Chapter 9 – Computational Molecular Biology
Michael Smith

Introduction

· This chapter discusses how molecular biology is used to solve hard algorithmic problems

· DNA computing has the ultimate aim of creating very efficient biomolecular computers
9.1 The Hamiltonian Path Problem

· This section discusses how to solve the Hamiltonian path problem in directed graphs (HDPP) with DNA molecules

· The DNA molecules are used in a laboratory method which comprises of a series of procedures which grow linearly with the number of vertices in the graph

· The Hamiltonian path problem is NP-complete

· The heart of this DNA method is a brute force algorithm executing an exponential number of operations which are executed in parallel, thereby enabling the method to have a linear number of laboratory procedures
· The problem to be solved is : given a directed graph G=(V,E) such that |V|=n and |E|=m and two distinguished vertices s and t, verify whether the graph has a path (s,v1,v2,….,t) whose length is n-1 and whose vertices are all distinct; figure 9.1

· A brute force algorithm involves generating all possible paths with n-1 edges and verify whether one of them obeys the constraints of the problem

· There are at most (n-2)! Paths

· A modified version of the brute force algorithm involves generating a large number of random path, instead of all paths

· Random path generation has the possibility of generating independent paths, thus they can be created simultaneously

· The complete algorithm is (1) generate random paths, (2) keep only those path that start at s and end at t, (3) from the remaining path, keep only those that visit n vertices (4) from the remaining paths, keep those that visit each vertex at least once (5) if any paths remain, return yes, otherwise return no
Random Path Generation
· Assume that single stranded, 20 nucleotide DNA sequences are available and the generation of large numbers (> 1010) of copies of short DNA strands is easy

· Vertex representation : choose n random single stranded, 20 character DNA sequences. For each vertex v associate sequence Sv and obtain the reverse complement,
[image: image1.wmf]v

S

of each sequence. Generate
[image: image2.wmf]v

S

in test tube T1
· Edge representation : if (u,v)
[image: image3.wmf]Î

E, then build Suv by concatenating the 10-base prefix of Su to the 10-base prefix of Sv. Suffixes and prefixes are distinguished by the 5’-3’ direction of DNA strands. Generate Suv in test tube T2
· Path construction : pour T1 and T2 into T3. In T3 assume binding between sequences can freely take place (many ligase reactions will occur)
· The preceding steps ensure random path generation; figure 9.1
Remaining Steps in the Algorithm
· The contents of T3 are placed through successive biochemical sieves that select paths with desired properties
· Step (2) is implemented by polymerase chain reaction using primers

· Step (3) is implemented by separating double stranded DNA having 20n bases, which represent path with n vertices

· Step (4) is implemented by retaining strands where
[image: image4.wmf]u

S

is present for each u
[image: image5.wmf]Î

V different from s and t
· Step (5) involves seeing what has remained by using a conventional gel experiment

9.2 Satisfiability
· This section describes to use an approach similar to that in 9.1 to solve the satisfiability problem (SAT)
· A Boolean variable is a variable that can take either 0 or 1
· Boolean variables can be put together in a formula using
[image: image6.wmf]Ú

 (logical or),
[image: image7.wmf]Ù

 (logical and) and parentheses

· Variables, for example x, and their negated form
[image: image8.wmf]x

 can be used

· The actual way a variable is used is called a literal

· Any Boolean formula can be expressed by a collection of clauses, where each clause is a collection of literals connected by the operator
[image: image9.wmf]Ú

. Each clause is delimited by parentheses and are connected to each other by the operator
[image: image10.wmf]Ù

. Such a formula is in conjunctive normal form
· The SAT problem consists of determining whether there is an assignment of values to the variables that satisfies a given formula. In other words, an assignment that makes the formula evaluate to 1
· An algorithm to solve SAT with DNA is as follows : (1) generate all 2n variable assignments and place them in set S0 (2) from all assignments in set S0, keep those that satisfy clause 1 and place them in S1 (3) from all assignments in S1, keep only those that satisfy clause 2 and put them in set S2…. (m) from all assignment in set Sm-1 keep only those that satisfy clause m and place them in set Sm
· After step m, if Sm is nonempty return yes, otherwise return no
· This algorithm is implemented using DNA by using a graph to encode Boolean variable assignments

· There will be one graph for each distinct number of variables, Gn will be used to solve a problem with n variables; figure 9.2

· (v1-vn+1) –path in the graph encodes an n-bit number which corresponds to one particular assignment of Boolean values to n variables

· The starting point for the DNA SAT algorithm is a test tube T0 which contains a large number of sequences representing paths in Gn
· Detect : is an operation that reports whether a test tube has any DNA sequences
· Extract : is an operation to extract sequences that have a certain property

· In this case, extract is applied to a test tube T in order to extract the DNA sequences in T that contain a given precise DNA substring of fixed length

· The Extract operation has the format Extract(T,i,b) where T is a test tube, i is the index of a variable and b is a Boolean value
· The DNA SAT algorithm is given in figure 9.3 and requires O(m) Extract operations and one Detect operation
9.3 Problems and Promises

· Several problems need to be solved before the promise of DNA computing can be fulfilled

· The DNA approach can only solve small instances of the HDPP problem. For example, to solve an instance with 100 vertices, at least 10 tons of water would be required.
· Laboratory methods can be time consuming which is an inhibiting factor in DNA computing

· Biochemical experiments always contain errors

· However, despite the present limitations, the ultimate goal is a general purpose computer based on DNA. Such a computer could be mush faster and use much less energy than conventional computers

_1112906193.unknown

_1112907144.unknown

_1112907577.unknown

_1112907678.unknown

_1112907550.unknown

_1112906271.unknown

_1112906182.unknown

