A Story of Machine Learning

Syllabus:

Decision Tree 18— 18.3.4

Evaluation 18.4

Model Selection 18.4.1
Regularization 18.4.3

Theory 18.5.0

Regression 18.6 — 18.6.2
Classification 18.6.3 — 18.6.4

Neural Network 18.7 — 18.7.4 (exclude exotic varieties of NN in my slides)
Non-parametric models 18.8 — 18.8.4
SVM basics 18.5

Clustering basics
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INFORMATION THEORETIC ENTROPY:

If one were to transmit sequences comprising the 4 characters 'A’', 'B', 'C', and 'D', a transmitted message
might be 'ABADDCAB'. Information theory gives a way to calculate the smallest possible amount of
information that will convey this.

If all 4 letters are equally likely (25%) in a text, one can't do better (over a binary channel) than to have 2 bits
encoding for each letter: 'A' might code as '00', 'B' as '01', 'C' as '10', and 'D' as '11¢, i.e., 2 bits per letter.

If 'A' occurs with 70% probability, 'B' with 26%, and 'C' and 'D' with 2% each, and we are allowed to assign
variable length codes, 'A' would be coded as '0' (one bit), 'B' as '10', and 'C' and 'D' as '110' and '111". It is easy
to see that 70% of the time only one bit needs to be sent, 26% of the time two bits, and only 4% of the time 3
bits. On an average, fewer than 2 bits will be required since the is lower (owing to the high prevalence
of 'A' followed by 'B' — together 96% of characters) than that with equal probability. Overhead of transmitting
the encoding of letters is additional but minimal.

The calculation of the sum of measures and captures this effect.

https://en.wikipedia.org/wiki/Entropy_(information_theory)
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Decision Tree: Choice of attribute at each level

Entropy of Target Examples (current level):
H(Goal) = P(v;) >, log, (I/P(v;)), kmay be {True, False}

Say, 8 positive examples, and 4 negative examples

H(Goal) = B(8/12)=-[(8/12) log, (12/8) + (4/12) log, (12/4)]

Now, for attribute A, calculate entropy:
but say, attribute A has three values {some, full, none}
Say, vy, v v, are number of examples for these three types, and

(ps, ny) are positive and negative examples for the Target-label attribute (to go to restaurant or
not) corresponding to A=some
such that p; + ng = vy, and so are for (ps ng , (p,, ny)
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H(goal) or entropy before choosing attributes

Entropy for each value v

Aggregate entropy= weighted sum for all attribute values

Difference 1s Information Gain
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Decision Tree: Choice of attribute at each level

Calculate Entropy for attribute A:
Say, attribute A has three values {some, full, none}
and, v, vs; v, are number of examples for these three types, with

(ps, n) are positive and negative examples for the larget attribute (to go to restaurant

or not)
such that p; + ng = v, and so are (ps ny , (p,, ny)

Weighted Entropy, R(A) = -(vy/m)[(py/v)log,(p/v,)+
(ny/vylog,(nsvy)]
- (v/m)[(py/vilog (py/vy)+ (ny/vilog(n/vy]

- the same for (A= “none”)
m=V, T VTV,
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Decision Tree: Choice of attribute at each level

Now, for choosing attribute A, information gain will be

Gain(4) = H(Goal) — R(A)

Compute this gain for each attribute at the current node of the

decision tree,

Best attribute provides highest information gain (or lowest
entropy relative to Goal-entropy)

4/2/24 https://medium.com/wwblog/transformation-in-neural-networks-cdf74cbd8da8
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Decision Tree:
Choice of attribute at the root node in the Restaurant example in book

H

A

Gain(Patrons) = 1 — [(2/12)B(0/2) + (4/12)B(4/4) + (6/12)B(2/6)]
= 0.541 bit

H(Goal), for 6 pos and 6 neg examples in total, =1 bit

Gain(Type) = 1 — [(2/12)B(1/2) + (2/12)B(1/2) + (4/12)B(2/4) +
(4/12)B(2/4)] = 0 bit

