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Abstract. In nonrigid motion analysis, deformation fields are often mod-
eled using splines defined on a control-point grid. Inspired by recent de-
velopment of meshfree methods, we propose a novel motion model that
does not use control-point grids, nor use explicit node connections. We
also propose a regularizer for the deformation field and the minimization
algorithm. The method has promising features such as the handling of
irregular regions, adaptive accuracy, the multi-scale modeling, and the
potential for integrating physical properties into the registration process.
Promising results were obtained on both synthetic and real imagery.
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1 Introduction

Spline-based free-form deformation models have been successfully applied in non-
rigid image registration methods [1, 2]. However, they suffer from a number of
problems including the reliance on explicitly connected control points, the con-
flict between grid resolution and computational efficiency, and the difficulty to
handle topological changes. Recent efforts using adaptive irregular grids [2] still
rely heavily on explicit control-point connections or meshes, and require nontriv-
ial handling of topology information. In this paper, we propose a novel mesh-free
approach for nonrigid image registration that eliminates the need for explicitly
handling topology information in the registration process.

Spline-based models’ limitation of relying on control-point grids is funda-
mental, and is shared by applications such as computational mathematics [3],
mechanical engineering [4], and computer graphics [5]. Recently, many meshless
models (i.e., no explicit control-point connections) have been proposed in differ-
ent areas [4, 5, 3, 6, 7]. In this paper, we will focus ourselves on the problem of
nonrigid image registration while also drawing from the results in other areas.

For nonrigid image registration, early meshless models are based on radial
basis functions (RBFs). For example, the thin-plate spline model [8] represents
nonrigid deformations by a linear combination of locally supported RBFs that
are scattered over the computation domain. The local basis functions are blended
together without explicitly connecting the pieces, and thus avoiding the need for
maintaining a control-point grid. Recently, Rohde et al. [8] extended this model
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to adaptively select the number and position of the basis functions according to
registration residues. RBFs-based meshless models are also used for data inter-
polation [3], and for solving partial differential equations (PDEs) [4]. However,
RBFs-based models have two main problems. First, as Ruecket et al. [1] pointed
out, due to prohibitive computational complexity of the thin-plate spline warps,
the registration is restricted to a very limited number of degrees of freedom.
Secondly, RBFs are unable to represent polynomial functions exactly (i.e., lack
of polynomial reproducibility [4]). For example, RBFs cannot exactly represent
a constant deformation f(x) = c, c �= 0. It has been shown that RBFs are less
accurate than polynomial-based models in finite-element methods [4]. Here, we
propose a polynomial-based meshless model for nonrigid image registration.

Some existing works represent nonrigid deformation using polynomial-based
meshless models. For example, polynomial-based moving least-squares (MLS)
method has been used for heart-motion analysis [7], and prostate image regis-
tration [9]. Most notably, Makram-Ebeid et al. [6] proposed a nonrigid image reg-
istration method based on a partition-of-unity finite-element method (PUFE).
However, these approaches inherit heavily from meshless methods developed
for mechanical engineering, and essentially solve mechanical PDEs using image
evidence as boundary conditions. A major difference with respect to previous
related work, is that our method does not rely on prior segmentation. Here,
we directly integrate the meshless deformation model into the nonrigid image
registration formulation, leading to a simplified registration framework.

Our main contributions are as follows. First, we propose a novel image reg-
istration method that represents deformation fields by blending together locally
supported polynomial models using partition-of-unity (PU) (Section 2). The lo-
cal deformation models are defined at scattered nodes, and their supporting
domains are restricted by radial weighting functions. Secondly, we introduce a
new functional to penalize for inconsistencies between local deformation fields
(Section 3). This regularizer greatly simplifies the registration process compared
to the classic regularizer based on Sobolev norm [1], or to the non-conformity
measure proposed in [6]. Additionally, our regularizer is not biased towards cer-
tain lower-order deformations. The proposed functional can be minimized hi-
erarchically at varying scales. Unlike previous methods, where a coarse-scale
deformation field is only used as an intermediate result [1, 6], our method is
able to regularize the deformation field by combining image evidence at different
scales simultaneously. Finally, these contributions are supported by a number of
experiments performed on both synthetic and real images (Section 4).

