance, Fan et al. [6] used the com-
plex zero-pole model to detect singular points in fingerprint images. An earlier
work by Nogawa et al. [15] modeled singular patterns based on Cauchy’s residue
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theorem. Nevertheless, residue calculation can be sensitive to noise. Corpetti
et al. [4] detected singular-flow patterns as the maxima of complex potential
and streamline functions that were obtained from flow fields’ irrotational and
solenoidal components. Corpetti’s detected singular patterns were quite general
as they did not need to contain a center vanishing point.

In this paper, we propose a novel framework for the detection and description
of singular patterns in vector fields under rigid transformations (i.e., rotation and
scale invariant). We commence by approximating the flow field locally using a
linear combination of complex analytic basis functions (Section 2). We use the
approximation coefficients as a flow descriptor. Our selected set of complex ba-
sis functions can be shown to be eigenfunctions of the rotation operator. This
observation allows us to define a concept equivalent to a flow pattern’s principle
orientations by aligning it to the analytic bases. We will show that scaling a flow
field corresponds to scaling our descriptor. By aligning descriptors using the es-
timated principle orientations, and normalizing them in scale, flow patterns can
be directly compared (Section 3). Finally, we introduce a multi-scale singular
pattern detector (Section 4). As in [4], we are able to detect singular patterns
in a broader sense than the commonly used vanishing singular points. Our ex-
perimental results (Section 5) demonstrate the effectiveness of our descriptor by
both detecting and clustering singular patterns on various flow field sequences.

2 Higher-Order Model of Flow Field

We begin by representing a 2-D vector-flow field as a complex-valued function
F (z) defined on a finite domain Ω ⊂ C. Locally, a flow field can be represented
by an analytic function centered at z0 ∈ C, i.e., f(z) ≈ F (z + z0). 1 The Taylor
expansion of f(z) about the origin (i.e., z0 = 0) can be written as a linear
combination of complex (orthogonal) basis functions φk(z) as follows:

f (z) =
N∑
k=0

akφk(z) +RN (z), (1)

where ak = f(k)(0)
k! are the coefficients, and RN (z) is the residue. Here, f (k)(0)

is the k-th derivative of f evaluated at z0 = 0. There are number of choices of
polynomial bases φk(z) that are equivalent from both the functional analysis and
approximation theory viewpoints, e.g., complex-domain Zernike polynomials [10]
and real-domain Legendre polynomials [11]. Our goal is to approximate flow
fields locally. While this goal can be accomplished using linear models based
on real-domain basis functions [11, 16], we believe that complex functions are
valuable bases to model smooth natural motions [10, 15, 4]. Additionally, complex
bases are usually more compact than their real orthogonal counterparts.

1 The analytic assumption was also used in [15, 4]. While theoretically some linear
flow fields are not analytic, they can be considered less physically relevant [4].
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Fig. 1. Basis flows φk,i, k = 0, . . . , 3 and i = 1, 2. Row 1: polynomials derived from zk.
Row 2: polynomials derived from izk. Increasing k produce higher-order fluctuations.

It is worth pointing out that both the orthogonality condition and basis-
function projection depend on the choice of inner product in the analytic func-
tions space A(Ω) on Ω. Using the standard inner product defined for complex
functions in L2 [5] results in complex numbers, making projection calculations
difficult. Instead, we adopt the following alternative inner product:

〈f(z), g(z)〉 =
∫

C
f(z) · g(z) dz, (2)

where · is the standard inner product on C (i.e., dot product between two com-
plex numbers). Equation 2 satisfies the three inner product axioms [5]: symmetry,
linearity, and positive-definiteness, and it can be used to project flow field f(z)
onto the basis function φk(z), with real-domain projection coefficients given by
ak = 〈f(z),φk(z)〉

〈φk(z),φk(z)〉 . Furthermore, we can re-write Equation 2 as:

〈f(z), g(z)〉 = (F ⊗ g)(z0) =
∫

C
F (z + z0) · g(z) dz, (3)

which is similar to the cross-correlation operator used in [17], and can be imple-
mented efficiently using the Fast Fourier Transform (FFT).

