Topics in Scientific Computing, CSE 5810
Numerical Stability: Wiki
Error increases as the algorithm progresses,

Depends on ordering of steps in algorithm,

Solution: reorder steps, or different algorithm

Round-off error: Numerical approximation of correct value

Truncation error: Not doing infinite steps, truncating to finite steps as approximation

Condition number: dynamic range of input – relates to output noise propagation

Large condition number -> bad, small error in input may cause large error in output

Chapter 2: Linear Systems:
LU-decomposition

----------------------

(p49) N^2 eq but N^2 +N unknown, because diagonals have both \alpha_ii, and \beta_ii
We have freedom to choose arbitrarily N variables

\alpha_ii = 1

Need for pivoting (p50): division in 2.3.13 may be by zero, 

Otherwise, a feasible LU decomposition may not be achievable by the algorithm

Division by zero after pivoting means LU decomposition is not feasible

Implicit pivoting (p51): Normalize co-eff’s of each eq to 1, by largest co-eff, before pivoting

Otherwise, 100x +50y = 200,  11x +7y = 13

Complexity of Crout algorithm: Cormen et al., O(N^3), book says 1/3 N^3. 
How?

SVD
--------------------------

From book and wiki.
SVD can work with singular matrix (approximately), non-sqr matrix, reduce noise, find best components, ……….

What is SVD, define? 
Theorem: can be done for any matrix
Geometrical interpretation of SVD (wiki)
Rank = non-zero singular values; very low singular value means what?
Non-sqr matrix: #singular values = min dimension

Application of SVD (from wiki: the ones you understand or think important)
Eigen-decomposition

Computation of SVD (remember reordering of rows/columns in decreasing order of sing. Values)

ALGORITHM/CODE IS NOT AVAILABLE IN BOOK, BUT YOU NEED TO FIND

Demo must include: Find range, nullity, and rank of a matrix, least square solving by SVD, image transformation by SVD or other real applications
2.6.1 range, null-space, etc,:
A: x -> b, is function

2.6.2 inversing matrix:

Condition number of A is largest to smallest wj ratio

A: x -> b, is function

For b=0, solution is in x
A full-rank, square, x-b is unique mapping

A: non-square or lower-rank, then over determined or under-determined

Over-determined: SVD finds lowest length solution out of all possible ones

Under-determined: SVD finds x with  min b-Ax error

If wj is small (A is almost singular), put that W-inverse element 0 instead of infinity:

Pseudoinverse / Moore-Penrose inverse

Proofs of over/under-det cases are in book
By 0-ing 1/wj for small wj, SVD ignores some “useless/corrupting” solution vectors

2.7.6 Conjugate Gradient:

Needed in later chapter for minimization – ch 9
Another method for solving linear set of equations 2.7.29  

Iterative minimization of residual eq 2.7.30, 2.7.31
Solution space over domain x, draw

Show how direction and step are found in each iteration eqs. 2.7.32, 2.7.37
Bi-conjugate, understand, condition eqs. 2.7.33-35, geometrical interpretation
Stopping condition eqs. 2.7.36

Theoretical gurantee of stopping in N steps for dimension=N, but….

(1) only for exact arithmetic, not in practice, (2) in practice unstable alg for general A

CG for symmetric matrix – still uses bi-conjugate technique but with r0-bar =r0, and so
Symmetric but non-positive definite min. residual alg, with eq 2.7.38

Unsymmetric matrix, GMRES alg, minimize eq. 2.7.39

Ignore “pre-conditioner” A~ eq 2.7.41 - - , for now

Do not use A^T . A, has high condition number (ideal cond. No.=1, for I-matrix)

Preconditioned, PBCG alg, eq. 2.7.41, efficient version with eqs. 2.7.42-43

4 stopping choices with itol=1/2/3/4 in code Linbcg

Question: which version of alg do we use?
Low priority over class-time, for now: Code&demo Linebcg function by solving a small example

3.0 Interpolation (GO OVER SLOWLY)
Data points -> to a functional form

Even locally, actually better, because global fit may be wrong

Purpose: evaluate function at given x-coordinate = interpolation / extrapolation

Function-types: polynomial, rational, and Trigonometric

Local interpolation: over M points around given x, where M<<N all data points

Local interpolation is real-time

Function representation: with co-efficients of basis, poly->a0, a1, a2, etc., sin/cos -> Fourier co-effiients

Local may be further local over a support -> e.g.,

4 points for cubic polynomial, 3 points for quadratic, 2 pts for linear interpolation