2 Meshless deformation model

We commence by defining the nonrigid image-registration problem as that of de-
forming a source image I(x) to “best” match a target image I �(x) with respect
to a given similarity measure [8]. Formally, we seek for a warping field u(x) that
satisfies the following equation arg maxx� F (I �(x�), I(x),x�), x

� = x + u(x),
where x is a coordinate vector, and F is the intensity-based similarity measure.
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Fig. 1. Meshless scattered-data approximation using our consistency regularizer. (a)
The scattered data-points are locally approximated around each node using polynomi-
als (dashed curves), and then blended into a global approximation (green solid curve)
based on their weighting functions (bottom). (b) The consistency regularizer penalizes
inconsistencies between local models. Increasing the regularizer coefficient λc leads to
more consistent local approximations with lower inconsistency energy Ec.

Robustness and efficiency are often obtained by representing x using a sparse
set of control points interpolated by splines [1]. To avoid explicit handling of
neighborhood information, we approximate the global deformation field u(x) by
blending together a set of particle-based local approximations of the deforma-
tion. Thus, no explicit connections between control points are needed. Figure 2
illustrates the concept of our approximation model and consistency regularizer,
using an example problem of scattered-data approximation. Here, a set of nodes
is distributed across the deformation field domain. Around each node, a local
polynomial approximation of the deformation field u(x) is obtained. As polyno-
mials do not have compact support, we restrict the approximation to the node’s
vicinity, a region called the node’s influence domain. The influence domain will
also be used to limit the interaction range between neighboring nodes.

The node’s influence domain. Let us define the influence domain Dp around
a node p as a disk of radius rp (ball in 3-D1). Dp can be modeled by a weighting
function wp(x) with local support [4]. We define wp(x) as:

wp(x) =

�
αp exp

�
−κ�p−x�2

σ2
p

�
,x ∈ Dp

0 ,x /∈ Dp

, (1)

where p is the coordinate vector of node p, κ = 1
9 , and αp ∈ (0, 1] is the node’s

predefined influence factor in the final global blending. Thus, a node p is defined
1 3-D extension is straightforward.
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by its spatial position, p, the radius (scale) of its influence domain,σp, and its
influence factor, αp. It is worth pointing out that although the weighting function
in (1) is a radial function, it is different from previous RBF-based models such as
thin-plate splines [8]. Here, the radial basis functions are used for blending the
local polynomial models, instead of directly representing the image deformation.

Local approximation model around a node. We write the deformation field
up = (u, v) around particle p as a linear combination of monomials γj(x) = xsyt:

u(x) =
m�

j=0

γj(x)aj and v(x) =
m�

j=0

γj(x)bj . (2)

Thus, the deformation field is a linear combination of monomial basis functions
φ

T
(x) = [1, x, y, xy, . . . , xsyt, . . .], with coefficients dp = [a0, b0, · · · , am, bm]

T

.
Monomials in φ are ordered in a Pascal triangle manner for numerical stabil-
ity [4]. Next, local deformations up are combined into a global deformation field.

Blending local models into a single deformation field. Given the param-
eters of local deformation models, deformation at point x can be obtained by
blending together the nodes that contain x in their influence domains. These
nodes are called the support domain [4] of x, and are formally denoted by
Nx = {p � x ∈ Dp}. The blended global deformation field is obtained as U(x) =�

p∈Nx
rp(x)up(x), with rp (x) = wp(x)P

p�∈Nx
wp� (x) . Here, functions rp (x) ensure the

partition-of-unity (PU), i.e., the contributions at x from various nodes add to
one. This blending scheme was used in [6] and is equivalent to the one used in the
polyaffine model [10]. The scheme allows for arbitrary placement of local models,
while the polynomial basis allows for accurate deformation representation.