In this paper, we use the complex-domain monomials {zk}Nk=1 as basis func-
tions φk(z). We can show that izk belongs to the same basis formed by zk, and
that the basis is complete. Intuitively, izk can be thought as a counterclockwise
90-degree rotation of the vectors in zk. Without affecting the orthogonality of
zk and izk, we control the basis’ local support size by weighting the basis with
a zero-mean Gaussian function wσ(y). Our basis flows can then be written as:

φk,1(z) =
zkwσ(z)
‖zkwσ(z)‖

and φk,2(z) =
izkwσ(z)
‖izkwσ(z)‖

, (4)
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= A0,1 = φ0,1(z)    F(z)  A0,2 = φ0,2(z)    F(z) 

A1,1 = φ1,1(z) * F(z)  A1,2 = φ1,2(z) * F(z) 

Vector Flow Field Orthogonal Basis 

Projection Coefficients Maps 

Fig. 2. Cross-correlation between the flow field and the first four bases φk,1(z). Map
A1,1 indicates a divergence-free flow field. Peaks in A1,2 indicate vortices. Blue: match-
ing orientation between filter and flow data. Red: reverse orientation.

where ‖φ‖2 = 〈φ, φ〉. The orthonormal basis φk,i for k = 0, 1, 2, 3 are shown in
Figure 1. Using (1), the N -th order flow field approximation at p ∈ Ω ⊂ C is:

F (z + z0) ≈ f(z) =
N∑
k=0

[ak,1φk,1(z) + ak,2φk,2(z)] , (5)

where ak,i = 〈f(z), φk,i(z)〉, for k = 1, . . . , N , and i = 1, 2. The approximation
produces 2(N + 1) real coefficients ap = ap0,1, a

p
0,2, . . . , a

p
N,1, a

p
N,2 for location p.

According to (3), the coefficients are local values of the cross-correlation between
F (z) and φk,i(z). Figure 2 shows the correlation of the first two basis pairs with
a turbulent flow, i.e., Ak,1 = F (z)⊗ φk,1(z) and Ak,2 = F (z)⊗ φk,2(z), k = 0, 1.

3 Flow Field Descriptor

In the previous section, a local approximation of local flow fields was presented.
We will now show how the projection coefficients can be used to derive descrip-
tors that are invariant to both rotation and scaling transformations.

The rotation operator. Let us consider the flow-field expansion given by (5).
The rotation operator Γθ(·) rotates the flow f(z) by an angle θ as follows:

Γθ (f(z)) = e−θif(zeθi) = e−θi
N∑
k=0

[
ak,1φk,1(zeθi) + ak,2φk,2(zeθi)

]
=

N∑
k=0

[ak,1Γθ (φk,1(z)) + ak,2Γθ (φk,2(z))] . (6)
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Here, e−θi is the contravariant factor to ensure coordinate invariance of the
vector field [1]. Γθ is linear on the analytic function space An. Furthermore, our
choice of basis monomials, zk and izk, are eigenfunctions for Γθ, i.e.,

Γθ(zk) = e(k−1)θi zk and Γθ(izk) = e(k−1)θi izk, (7)

with eigenvalues equal to e(k−1)θi. The bases’ Gaussian weighting and the nor-
malizing constant in (4) are rotation invariant so they were dropped. By plugging
(7) into (6) and re-arranging the basis monomial terms, we obtain:

a′k,1 (θ) = cos [(k − 1)θ] ak,1 − sin [(k − 1)θ] ak,2
a′k,2 (θ) = sin [(k − 1)θ] ak,1 + cos [(k − 1)θ] ak,2, (8)

where ak,i and a′k,i are the coefficients for the original and rotated flow fields,
respectively. Equation 8 shows that rotating a flow field also rotates their pro-
jection coefficients. Our goal is to compare flows by rotating the coefficients to
a standard orientation. However, the rotation angle is unknown. We solve this
problem by finding the angle that maximizes the alignment between the local
flow and a subset of our eigenfunctions that are not rotationally symmetric (i.e.,
except z and iz), and calculate θ that maximizes the inner-product projection:

θ̃ = arg max
θ

∑
a′k,1 (θ) . (9)

The above maximization of a trigonometric polynomial function can be solved
using standard optimization algorithms (e.g., Gauss-Newton method). Compu-
tationally, rotating the coefficients is far more efficient than rotating the flow
field itself. We call the values of θ at these local maxima the Principle Orienta-
tions. Once these directions are at hand, we can compare two flow fields, fp(z)
and fq(z), by defining a distance between them. We use the minimum Euclidean
distance between their rotated coefficients defined as follows:

d(fp, fq) = min
i,j
‖Γθi

ap − Γθj
aq‖. (10)

Vector fields’ directional nature generate multiple principle orientations, and
Equation 9 has at most 2N roots [9]. Rather than finding the “best” orientation,
we accept all principle orientations for which this equation exceeds a threshold.

