SORTING

Problem: sort a list of numbers (or comparable objects). Solution: An algorithm.
The problem is interesting for its theoretical value, and for its practical utility. Many algorithms are available for the purpose.

Bubble Sort

BubleSort (A)
.1
for i=1 through n do

.2

for j=n through i+1 do

.3


if A[j] < A[j-1] then

.4



exchange A[j] < - > A[j-1]
End algorithm.

Lemma: Lines 2 through 4 get the smallest element of A[i] through A[n] at the i-th position of the array.

Loop invariant for lines 2 through 4 is the property that A[j-1] ( A[j]
Proof: 

Initialization: Starts with A[n].

Maintenance: After j=k-th iteration, for some i<k(n, A[k-1] ( A[k].
Termination: The loop terminates at j=i+1. At that point A[i] ( A[i+1],  A[i] ( A[i+2], …, A[i] ( A[n].  So, A[i] is the smallest element between A[i] through A[n]. QED
Theorem: BubbleSort correctly sorts the input array A.

Loop invariant for lines 1 through 4 is that A[i] ( A[i+1].
Initialization: Starts with A[1].

Maintenance: After the iteration i=p, for some 1<p(n, the above lemma for lines 2 through 4 guarantees that A[p] is the smallest element from A[p] through A[n]. So, A[p] ( A[p+1].
Termination: The loop 1 through 4 terminates at i=n. At that point A[1] ( A[2] ( . . . ( A[n]. Hence, the correctness theorem is proved. QED
Complexity:    ( i=1n ( j=i+1n 1 = ( i=1n (n –i) = n2 – n(n+1)/2 = n2/2 – n/2 =  ((n2)         
Insertion Sort

The way cards are sorted in the pack: pick up objects one by one from one end and insert it in its correct position in the partially sorted part.

Based on inductive proof technique:

Induction base: only one element in array – it is already sorted (p=1)

Induction hypothesis: assume the algorithm works correctly up to k-th iteration, i.e., we have sorted array 1 through k (p=k)

Induction step: a[k+1] is correctly inserted in the sorted portion a[1..k] (step 3 -5 in the algorithm below does this)

So, a[1..k+1] is sorted.

QED.

Algorithm insertion-sort (an array A of n comparable objects)

.(1)
for  p = 2 through  n  do

.(2)

temp = A[p];

.(3)

for  j = p   though 2  do until  A[j-1]<temp

.(4)


A[j] = A[j-1];
// shift all larger elements right

.(5)

A[j-1] = temp;   // insert it in its correct position in the 

//  already sorted portion

End Algorithm.

Example:

34  8  64  51  32  21

8  34    64  51  32  21

8  34  64    51  32  21

8  34  51  64    32  21

8  32  34  51  64    21
8 21  32  34  51  64.

Worst-case Complexity:  2 + 3 + 4 + … + n = 

n(n+1)/2  -1 = (n2)/2 + n/2 -1 = O(n2)
(For reverse sorted array).

Actual run time could be better (loop may terminate earlier than running for p-1 times! 

The best case scenario (sorted array as input): ((n).

Average case complexity:
Some observations: 

(1) There are 9 "inversions" in the above original list: (34, 8), (34, 32), … (51, 32), (51, 31), … [FIND OTHERS]. 

(2) Reverse the whole list: 21  32  51  64  8  34. There are [6(6-1)/2 - 9] inversions in this list [WHY?]. So, the sum of all inversions in these two lists is a constant = 6(6-1)/2. So, the average for the two lists is 6(6-1)/4.

(3) Therefore, the average number of inversions for all possible permutations (which will be a set of pairs of inverted lists) of the given list is 6(6-1)/4 (for all such pairs of two inverse lists the average is the same).

(4) For any list of n objects, the average number of inversions in their permutations is n(n-1)/4  = (1/4)n2 - n/4  = O(n2).

Alternative proof of average case complexity:

Inner loop’s run time depends on input array type:

Case 1: takes 1 step (best case: already sorted input)
Case 2: takes 2 steps

. . .

Case n: takes n steps (worst case: reverse sorted input)
Total cases=n, total steps= 1+2+ . . . +n = n(n+1)/1

Average #steps per case = total steps/ number of cases = (n+1)/2 = O(n)

Outer loop runs exactly n times irrespective of the input.

Total average case complexity = O(n2)

End proof.

Any algorithm that works by exchanging one inversion per step - will have to have O(n2) complexity on an average. Insertion sort, bubble sort, and selection sort are examples of such algorithms. 

To do any better an algorithm has to remove more than one inversion per step, at least on some steps.

Shellsort

Named after the inventor Donald Shell. Further improved subsequently by others. A rather theoretical algorithm!

Sort (by insertion sort) a subset of the list with a fixed gap (say, every 5-th elements, ignoring other elements); Repeatedly do that for decreasing gap values until it ends with a gap of 1, whence it is insertion sort for the whole list. 

Motivation: take care of more than one inversion in one step (e.g., 5-sort).

But, at the end an 1-sort must be done, otherwise sorting may not be complete. However, in that last 1-sort the amount of work to be done is much less, because many inversions are already taken care of before.

Gap values could be any sequence (preferably primes), must end with the gap=1. 

Choice of gap sequence makes strong impact on the complexity analysis: hence, it is an algorithm with the possibility of a strong theoretical study!

Observation: If you do a 6-sort, and then a 3-sort, the earlier 6-sort is redundant, because it is taken care of again by the subsequent 3-sort. 

So, the gaps should be ideally prime to each other, to avoid unnecessary works.

Heapsort

Buildheap with the given numbers to create a min-heap: O(N)

Then apply deletemin (complexity O(logN)),  N times and place the number in another array sequentially: O(NlogN).  Thus, HeapSort is O(NlogN).