Higher order polynomial fit oscillates too much (overfitting) -> spurious interpolation

Piece-wise smooth over M points -> spline

Cubic -> second order derivative same, Sqr-> first order derivative smooth,,,,

Higher order polynomial fit are not good as above (TRY IT!)
Coding: linear for understanding the base functions, cubic for real,

And barycentric is more stable

3.1 on code: searching where to interpolate given x

First, pre-search for bracketing a bound, then logarithmic binary search to locate exactly,

Then choose M points around x

3.2 Polynomial interpolation

Eq 3.2.1 Langrange’s interpolation formula

Neville’s algo to combine lower order polynomial eq 3.2.2, recursive formula eq 3.2.3

Further improvement for more tracking eqs. 3.2.4 & 3.2.5

3.3 Cubic Spline

Smooth first derivative, continuous second der. : read a bit on smoothness of function on wiki

Decision: make D2 constant over (internal) points

Gets to eq 3.3.3

Needs two more conditions for solving – boundary points’ D1 is chosen: (1) D2’s =0, or (2) D1 with two previous internal points

SHOW HOW EQ 3.3.3 IS DERIVED

Eqs 3.3.5 & 3.3.6 are how the interpolation is done – algorithm

Practical advantage: Matrix is sparse – tridiagonal, previous chapter’s O(N) algo used (we did not cover that)
3.4 Rational interpolation: polynomial also in denominator

Note: often M and N are mixed

Can handle poles in interpolating function better, but…

<Pede approx., diagonal rational function???>>

Neville-like algorithm eqs 3.4.3 – 3.4.8:  rational interp. code can be adapted
3.4.1 Barycentric interpolation

Discrete interpolation formula may create poles when none exists in the original rational interp. : hence Barycentric interpolation
Form: eq. 3.4.9

How to find weights w_k: eq. 3.4.10-11

Vandermonde matrix inversion eq. 3.5.1-2
One-by-one co-eff extraction sec 3.5.1

3.5.0-1: Co-efficients of interpolating function

--just lecture, no coding—

Vandermonde matrix inversion eq. 3.5.1-2

One-by-one co-eff extraction sec 3.5.1

3.6 Multi-dimensional interpolation

e.g., image interpolation

Interpolation on a grid, with some points’ values available: regular interval, or irregular intervals
Bi-linear interp. formula eqs. 3.6.4-5

3.6.1 Higher order interp., e.g., cubic: 2 bilinears from 2D (DRAW)
3.6.2 Smooth higher order with spline: 2 bi-cubic splines for 2D

3.6.3 Splines all around, not just in two 1Ds: eq. 3.6.6 with co-eff c’s tabulated in the struct below

Hui-Yunfei: try to understand the difference between these 3 methods 3.6.1-2-3 from other sources! The third one is of low-priority in implementing but try.
3.7 RBF, for irregular grid, but data is on scattered pts

1- create a grid where data falls on grid pts, - finite element method (GCM?)

2- move data pts to nearest grid pt!

Radial function eq. 3.7.1

Solve for co-eff w_i using data points eq. 3.7.2 

Then, use those co-eff to interpolate
Normalized RBF, eqs. 3.7.3-4, no improvement in most cases, just statistical satisfaction!

3.7.2 Specific RBF’s

Eqs. 3.7.5-8

We will not cover Krigging/ Gauss-Markov / Gaussian process regression Ch 3.7.4

Natural method for interpolation, by averaging over points around 
Very good in practice!

Provides error measures – variance

3.8 Laplace interpolation
<What is the difference with splines???>

Missing data interpolation on regular grid

Second partial derivative =0 all around, but data points are anchored eq. 3.8.1-2

Domain specific – minimizes total gradients over the given domain eq.3.8.3

Center averaged over neighbors around, for missing data eqs. 3.8.4-5
Middle of boundary lines: eqs. 3.8.6

Then, solve for all points, using anchored data points

[DO SOME  HAND CALCULATION OVER A SMALL GRID AS EXAMPLE]

[READ A BIT ON THEORY – HOW  EQS. 3.8.1 AND 3.8.3 ARE SATISFIED?]