The scaling operator. Let us now consider the scaling operator Ψs(.), s > 0
applied on the weighted basis flow defined in (4). This operator is also linear,
and scaling effects are fully defined on the basis functions φk,i as follows:

Ψs(φk,1(z)) = s φk,1(s−1z) = s
(s−k)
|(s−k)|

zkwσ(s−1z)
‖zkwσ(s−1z)‖

= s
zkwσ(s−1z)
‖zkwσ(s−1z)‖

= s
zkwsσ(z)
‖zkwsσ(z)‖

. (11)
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Therefore, scaled bases can be obtained by scaling the variance of the Gaussian
weighting function, and then multiplying them by s. The relationship holds for
both zk and izk bases. Next, we use these ideas to develop a method for detecting
interest flow patterns under scaling and rotation transformations.

4 Detection of Singular Patterns

Singular points (or critical points) in vector fields can be defined as locations
where the flow field vanishes [11, 16, 7], i.e., F (z) = 0. If we consider the ex-
pansion in Equation 5, then F (z) = 0 implies a0,1 = a0,2 = 0. As a result,
a local flow pattern containing a singular point at the center can be linearly
approximated by φk,i with k ≥ 1. We will name φk,i, k ≥ 1 the singular basis,
and will assume that the flow field’s linear expansion can be separated into two
components: the background constant flow expanded by φ0,1, φ0,2, and a singu-
lar component expanded by the singular basis. The constant flow is similar to
the laminar component mentioned in [4]. We define a singular point as maxima
of the flow field energy projected onto the singular basis. The singular energy
function is defined as the squared sum of projection coefficients on the singu-
lar basis, i.e., Esig(z) =

∑N
k=1

(
‖ak,1‖2 + ‖ak,2‖2

)
. As in [4], the separation of

background constant flow makes our definition of singular patterns more general
than the singular points defined in [11, 16, 7], since a flow field may not have any
vanishing points when a background constant flow or a laminar flow exists.

Comparing flows of similar sizes can be achieved by using Equation 10. We
now look into the case of detecting singular patterns at multiple scales. Here, we
will approach the multiple-scale problem in a similar way as done in scale-space
theory for scalar images. We begin by applying a Gaussian smoothing to the
vector field followed by a down-sampling operation [13]. In the case of vector
fields, the Gaussian smoothing step might actually destroy singular points [7].
Using the properties described in Section 3, we keep the flow field unchanged,
and instead vary the scale of the basis function. Scaling the basis function only
involves changing the variance parameter of the Gaussian weighting function,
and it does not destroy the singular points. However, increasing the basis flow
size increases the computation due to the correlation operation in Equation 3.

To address these problems, we adopt a hybrid method for multiscale singular-
pattern detection. Similarly to the SIFT descriptor [13], we divide the scale space
into octaves using Gaussian smoothing and down-sampling. However, scaling is
applied to the basis flows within each octave. Singular pattern candidate scales
are selected as extrema of singular energy Esig along both the scale and spatial
dimensions. Algorithm 1 summarizes the detection process.

5 Experiments

We tested our detector on sequences from European FLUID Project [3], and
satellite imagery obtained from the SSEC Data Center 2. Additionally, we tested
2 http://www.ssec.wisc.edu/data/us_comp/
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Algorithm 1: Scale-Rotation Invariant Singular Flow Pattern Detection
Given an input flow F (z), create octaves of F o(z), o = 0, 1, . . . , N by1

down-sampling F (z) by half, i.e., F o+1(z)← ↓2 F o(z).
Create multiscale bases φs

k,i, s = 0, 1, . . . ,M by increasing their variance by2

a step ∆σ (e.g., ∆σ = 21/M ). As in SIFT [13], we generate M + 3 images to
cover a complete octave, with starting scale σ0 = 1.6.
Calculate the coefficients in each octave using cross-correlation, i.e.,3

Ao,s
k,1 ← F o(z)⊗ φs

k,1(z) and Ao,s
k,2 ← F o(z)⊗ φs

k,2(z), k = 0, 1.