B(q) is the entropy for a Boolean variable, with g=positives/total,
B(q) = qlogx(1/q) + (1-q)log>(1/(1-q))
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MISCELLENEOQOUS: Machine Learning has two stages:
Do not forget

Stage 1: Training, with “known” data (in supervised learning:
input and known labels to generate )

Stage 2. Inferencing (deploying trained ML to its task:
predict the unknown label given input attribute values)

Stage 2.1: Validating with “unknown” data to quantify how good
the trained model is

4/2/24 8



MISCELLENEOUS: Evaluation of Algorithm

Training set = Sample of real world

Stationarity assumption: Real world has the same distribution as
that of training data

Non-stationarity: data is changing over time, what you learned
before is no longer useful

Independent and Identically distributed (iid): Each datum,
training or in real world, has equal probability of appearing

Non-iid: Some data are more important than other
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MISCELLENEOUS: Evaluation of Algorithm

: divide data set into two groups - training and
validation,

for computing the rate of successful classification of test data.

Measurement of : error rate on the validation set

An ML algorithm has many parameters: e.g., hypothesis (order of
polynomial), learning rate, etc.

Fine-tune those parameters using a WRAPPER algorithm, by
repeated validation.

need to repeat cross-validation by randomly splitting the available
data set.
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MISCELLENEOUS: Evaluation of Algorithm

Cross validation: 1/k part of data set is a validation set,
repeat x-number of times by randomly splitting 1/k

k=n, for data set size n, is cross-validation

: After k-fold cross-validation, ML algorithm may overfit
known training data (if validation is over part of the training set) ,
but may not be as good for real life use (note: that may mean iid is
not true)

ML competitions hold out real “test data,” but still groups may
"cheat" by repeatedly submitting fine-tuned code.
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MISCELLENEOUS: Hypothesis Selection

Finding best hypothesis: two step process

1) Find best hypothesis space
2) Optimization to find the best hypothesis

E.g., 1) Which order of polynomial, y=ax+b, or, y = ax’ +bx +c?
2) Find a, b, c parameters’values
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REGULARIZATION

Optimization function may embed of the model, or any
other relevant knowledge

E.g., Cost(h) = Error + A*(complexity)
Cost(h) = (v —[... ax +b])? + A*(a penalty function to minimize),
e.g., Cost(h) = (y — [ax" +bx"! +cx"2 +...])? + A*(a+b+..), the
parameter themselves
[actually, abs(a) + abs(b) + ..., WHY?]
* his the hypothesis, which is the polynomial
Cost(h) is the error to be minimized
Polynomial may NOW be of arbitrary order

* Ais tunable or
(abs(a)+abs(b)+...) regularization term, lower the better

h* = argminy,, ., Cost(h), is to find parameters a, b, ...

4/2/24 13



Computational Learning Theory

PAC learning — quality of an algorithm:

» Any seriously wrong hypothesis may be quickly found out with
only a few examples

* Conversely, any hypothesis that survives training after many
examples is likely to be correct

Probably Approximately Correct (PAC) learning algorithm

4/2/24 14



Computational Learning Theory

CLT provides a measure on PAC learning
#Hexamples versus accuracy?

If you want e—accurate you need f(c) number of samples, as CLT

tries to find the function f(.)

4/2/24 15



Problem II: Linear Regression

Output is Continuous valued
E_'au—ﬂggrm_g_dL—Ad_g at Reader DC. C=qa X
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CA, m July 2009, along with the linear function hypothesis that minimizes squared error loss: y =
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Linear Regression
(Still supervised learning)

Regression: Predicting a continuous value (€.g., y) out of input x values
[Least Square Error or L,-norm minimization

Linear model, y = mx +b: Has closed form solution Eq 18.3

4/2/24 17
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Loss(hy) =2’ (yj — (WiX; + Wg))?, j goes over N data points

Take partial derivatives over w; and equate each to zero, i runs over parameters.
w;’s are parameters that the algorithm learns.