Ch 9  Roots of equation

Ch9.0  
Multi-dim function’s root may not exist

Roots may degenerate: at same point multiple roots, e.g. (x-2)^2 =0

In 1D, always bracket: look for change of sign on x_min and x_max, 

Then find root between those pair of points

Degeneracy – difficult to find sign change, bracket is useful for odd multiplicity

In >1D, no such luck, but may decide on a 1D direction first

Most algorithms find roots iteratively – increasing accuracy, up to precision

Smooth functions converge nicely, in 1D

Good to have idea on the function – plot 9.0.1
Bullets: intro on where to use different algo, Newton-R: bracketing not trivial

9.1 Bracketing

Continuous fn changes sign around a root

Discontinuous fn: step discontinuity, -> sign change
Singularity, e.g. eq 9.1.1 -> bracketing will detect but abs(fn) is inf,

So, evaluate after finding root!

9.1.1 Bisection

Binary search really

Complexity eq 9.1.3, log on starting interval

Always finds one root or singularity

Analytical root may be beyond machine precision, hence, converge only up to pre-defined precision
9.2.0 

Secant method Fig 9.2.1

False-position Fig 9.2.2

Slow convergence of False-pos. Fig 9.2.3

9.2.1 Ridder’s method

Quadratic fit: eqs. 9.2.2-3

?Why e^Q, =P should do!

Find x4 given x1, x2, x3, then iterate taking 3 of these 4

Quadratic fit may get outside bound

Convergence root-2 superlinear >1

9.3 Brent

Inverse quadratic eq. 9.3.1

Correction over middle term b of the three points a,b,c, eq. 9.3.2

If correction one outside bound (or slow convergence) Brent uses bi-section, thus, speed + correctness
9.4 Newton-Raphson

Derivative computable/available

Correction term eq. 9.4.2, iterate as eq. 9.4.4

Convergence eq. 9.4.5 or 9.4.6, fast – precision doubles every iteration

Avoid machine computing derivative: (1) speed reduces, (2) error compounds

NO: 9.4.1 fractal, 9.4.2 Halley’s

9.5 Roots of polynomial

Degeneracy – multiple roots – bracketing is problem

9.5.1 Deflation

Find a root – divide polynomial – find next root

Reduces order gradually, but

Error of one root propagates to next – compounds

Forward deflation / Backward: highest power of x to lowest, / Reverse

?End-to-end: divide by highest power, next step find 1/root, etc.

Root polishing: find approximate root, then converge to more accuracy
9.6 Newton-Raphson on Non-linear system of eqs.

Problem: Fig 9.6.1

Local minimum problem: “no root here! - in same Fig. 9.6.1

Method: eqs. 9.6.3, 5, 6

Iteration with correction eq. 9.6.7

9.6.1 Jacobian has well-defined surface to travel on, and find minima, unlike vector-F system of functions
9.7 Global convergence (??) for non-linear system of eqs.

Minimize eq. 9.7.4

Step vector eq. 9.7.3 needs Jacobian (partial derivative over multiple dimensions)

?Descent eq. 9.7.5

?Backtrack – when?
9.7.1 Line search

Steps eq. 9.7.6

Convergence guarantee eq. 9.7.7

Finding step size lambda on backtracking eqs. 9.7.8-11

When gets closer to root, better lambda eq. 9.7.14
9.7.2 Globally convergent (??) Newton

INCOMPLETE NOTE ON CH 9 …..

Ch 10 Optimization
Ch 10.1 Bracketing

Three points with middle one having lowest function-value

Note: Make distinction between x-coordinate and y-coordinate/function – gets confusing sometime

Iterate replacing 3 points 

Ch 10.2 Golden search

Best replacement is to have mid-pt at golden ratio 0.38/0.61 between the 2 extremes,

Proof: Eqs. 10.2.3-7

This gives linear convergence rate: eqs. 10.2.1-2

Closest to real minimum attainable here is Sqrt(Computer’s precision): eq. 10.2.2

Ch 10.3: Quadratic convergence with parabolic interpolation
Faster than linear but may take minimum-of-the-iteration outside bracket,

So, generally not advisable

Compromise is Brent: quadratic runs only when “close” to the minimum,
But if mid-pt is outside bracket, then reject it and go back to Golden-search again

“Closeness” measured using eq. 10.2.2 w.r.t comp-precision

Parabolic: needs 3 pts’ (x, y) co-ordinates to draw parabola  y=f(x),

Then chooses x-coordinate of the bottom of the parabola analytically, this becomes one of the 3 points for next iteration, but not necessarily mid-pt: Fig 10.3.1

Ch 10.4 Analytical derivative as a function is available

But, book refuses to use it for higher order interpolation– may take min point outside bracket

So, derivative’s sign on mid-pt is used only to see which direction to go,
Note, derivative=0 indicates real lowest-pt found

DBrent code is this compromise
Ch 10.6 Multi-dimensions

Choose one line for minimization first – (1) direction vector, and (2) amount scalar, in each iteration