Calculate the singular energy Eo
sig(z, s) at each octave.4

Eo
sig(z, s)←

PN
k=1

`
‖as

k,1(z)‖2 + ‖as
k,2(z)‖2

´
.

Detect the singular points at spatial position (x, y) and scale s that locally5

maximize the singular energy Eo
sig(z, s).

Calculate descriptor and principle orientations (Equation 9)6

at detected positions.

the flow descriptor by automatically clustering singular patterns of varying scale
and orientation that were extracted from the JHU Turbulence dataset [12].

Detection on FLUID sequences. Detected singular patterns from a FLUID
sequence are shown in Figure 3. The patterns’ singular energy was color-mapped
for visualization clarity. This dataset contains sourceless vector fields, and most
singular patterns resemble vortices appearing at multiple scales. Our method
detected all vortices. Elongated-shaped vortices were detected in pairs. In these
cases, some detections could have been discarded based on their singular energy.

Detail View Multiple Detections 

Fig. 3. Right: detected patterns. Color indicates the relative log magnitude of singular
energy. Vortices are the strongest patterns; Left: detail view of detected patterns.

Detection on satellite images. In this experiment, we extracted velocity
field data from SSEC satellite image sequences using the CLG optical-flow algo-
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Fig. 4. Singular pattern detection in satellite image sequence. Estimated flow field is
downsampled for visualization. Strong patterns to the north-east (9,10,11) corresponds
to vortices. South-east singular pattern (8) corresponds to sudden clouds divergence.

rithm [2]. CLG produced fairly good estimation results considering that accurate
fluid-motion estimation is not our method’s main focus. Detection results pro-
duced by our detector on motion clouds are shown in Figure 4. The figure shows
a satellite image of a U.S. weather system on February 20th, 2010. For better
visualization, singular patterns smaller than 20 pixels in diameter were removed.
On the northeast corner, large vortices were detected. On the southeast corner,
a strong singular pattern corresponds to clouds disappearance and divergence.
Most detected patterns are consistent with cloud motion changes.

Detecting and Clustering. In this experiment, we clustered singular patterns
detected on the JHU 3-D Turbulence dataset. Here, we selected 2-D slices that
were perpendicular to the flow’s convecting direction. For better visualization, we
created two groups of detected patterns according to their similarity to vortices
and sources (or sinks). We did that by examining whether the singular energy
was concentrated on the basis functions φ1,1, φ1,2. If ‖a1,1‖2+‖a2,2‖2 consisted of
more than 60% of the total singular energy, then we labeled the singular pattern
as symmetric, otherwise, we call it asymmetric.

We then scaled and aligned the features. For patterns having multiple prin-
ciple orientations, we generated multiple aligned copies, and created four groups
using k-means. Clusters for symmetric features are shown in Figure 5 (top), while
clusters of asymmetric features are shown in Figure 5 (bottom). Symmetric pat-
terns mostly corresponded to vortices in both directions, sources, and swirls.
Due to the flow’s divergent nature, few sinks were detected, and no sink clusters
were obtained. Asymmetric patterns mostly correspond to vortices skewed by
a background laminar. Clusters were distinguished by their rotation direction,
and their divergence or convergence. Most patterns in this group did not have
a center vanishing point, yet they still exhibited interesting sudden flow field
changes. This suggests the generality of our singular pattern definition.
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6 Conclusion

We proposed a flow-field descriptor based on coefficients of a local flow field
approximation. Based on this descriptor, we designed a SIFT-like detector for
singular patterns that is invariant to rigid transformations. The detector was
tested on both synthetic and real fluid flows. Future work includes an extension
to 3-D flow fields and exploring new applications.
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mean flow  Sample flows from each cluster  
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mean flow  Sample flows from each cluster  
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Fig. 5. Clusters of symmetric and asymmetric singular patterns detected on the JHU
3-D Turbulence dataset. Each row displays cluster means and sample flows.