Analytical solution (by equating partial derivatives to 0):
wi = [NQGxjyp) — x)Qyp] /1 INQx;?) - (%))* ]

wo = [2yi—wi(2x)]] / N

for two parameters
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Linear Regression

Sometimes no analytical solution is found in closed form (e.g., non-linear regression)
Gradient Descent gets iteratively closer to the solution:
determine the direction in each iteration and update w parameters above

step-size may be updated in each iteration, a constant, or a fixed schedule

Note: "direction" gets determined by the sign of error: +ve or -ve
(useful in understanding classifier later)

4/2/24 19



Multivariate Linear Regression

Hypothesis is: y = wy +wx; +wox, +...,  for x;, x5, ...x, variables in n-dimension

Closed form solution is a matrix formulation with partial differential equations equated to 0
Gradient descent is:

w € start with arbitrary point in the parameter space (W Vector) Optimizes on parameter-space
loop until convergence e

for each parameter w; in w do
w; € w; —o* 0/0w; (Loss(w) );

o. 1 the step size or learning rate

CIED
2 ecmoll
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Multivariate Linear Regression

Hypothesis: y = wy +wx; +wox, +..., for x;, x,, ...x, variables

Gradient descent update is:
w; € w; — a* 0/ow; (Loss(w) );

Loss function may be summed over all training examples

For example, with 2 parameters:

wo € wo + o™ X i(y; — hw(x))); // sign changes for derivative
wi € wy +a* (y; — hy(X)*x;
... for all w;’s

where £,,(x;) is the predicted value for y

4/2/24 21



4/2/24

Multivariate Linear Regression

Loss function may be summed over all training examples

For example, with 2 parameters:
Wo € wo — a* 2(y; — hy(x)));
wi & Wi —a* 3 i(y; — hy(x))*x

Above update procedure is called batch-gradient descent:
Update each w; going over i
For all training samples

Stochastic-gradient descent:
For each training example j
update all w;s

Typically, one uses a mix of the two: e.g., a fixed batch size

22



Three nested loops 1n gradient descent optimization:
Iterations
Parameters
Training data

... In any order
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Multivariate Linear Regression

Loss function may be summed over all training examples

For example, with 2 parameters for one variable data (y; = wo + w; *x;):
wo € wo + a* 3(y; — hw(x)));
w € wy +a* Y(y; — hu(x))*x;

Note, in multi-variate case, element of X 1s x;;
y = Wy W X; TW;X, +..., for i running over variables or parameters
and,

J running over training examples

Update rule is Eq 18.6

W_”< = argminv_v Zj L Z(Yja w.)_(i), as in L,-norm

or,

wi € wi + o™ X i(y; — hyi(X))*xj, & is the hypothesis or model-formula, e.g. ax+b

4/2/24 24



Multivariate Linear Regression

Note: some dimensions may be irrelevant or of low importance:
w; ~0 for some X;

Attempt to eliminate irrelevant dimensions or dimensions with low w values:

use a penalty term in error function for "complexity"
Loss(hy) = Ly(hy) +4

L;-norm (absolute sum) is better for this second term on complexity of the model:
"sparse model": minimizes #of “dimensions” (Fig 18.14 p722)
sometimes called Lasso regrerssion

4/2/24 25
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Problem III: LINEAR CLASSIFIER 18.6.3

» Predicting y is the objective for regression, but classifiers predicts “type” or “class”
» Target function here 1s Boolean, y =1 or 0 (as in Decision tree)

» The objective 1s to learn a Boolean function such that: hy(x) = | or 0:
data point x 1s in the or not

e Training problem:
set of (X, y) 1s given, x are data points and now, y =1 or 0,

find h(x) that models y

» Test by inferencing:
a data point x 1s given, predict if it is in the class or not (compute h(x) )

4/2/24 27



LINEAR CLASSIFIER 18.6.3

No longer hy(x) 1s the line expected to pass through (or close to) the data samples
as in regression,
but to separate or c/assify them into two sides of the line — in class or out of class