3 Optical flow based registration

In this section, we integrate the proposed deformation model with squared-sum-
of-difference (SSD) similarity measure that assumes the image brightness re-
mains constant during image deformation [1]. Study on integrating other simi-
larity measures (e.g., mutual information) is underway. For improved efficiency,
the brightness-constancy condition is often linearized to form the optical-flow
constraint Ixu + Iyv + It = 0 [6, 2]. Combining the optical-flow constraint and
our meshless deformation model results in an image registration method that
is both simple and elegant. It is worth pointing out that the choice of image
deformation model is often independent from specific similarity measures, and
our meshless deformation model can be easily combined with other similarity
measures such as cross-correlation (CC) [8] and mutual-information (MI) [1].

Local intensity constraint. Locally, the weighted sum of squared residues
based on optical-flow constraint within a particle’s influence domain is given by:

Ed
p =

�

x∈Dp

wp(x)(Ix(x)u(x) + Iy(x)v(x) + It(x))2, (3)
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where wp is the weighting function defined in Equation 1. By plugging the local
model defined in (2) into the registration residual measure in (3), we obtain:

Ed
p = (R

T

pdp + Tp)
T

W
d
p(R

T

pdp + Tp), (4)

where W
d
p is the weighting function written as a diagonal matrix, the columns of

Rp are the vectors [Ix(x)γ0(x), Iy(x)γ0(x), . . . , Ix(x)γs(x), Iy(x)γs(x), . . .]
T

p for
x ∈ Dp, Tp is the vector form of It(x), and dp = [a0, b0, . . . , am, bm]

T

p is the
coefficient vector. Equation 4 summarizes the local image evidence.

Consistency enforcement. In spline-based methods, the global deformation
field is consistent across control points, and regularization is obtained by penal-
izing the deformation’s spatial variation. In our framework, global deformation
fluctuations cause inconsistencies among local deformation fields (Figure 2). As a
result, rather than penalizing deformation’s spatial variation [6, 2, 1], we penalize
the variation’s spatial inconsistency. Indeed, this produces a regularizer that is
not biased towards the deformation field’s lower-order fluctuations, provided the
fluctuation itself is spatially consistent. Consistency between two local deforma-
tion fields, up and uq, can be measured from the coefficient vectors dp and dq.
However, up and uq lie on different local coordinate systems, and therefore need
to be aligned (shifted). Shifting the basis functions φ by ∆x = [δx, δy] leads to:

φ(x + ∆x) = [1, x + δx, y + δy, (x + δx)(y + δy), . . . , (y + δy)m]
T

= S
T

(∆x)φ(x), (5)

where S
T
(∆x) is a linear basis-shifting-operator that can be written as a matrix.

Therefore, shifting the local coordinate system leads to shifted coefficients. The
local deformation consistency between two nodes p and q can be defined as:

Ec
p,q = [S�(p− q)dq − dp]

T

[S�(p− q)dq − dp] . (6)

Here, the operator S
�(p− q) is obtained by simply duplicating and shifting the

elements of the basis-shifting-operator S(p− q) so that the multiplication holds.
We can now combine the local data term and the global consistency term into
a single functional-minimization problem as follows:

dp = arg min
dp

�

p



Ed
p + λc

�

q∈Np

wq(�p− q�)Ec
p,q



 . (7)

Here, λc defines the consistency regularizer’s relative importance. Instead of
using a single parameter to control the trade-off between data terms and regu-
larizers [6, 1], Equation 7 allows for different nodes to influence the smoothness
regularizer, which suggests a potential regularizer adapted to image content. We
implemented a Levenberg-Marquardt algorithm to solve the minimization.
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(a) (b) (c) (d) (e)

Fig. 2. Nodes’ coupling with varying scales. (a) Ground truth. (b) B-spline registration
(Ruecket’s [1]). (c) A global node (in blue) with regularly distributed smaller nodes (in
green). (d) Our method without global node. (c) Our method with the global node.