In 1D only second one above was needed

Ch 10.7 Powell’s method with conjugate directions

Once direction vector is decided, line-min from Ch 10.6 is done

Conjugate directions: make sure directions are perpendicular to each other from iteration to iteration,

Why? Otherwise, you may go back and forth on same direction – idea is to preserve previous moves’ improvements toward minimum

Eqs 10.7.1-2 for Taylor expansion
Eq 10.7.3 condition for minimum – gradient zero

Eq 10.7.5 – how to get conjugate gradient

Ch 10.7.2: Powel’s method

Only N previous gradients necessary for convergence, where N=dimensions
Bullets show how to choose next gradient – especially, bullet 4

N iterations need 1+2+3+…N  =N(N+1) linmin calls
Strict conjugate finding may go to a “wrong answer” (some directions unexplored?) – Fig 10.7.1

Ch 10.7.3

So,  use eq 10.7.7 for gradient replacement

Exact procedure: items 1-2 on p513 second para

Ch 10.8 Partial derivatives may be analytically calculated

Availability of gradients reduces #linmin from N^2 to N, but

Each gradient compute also takes time, so, improvement is not of order N, but still some improvement

A gradient-component may be same for some direction for nearby points making resusage (but, how would one know?)

Steepest descent algo (bottom pg 515) – always follow local gradient: is not good: Too many small steps (cf Fig 10.8.1)
Using past (and conjugate) gradients makes CG to take bolder/longer steps

Contd. Ch 10.8 CG (We need a theory paper/text to understand!!)

2 vectors are tracked in iterations  g, h:  Eq10.8.2  (What are physical meanings of them?)

They are conjugate, to each other, and over past iterations: Eq 10.8.3

Parameters, lambda and gamma ensures orthogonality, when computed using Eqs. 10.8.4-5

Hessian is not needed with these lambda and gamma in eqs. 10.8.4-5 (Pf in eq10.8.6)

Polak-Ribere’s correction over above Fletcher-Reeve  Eq10.8.7, for not-exact quadratic form
Ch 13 -13.1.2 Spectral Analysis

Needs some code (at least) from Ch 12 FFT
Note the basis function-form (Ch13.0 pg640)

FFT is just an efficient algorithm for doing DFT – O(n logn) as opposed to O(n^2)

Fig 13.1.1 – convolution =moving window averaging, weighted

Second function is operator/response function of detector, first one is operand/signal

Convolution Thm: end of pg642, point-to-point mult in frequency domain is same as convolution in time domain

Signal end needs extending with zero – operator to act fully on each end

Ch 13.1.3 Large data set

Block-wise FFT-convolution

Be careful on wrap-around end effect

Ch 13.2 Correlation

Meaning of correlation,  lag = movement

Eq 13.2.2: definition

In frequency domain, Eq 13.2.3

For 2 real time serieses imaginary part will be zeros: TEST IT
Ch 13.3 Weiner filtering

Two types of noises: 1. point-response convolved, and 2. Random additive noise

Problem: extract expected signal

Two assumptions: 1. Point-response known and invertible, 2. Additive noise is uncorrelated to signal / random

Least square formula: Eqs. 13.3.4-5

Minimized filter in frequency domain, Eq. 13.3.6

Take power spectrum, Fig 13.3.1, then figure out what it should be, then filter out “noise”,

then extend toward negative frequency symmetrically, lastly invert back to time domain

Do not apply iteratively – filtered signal will go to zero, this is not an iterative algorithm

Ch13.10 Wavelet

Orthogonal basis functions (as sinusoidal, in FT)

Invertible transform (as time-frequency in FT)

Efficient DWT (as FFT)

??Spares operator

Ch 13.10.1 Debauchies Wavelet

DAUB4 Eq 13.10.1, note wrap around last line
It would be FT if even rows are same as preceding odd rows

Odd rows – moving window average, even rows low-cut filter-type: Convoluted
Orthogonality demands, eq 13.10.4, with normalization eq 13.10.3, solving to values in eq 13.10.5

DAUB6 values eq 13.10.6

Inverse of DAUB4  transform by eq 13.10.2, source of ortho-normalization equations 13.10.3-5
Ch 13.10.2 DWT

FFT type transform-butterfly iterations, eq 13.10.7

Inverse, similar, from right to left, but with inverse transform

Wrap around on last rows to be handled specially in code

Ch 13.10.3 Debauchies visualization

Figs. 13.10.1

Differentials are not continuous!