Model: wy + wix; +wyx, + ... 20, and hy(x) =1 if so, =0 otherwise

Finding the line 1s very similar as in regression: optimize for (wy, wy, ...)
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LINEAR CLASSIFIER 18.6.3

Rewrite the model: (w,, wy, wa, ...)T * (X, X1, X, ...) >0, a vector product
where (...) is a column vector, (.)T stands for matrix transpose, and

Consider two vectors, w= (Wq, W1, Wa, ...)T and x= (X, X1, X2, ...)T
hy(x) = | when (w.x)>0, otherwise hy(x) =0

Gradient descent (for linear separator) works as before. It is called:
Learning rule:

w; € w; ta*(y - hy(X) ) * x5, 0<1<n, updates from iteration to iteration

One can do gradient descent (for-each w, inside loop for-each-datum) or
gradient descent (for-each datum, inside for-each w) here

Note: y here 1s also Boolean: | or 0 in the "training" set
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LINEAR CLASSIFIER 18.6.3

Training:
(1) w stays same for correct prediction y= hy/(X)
(2) False negative: y=1, but h,(x) =0, increase w; for each positive?(x;), decrease otherwise

(3) False positive: y=0, but h,(x) =1, decrease w; for each positive?(x;), increase otherwise

4/2/24 30



LINEAR CLASSIFIER 18.6.3
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» Logistic regression:
use sigmoid hy(x) rather than Boolean function (step function) as abov
h,(x) = Logistic(w.x) = 1 / [1 + e™¥]
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LINEAR CLASSIFIER 18.6.3

» Logistic regression:
use sigmoid h,(x) rather than Boolean function (step function) as above
h,(x) = Logistic(w.x) = 1/ [1 + e¥X]

» Update rule with above logistic regression model: Eq 18.8 p727
Wi < Wi +(1*(y - hﬂ()_() ) * hv_v(&) * (1_ hw(&) ) * Xj

valued h(x) may be interpreted as of being in the class
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s ARTIFICIAL NEURAL NETWORK Ch 18.7

» Single Perceptron, only a linear classifier, a neuron in the network

» Oorl

4/2/24 33



ARTIFICIAL NEURAL NETWORK Ch 18.7

A single layer perceptron network CANNOT "learn" xor function or Boolean sum,
Fig 18.21 p 730
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ARTIFICIAL NEURAL NETWORK Ch 18.7
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ARTIFICIAL NEURAL NETWORK Ch 18.7

» Layers of perceptrons: Input = Hidden = Hidden = ... = Output classifying layer
* Two essential components: Architecture, and Weights updating algorithm

* Crucial details: Loss function for the algorithm, Activation function

» Perceptron output fed to multiple other perceptrons, Fig 18.19 p728

 Diafferent types of h,(x) may be used as activation function

4/2/24 https://medium.com/wwblog/transformation-in-neural-networks-cdf74cbd8da8 36



ARTIFICIAL NEURAL NETWORK Ch 18.7

A single layer perceptron network CANNOT "learn" xor function or Boolean sum
Multi-layer Feed Forward Network:

Multiple layers can coordinate to create complex multi-linear classification space,
Fig 18.23 p732
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ARTIFICIAL NEURAL NETWORK Ch 18.7

» Types of architectures:
» Feed-forward Network: simple Directed Acyclic Graph
* Recurrent Network: feedback loop

e Transformer
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ARTIFICIAL NEURAL NETWORK Ch 18.7.4

, draw how error propagates backward
get total error del E, weighted distribution over each backward nodes,
each node now knows its "errors* or E’s, propagate that error recursively
backward
all the way through input layer,
update weights or w’s

4/2/24 https://medium.com/wwblog/transformation-in-neural-networks-cdf74cbd8da8 39



ARTIFICIAL NEURAL NETWORK Ch 18.7.4

« Total loss function at the output layer, £ neurons:
Loss(w) = >« (Yk — hyw)? =Dk (Yk — ax)? , ax being the output produced

 This 1s to be minimized

« Gradient of this loss function is to iteratively lower:
2k (del/del w) (yx — ay)?