Hierarchical warping and multi-scale coupling. We adopt a hierarchical
warping process to avoid local minima and improve computational efficiency.
Convergence is achieved using a coarser-to-fine manner. Rather than downsizing
the image [6], we simply use large scale nodes for coarse registration. In this case,
less nodes are needed at large scales, leading to computation efficiency without
sacrificing image data. Our framework allows for randomly distributed nodes of
different scales. More interestingly, both coarse and fine deformation estimations
can be considered simultaneously. This multi-scale ability leads to interesting
results as shown in Figure 2. The synthetic example shows a counter-clockwise
rotation about the image center with little data evidence. In this case, many
ambiguous solutions exist. For the demons [13] and spline-based [1] methods
presented in this example, the lack of higher-level information causes a dom-
inant smoothness term to exaggerate deformations at textureless regions. By
integrating a node at global scale (blue circle in Figure 2(c)), the simpler rota-
tion solution becomes favored by our energy functional, even though that node’s
influence power is very small (less than 1% of the smaller node’s weight). While
both the exaggerated and the rotation solutions are legitimate, the rotation field
is simpler and arguably more consistent with human perception. This large-scale
node incorporates into the minimization higher-level information about the de-
formation field’s shape, with little effect on smaller-scale image evidence.

4 Experiments

Experiments were performed on two data sets. We first used synthetic fluid
PIV images obtained from the FLUID Project [11] which contains seven se-
quences varying from simple vortices to flows around obstacles. The database’s
low-speed fluids suits our evaluation, and registration algorithms produce compa-
rable results to fluid-motion estimation methods. Secondly, we used 2-D cardiac
MRI data from [12], and compared our method with Rueckert’s B-spline based
method [1], and an improved Demons method implemented by [13].
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4.1 Parameter settings

Similarly to both finite-element and meshless methods [4], the accuracy of our
representation increases with the density of nodes (the h problem), and on the
order of basis polynomials (the p problem) for a higher computational cost. We
experimentally found that second-order polynomials {1, x, y, xy, x2, y2} provide
sufficient representation accuracy at reasonable computational cost. In all ex-
periments, we used second-order polynomials as basis functions. Second-order
polynomials are also the empirical choices in many meshless algorithms [4, 6].
Both the PIV and MRI images are of the size 256 × 256 pixels, and we used
a grid of 21 × 21 = 441 nodes, i.e., the inter-node spacing was roughly d = 12
pixels. Finally, in meshless methods, the nodes’ average radius ra controls the
average number of interacting neighbors (i.e., bandwidth of the system). Higher
bandwidth often increases accuracy and stability at the cost of computation.
The average radius ra can be defined relative to the inter-node spacing d, i.e.,
ra = k × d, for some k > 0. We experimentally chose k = 2.5, so that the
interacting neighbors average number was around 20.

For the consistency regularizer, we chose unity influence factor for all nodes,
i.e., αp = 1, and then roughly tuned the weighting parameter λc on PIV se-
quences. Experiments show that λc = 10−2 produced the best registration re-
sults. For Rueckert’s method, we chose the same control-point density as our
meshless method, i.e., a grid of 21× 21 = 441 control-points. Again, regularizer
parameter λ was tuned to the PIV sequences, and set λ = 10−3. For the Demon
method, we chose the default parameters provided by [13].

4.2 Analytic fluids

Regularly and randomly distributed nodes. First, a regular node distri-
bution was used. Secondly, nodes’ positions were randomly perturbed (standard
deviation of [−8, 8]), while nodes’ radii were randomly generated, rp ∈ [32, 48].
Finally, for all test cases, we added 15 percent of independent random noise to
the input images. Tables 1 and 2 show the results for the different registration
methods. Here, we borrowed the Average End-Point Error and the Average An-
gular Error metrics from the optical-flow literature [2]. The meshless method
with regularly distributed nodes produced the best registration results under
both metrics. When using randomly perturbed nodes, the nodes’ density and
registration accuracy are downgraded in some regions, but our method still pro-
duced better results, with good robustness to image noise.