«  Weight updates:
Wi < Wi; + o * 4; * DCIJ

* a is output of the neuron, Del; weighted modified error incorporating
the activation function’s effect (see Eq 18.8)

* Error propagation
Del; = g’(iny) >« (wy Dely), where g’() derivative of activation, k is over next layer neurons
(previous layer in backward direction)
» An iteration of backpropagation learning:
Propagate errors then update weight, layer by layer backwards
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GENERATIVE NEURAL NETWORK

Not only classification...

Transformations: say, (X,y) goes to (2x,y) — a linear transformation that we want to learn

2 0] |3 6
01]|1] |1

Neural Net:

4/2/24 https://medium.com/wwblog/transformation-in-neural-networks-cdf74cbd8dad 1



GENERATIVE NEURAL NETWORK

* Add translations (Affine transformation):

Neural Net:

4/2/24 https://medium.com/wwblog/transformation-in-neural-networks-cdf74cbd8da82



NEURAL NETWORK

 For non-linear transformations use non-linear activation function:

4/2/24 43



NEURAL NETWORK

*  Multi-layer generative network for non-linear transformation:

Input Hidden Output
layer layer layer

I

!

4/2/24 https://medium.com/wwblog/transformation-in-neural-networks-cdf74cbd8dad4



CONVOLUTIONAL NEURAL NETWORK

* Running window weighted mean = convolution
»  Weights are learned

Convolution Pooling Convolution Pooling Fully Fully Output Predictions

+ RelU +RelU Connected Connected

L
1

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

"EeE W
.--- ' '
o ---D o = 4

* Pooling: Pick up a value (e,g., max) from a window — reduce size

https://medium.com/wwblog/transformation-in-neural-networks-cdf74cbd8da8
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RECURRENT NEURAL NETWORK

Feed back loops are provided in the network
Independent from error propagation (backprop learning, weight update) algorithm:

Input ‘
layer Hidden Output
layer layer

Inputs
Outputs

https://medium.com/wwblog/transformation-in-neural-networks-cdf74cbd8da8
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DEEP LEARNING / NEURAL NETWORK
ISSUES TO WATCH FOR

» C(lassification / Regression / Generative

» Balance in data

» Augmentation for training data generation
» Validation / Test dataset size

* Network architecture

» Skip connections

» Activation function (more next slide)
* Loss function

* Optimization algorithm

* Epochs for training

* Learning rate

e Drop out

* Model saving / model size / number of parameters / FLOP
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NEURAL NETWORK
ACTIVATION FUNCTIONS

* Binary step function
* Linear

* RelLU

* Tanh

* Sigmoid/Logistic

* Leaky ReLU

* Parametric ReLU

* Softmax

https://www.v7labs.com/blog/neural-networks-activation-functions
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NON-PARAMETRIC MODELS Ch 18.8

* Parametric learning: hy, has w as parameters

» Non-parametric: no “global data fitting”

« Non-parametric: Query-time processing, minimal or no training
o Simplest: Table look up ( )

For a query find a closest data point and return
»  We still need a sense of “distance” between data points, e.g., LP-norm

L, (X, Xq) = Ok (Xji — Xg1)? )P , i runs over dimension of space,
x; are data points and x4 1S a query point in that space
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NON-PARAMETRIC MODELS Ch 18.8

K-nearest neighbor look up -kNN (Problem Vi):

find k nearest neighboring example data instead of one,

and vote by their attribute values (pure counting for Boolean attributes)
k 1s typically odd integer for this reason

)

Fig. 18.26 p738, shows the “query-space”,
Runs query for every point in the 2D space to check what the prediction will return for that point
Gray areas indicate prediction=dark circle; and white areas indicate prediction=open circle

s all-figures.pdf - Adobe Acrobat Reader DC =
File Edit View Window Help

Home Tools persisthomology-se... tutorial-machine-le... all-figures.pdf x @ Sign In
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Figure 18.26 FILES: figures/earthquake-nnl.eps (Tue Nov 3 16:22:38 2009)
figures/earthquake-nnS.eps (Tue Nov 3 16:22:38 2009). (a) A k-nearest-neighbor model
showing the extent of the explosion class for the data in Figure 18.14, with £=1. Overfitting is
apparent. (b) With k£ =15, the overfitting problem goes away for this data set.
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NON-PARAMETRIC MODELS Ch 18.8

( ) A different version of kNN: fix a distance value d and
vote by ALL data points within d

Advantage: faster search, conventional kNN may need very expensive data organization
(Note: this 1s a search problem, before the query gets answered)

Disadvantage: there may be too few data points within range d,
¢.g. zero data point or no datum

Curse of dimensionality: number of dimensions (attributes) >> number of data
— Sparsely distributed data points
—  Search is slow
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NON-PARAMETRIC MODELS Ch 18.8

» An efficient data organization: k-d tree
* kis dimension here

» Balanced binary search tree over k~-dimension, with median (on each dimension) as the
splitting boundary
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NON-PARAMETRIC MODELS Ch 18.8

» Another efficient data organization: LS/ or locality sensitive hashing

» Hashing typically distributes data randomly, but we want nearer points together in memory
» A few concepts are combined:
o Approximate near-neighbors: find points that have “high” probability

to be within distance cr, radius r (fixed), c indicating “high” probability — these are

parameters

o Two close points have always close projections on any dimension(s), although the reverse is
unlikely to be true

o Create multiple hash functions on multiple subset of dimensions (random), [ideal: on all
dimensions] e.g., X|X3Xy, X5X5X0g,. ..

o Retrieve all points close to the query point in any of the hash function (union of points with
same hash value in each hash function)

o Do full kNN search over those points only
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Points actual distances in space

general hashing locality-sensitive hashing

o0 C >» 00 o
<N '
o v o © | X o]

\ /

Points in the hash table

https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d 116134
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NON-PARAMETRIC MODELS Ch 18.8
Back to regression: NON-PARAMETRIC REGRESSION (Problem IX)

Philosophy. Only near-query data point should influence regression result
more than distant points

Find k-nearest neighbors and perform regression on them

Fig 18.28 p742: k=1, 3-average, 3 linear-regression, 10 with quadratic Kernel

. all-figures.pdf - Adobe Acrobat Reader DC = u

File Edit View Window Help
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Figure 18.28  FILES: . Nonparametric regression models: (a) connect the dots, (b) 3-nearest neigh-
bors average, (c) 3 t-neighbors linear regression, (d) locally weighted regression with a quadrati
kernel of width k = 10.
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NON-PARAMETRIC MODELS Ch 18.8

* Find k-nearest neighbors and perform regression on them
» Kernel-regression: Locally weighted regression
— provide more weights to closer points to the query

= all-figures.pdf - Adobe Acrobat Reader DC = e
File Edit View Window Help

Home Tools Aima3_Instructors... ImageReconManifo... all-figures.pdf x Elmane, Shakre_GS... @ Sign In
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Figure 18.29  FILES: . A quadratic kernel, K(d) = max(0,1 — (2|=|/k)?). with kernel width
k=10, centered on the query point = = 0.
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*  Weights may be computed (“learned”), given a parametrized function
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NON-PARAMETRIC MODELS Ch 18.8

* Kernel-regression: Locally weighted regression

e Alternative to fixed weights:
*  Weights may be estimated, given a parametrized function

w” = argmin,, }; K(Distance(xg, X;))* (yj — W.X;)?
K 1s the kernel functional form with w as parameters,

x, 1s the query point,
(remember) y; is the actual output ( “fraining labels™)