Handling topology challenges. In Figure 3, we show a FLUID sequence
(Sequence 6) containing a flow around a cylindric obstacle. When using our
method with regularly-distributed nodes or a control-point grid for the spline-
based method, the obstacle region was estimated as part of the flow (Figure 3(c)).
In our method, we can handle holes in the blended global deformation by simply
removing the nodes from the regions containing the obstacle (Figure 3(d)).
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Table 1. Average End-Point Error on Analytic Fluid Sequence

Method Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.6 Seq.7

B-Spline 0.04 0.03 0.04 0.13 0.10 0.04 0.25
Demons 0.15 0.13 0.16 0.11 0.12 0.13 0.22
Meshless 0.02 0.02 0.02 0.06 0.06 0.04 0.17
Meshless Random 0.03 0.02 0.02 0.06 0.06 0.14 0.17

Table 2. Average Angular Error on Analytic Fluid Sequence

Method Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.6 Seq.7

B-Spline 0.84 1.70 1.04 6.61 5.04 1.35 12.61
Demons 3.79 6.09 4.15 5.59 6.03 4.32 11.11
Meshless 0.53 0.95 0.51 2.55 2.63 1.23 8.40
Meshless Random 0.77 1.18 0.55 2.82 2.90 2.92 8.26

4.3 Cardiac MRI sequence

Here, we used cardiac MRI slices from a dataset containing of 33 4-D MRI se-
quences from different patients [12]. Sequences have 20 frames of a 3-D cardiac
motion. We performed intra-subject registration of 2-D slices by registering each
slice to the next frame in the sequence. As ground truth was not available in
this case, we used both Root-Mean Square (RMS) and Cross-Correlation (CC) as
error metrics. While RMS and CC only provide visual verification of the registra-
tion results, they still provide good indication of registration quality. Evaluation
of our meshless method using clinical images with manually labeled ground-truth
data is currently underway and will be reported in due time. Two experiments
on the MRI data were performed. First, we used regularly-distributed nodes,
and then, node distribution was manually adapted to an area of interest.

Regularly distributed nodes. Parameters for the compared algorithms were
set to the same values used for the analytic flows experiment. Table 4.3(right
half) shows the error metrics for the methods. Ours underperformed compared
methods, but our results were close to Rueckert’s method. Next, we describe
how results were improved by concentrating nodes around the heart’s region.

Adapted registration. In Figure 4(a), we show a polygonal mask manually
created on the first frame of a heart sequence. This mask labels the area of
interest. Also, the deformation field in the unmasked region was not used for
error evaluation. The initial mask was propagated to the remaining frames using
the estimated deformation field. As the sequence is relatively short, the mask
was reliably kept around the heart. For both Rueckert’s and Demons meth-
ods, the evaluation was also restricted to the masked area. For our meshless
method, the registration process was adapted by removing the nodes outside
the mask. Removing nodes helped reduce computation costs significantly allow-
ing for increased node density, by reducing both the space between them and
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(a) (b) (c) (d)

Fig. 3. Fluid around an obstacle. Grid-based methods overestimate the flow. Our
method produces accurate results by removing nodes from the obstacle region. (a)
streamline, (b) ground truth, (c) regular, and (d) adapted.

(a) Initial mask (b) Error in a sequence

Fig. 4. Adapted computation for cardiac motion. (a) Manual initialization of a com-
putation mask. (b) Registration RMS in the sequence for a patient.

their scales by half. Furthermore, rather than initializing a regular control-points
grid for each frame [1], we simply propagated the nodes to the next frame. Ta-
ble 4.3(left half) shows a comparison of the three methods. Here, our method
outperformed the other two on almost all metrics. We also observed that after
adapting the evaluation, Rueckert’s method scored slightly higher than Demons.
In Figure 4(b), we show the RMS for registration performed by the three methods
on the sequence for a patient. The RMS peak was due to the heart’s contraction.

5 Conclusions

We proposed a meshless method for nonrigid image registration in which the
deformation field is locally modeled using monomials, and then a global defor-
mation field is obtained by blending together the local deformation fields. For
regularizing the deformation, we designed an energy function that penalizes in-
consistencies between local fields. Quantitative and qualitative evaluations were
performed on analytic fluid images, and on cardiac MRI images. Future work
includes a comprehensive evaluation of the parameters’ effects on registration
results, and an extensive comparison to other registration methods.
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Table 3. Node distribution scheme

Regularly distributed Adaptively distributed

RMS RMS CC RMS RMS CC
Method mean variance mean mean variance mean

B-Spline 1.45 1.08 99.75 3.72 4.08 99.75
Demons 1.27 0.83 99.80 4.24 3.42 93.95
Meshless 1.49 1.07 99.73 3.02 2.83 98.15
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