 Then, inference is the regressed output of query point x, 18, h(x,) =w” . x
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NON-PARAMETRIC MODELS Ch 18.9

SUPPORT VECTOR MACHINE (SVM) — basics, the best ML algorithm so far (Problem X)

A few concepts come together:

Support vector: Data points separating the boundary between + and — labels
(Classification or decision boundary)

But with, two parallel lines, one passing through +ve support vectors, one through —ve ones
The gap between these two lines that must be maximized, Fig 18.31 p747

all-figures,pdf - Adobe Acrobat Reader DC = |5 s
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Figure 18.30  FILES: . Support vector machine classification: (a) Two classes of points (black and
white circles) and three candidate linear separators. (b) The maximum margin separator (heavy line),
is at the midpoint of the margin (area between dashed lines). The support vectors (points with large
circles) are the examples closest to the separator.
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H, does not separate the classes.
H, does, but only with a small margin.
H; separates them with the maximal margin.

-- Wiki on SVM

Maximum-margin hyperplane and margins for an

SVM trained with samples from two classes.
Samples on the margin are called the support
vectors.

Note: expects clean, not noisy, separation
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NON-PARAMETRIC MODELS Ch 18.9

SUPPORT VECTOR MACHINE (SVM) — basics [few concepts come together]

Concept-1. Support vector

2) Non-linear space transformation to linearize decision plane: Kernelization
* Resulting space may have more dimensions than the original space

3) Very fast primal-dual optimization
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Figure 18.31  FILES: . (a) A two-dimensional training set with positive examples as black circles
and negative examples as white circles. The true decision boundary, =7 + 22 < 1, is also shown.
(b) The same data after mapping into a three-dimensional input space (7, 23, \/2x1x2). The circular
decision boundary in (a) becomes a linear decision boundary in three dimensions. Figure 18.29(b) gives
4 / 2 / 24 a closeup of the separator in (b).
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NON-PARAMETRIC MODELS Ch 18.9

« SUPPORT VECTOR MACHINE (SVM) — basics

*  Query on SVM runs very fast — like kNN algorithm
- using only support vectors, selected at training time

e Stores Only Support Vectors — huge space saving too!
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TYPES OF LEARNING

Supervised (Regression or Classification)

Unsupervised / Clustering;:
* Only data, no label to predict.
* So, group or cluster data by their “proximity”

Semi-supervised learning:
* Predict (hypothesis /) and include the prediction as training data (!!) if actual predicted
value () was not available
* Follows the “trajectory” of incoming data

Reinforcement Learning (Policy=Multi-dimensional label?):

* Occasional reward/penalty as the agent keeps behaving in real world (input data)
* Online / Interactive / Robotics
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UNSUPERVISED LEARNING / CLUSTERING

» No target output value to predict, i.e., no label, only a set of data points
* Machine Learning: Group them by their "proximity"

* Needs a distance function d(x;, x,) between data points x; and x;
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TYPES OF CLUSTERING

Centroid models: for example, the t-means algorithm represents each cluster by a
single mean vector.

Connectivity models: for example, /sierarchical clustering builds models based on
distance-based connectivity or topology. Mapper algo creates maps of data space.

Distribution models: clusters are modeled using statistical distributions, such as
multivariate normal distributions used by the expectation-maximization algorithm.

Density models: for example, DBSCAN and OPTICS defines clusters as connected
dense regions in the data space. ToMato for topological clustering uses this.

Subspace models: in bi-clustering (also known as co-clustering or two-mode-clustering),
clusters are modeled with both cluster members and relevant attributes.

Group models: some algorithms do not provide a refined model for their results and
just provide the grouping information of data space.

Graph-based models: a clique, that is, a subset of nodes in a graph such that every
two nodes in the subset are connected by an edge that can be considered as a
prototypical form of cluster.

Neural models: the most well known unsupervised neural network is the
self-organizing map (SOM) and these models can usually be characterized as similar
to one or more of the above models: learns local manifolds in data space
Topological data analysis (e.g., Mapper or ToMato algorithm): visualize topology of data

points on space
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K-MEANS CLUSTERING

Start with arbitrary k cluster-center points in data space

Do two-steps while not converged:
. Group data points by their to each of those £ cluster-center points
Find each group's (or median) and it as the new cluster-center

https://en.wikipedia.org/wiki/K-means_clustering
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HIERARCHICAL CLUSTERING

https://en.wikipedia.org/wiki/Hierarchical clustering

Two different ways to build:
 Start with all points as one cluster and keep splitting (fop-down)
e Each point as a cluster and keep merging (bottom-up)

Hierarchical Clustering

Liokaos 08 06 04 02 0
Ward [
Anno.tation { foal
B image name T horse
Pruning (0).4
None L] calf
Max depth: 10 - —— COwW

goat
kid
lamb
sheep
hen
rooster
duck
goose
turkey
chick
duckling
dog
cat
rabbit

Selection

2 Manual
Height ratio: 55.5%

Top N: 3 -

Zoom

Output

Append cluster IDs

Name: Cluster

Place: Meta variable [T

Save Image Report 0.8 0.6 0.4 0.2 0
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HIERARCHICAL CLUSTERING

* Needs a measure for inter-cluster distance, for splitting or merging

«  UPGMA algorithm’s (bottom up) inter-cluster distance: [1/|A|*B|] * D xca D xep d(X,Y)

where |A] 1s the size of cluster A, and so for B, and
x and y are two points in clusters A and B, respectively,
d(x,y) 1s the distance between those two points

human
chimpanzee
bonobo
gorilla
orangutan
gibbon
baboon
Genetic base pair distances translated__ rhesus

to evolution time distance vervet
howler

0.02
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DENSITY-BASED CLUSTERING

Given a set of points in some space, it groups points that are closely packed together
(points with many nearby neighbors), marking as outlier data points
that lie alone in low-density regions (whose nearest neighbors are too far away).

https://en.wikipedia.org/wiki/DBSCAN

p 1s a core point if at least minPts #points are within distance ¢

of it (including p). Those points are said to be directly reachable from p

q 1s directly reachable from p if point g is within distance € from point p

where p is a core point.

q 1s reachable from p if there is a path from p to g, via directly reachable points,
with the possible exception of ¢ itself.

All points not reachable from any other point are outliers.

Core points constitute a cluster core with reachable outliers as cluster edge

N
3 ',
7K A c
B 5
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ADVANTAGES: DBSCAN

No need for cluster number £ as input (k = #clusters) as opposed to that in A~-means
clustering

Arbitrarily shaped clusters.
It can even find one cluster surrounded by a different cluster

"~.- -
SR

..
------

Understands noise, and is robust to outliers

Requires two parameters mi7/ fs and €, can be set by expert by pre-analyzing data

It 1s mostly insensitive to the ordering of the points in the database.
(However, points on an edge between two different clusters might swap cluster membership)
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DISADVANTAGES: DBSCAN

DBSCAN is non-deterministic: border points that are reachable from more than one cluster
DBSCAN* is a variation that treats border points as noise, and not included in clusters

Quality of DBSCAN depends on and

DBSCAN cannot cluster data sets well with large differences in densities,
since the minPts and ¢ combination cannot then be chosen appropriately for all clusters

If the data and scale are not well understood, choosing a meaningful ¢ can be difficult.
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RESOURCE (IGNORE IN SYLLABUS)

A group of data scientists tested some popular chatbots on tasks
including formal and casual writing, text and tone editing, and
programming. Here are some of their impressions:

Bard: good for making your writing more approachable to lay
audiences

Claude: reliably suggests titles or acronyms that make sense, and
good at summarizing text

ChatGPT: offers context, which helps with planning a project or
document

Phind: excels at answering software-development questions
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IGNORE FOR NOW: SELF-SUPERVISED LEARNING

4/2/24 73



SELF-SUPERVISED LEARNING

Based on Autoencoder-Decoder
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