If you want to avoid using memory for the second array build a max-heap rather than a min-heap. Then use the same array for placing the element from Deletemax operation in each iteration at the end of the array that is vacated by shrinkage in the Deletemax operation. This will build the sorted array (in ascending order) bottom up.

[Fig 7.6, Weiss book]

Complexity: 

First, the Buildheap operation takes O(N) time. 

Next, for each element the Deletemax operation costs O(log(N-i)) complexity, for the i-th time it is done, because the number of element in the heap shrinks every time Deletemax is done. 

i goes from 1 through N. Σ O(log(N-i)), for i=1 through N is, O(NlogN). 

The total is O(N) + O(NlogN), that is, O(NlogN).

[READ THE ALGORITHM IN FIG 7.8, Weiss]

Mergesort

A recursive algorithm. 
Based on the merging of two already sorted arrays using a third one: Merge example
1 13 24 26       2 15 16 38 40

· *                            *

1 13 24 26       2 15 16 38 40         1

    *                  *                             *

1 13 24 26       2 15 16 38  40        1  2

     *                      *                            *

1 13 24 26       2 15 16 38  40        1  2  13

         *                  *                                  *

1 13 24 26       2 15 16 38  40        1  2  13  15

         *                       *                                   *

1 13 24 26       2 15 16 38  40         1  2  13  15  16

          *                           *                                    *

1 13 24 26       2 15 16 38  40         1  2  13  15  16  24

               *                      *                                          *

1 13 24 26       2 15 16 38  40         1  2  13  15  16  24  26

                  *                   *                                                *

1 13 24 26       2 15 16 38  40         1  2  13  15  16  24  26  38

                  *                      *                                                  *     

1 13 24 26       2 15 16 38  40         1  2  13  15  16  24  26  38  40

                  *                           *                                                   *

-done-

Merge Algorithm  

//Input: Two sorted arrays
//Output: One merged sorted array

Algorithm merge (array, start, center, rightend)  

(1) initialize leftptr=start, leftend=center, 

rightptr=center+1;


(2) while (leftptr ( leftend  && rightptr ( rightend)


(3) 
{ if (a[leftptr] ( a[rightptr])


(4)

a[leftptr] := temp[tempptr]; leftptr++;



else


(5)

a[righttptr] := temp[tempptr]; rightptr++; }


(6) while (leftptr ( leftend)    //copy the rest of left array


(7)
{a[leftptr] := temp[tempptr]; and increment both ptrs; }


(8) while (rightptr ( rightend)
//copy the rest of right array


(9)
{ a[righttptr] := temp[tempptr]; and increment both ptrs; }


(10) copy temp array back to the original array a;  

// another O(N) operation

End algorithm.

Note: Either lines (6-7) work or lines (8-9) work but not both.

Proof of Correctness:

Algorithm terminates: Both leftptr and rightptr increment, in loops starting from low values (leftend or rightend). Eventually they cross their respective end points and so, all the loops terminate.

Algorithm correctly returns the sorted array: 

Every time temp[tempptr] is assigned it is ( all elements temp[1..(temptr-1)]: true for lines (2-5). 
When that while loop terminates one of the parts of array A is copied on array temp[]. If (leftptr ( leftend) temp[tempptr]( a[leftptr], so, lines (6-7) preserves the above condition. Otherwise lines (8-9) does the same.

So, temp[tempptr] ( temp[1..tempptr] for all indices.

QED.

Algorithm mergesort (array, leftend, rightend)

(1) if only one element in the array return it;  
         // recursion termination, this is implicit in the book

(2) center = floor((rightend + leftend)/2);

(3) mergesort (array, leftend, center);  

// recursion terminates when only 1 element


(4) mergesort (array, center+1, rightend);


(5) merge (array, leftend, center, rightend);   // as done above;

End algorithm.

Note: The array is reused again and again as a global data structure between recursive calls.

Drive the mergesort algorithm first time by calling it with leftend=1 and rightend=a.length

mergesort (array, 1, a.length)

Analysis of MergeSort
For single element:
T(1) = 1

For N elements:

T(N) = 2T(N/2) + N


Two MergeSort calls with N/2 elements, and the Merge takes O(N).

This is a recurrence equation. Solution of this gives T(N) as a function of N, which gives us a big-Oh function.

Consider N=2k.

T(2k) 
= 2T(2(k-1)) 
+ 2k  
…. (1)

T(2(k-1))
= 2T(2(k-2)) 
+ 2(k-1)
…. (2)

T(2(k-2)) 
= 2T(2(k-3) )
+ 2(k-2)
…. (3)

….

T(2)

= 2T(20) 

+ 21

…. (k)

Multiply Eqns (2) with 2 on both the sides, (3) with 22, …., (k) with 2(k-1), and add all those equations then. All the left-hand sides get cancelled with the corresponding similar terms on the right-hand sides, except the one in the first equation.

T(2k)
= 2(k+1)T(1) + [2k + 2k + 2k + …. k-times]



= 2(k+1) + k(2 k) =  2(2 k) + k(2 k)



= O(k2k) 

T(N) = O(NlogN),  note that  k = logN, and 2k = N.

Proof: ?
Note: 
MergeSort needs extra O(N) space for the temp array.

Best, Worst, and Average case for MergeSort is the same O(NlogN) – a very stable algorithm whose complexity is independent of the actual input array but dependent only on the size.

Quciksort

Pick a pivot from the array, throw all lesser elements on the left side of the pivot, and throw all greater elements on the other side, so that the pivot is in the correct position. Recursively quicksort the left-side and the right-side.

[Fig 7.11, Weiss]

Some maneuver is needed for the fact that we have to use the same array for this partitioning repeatedly (recursively).

Algorithm: 

Use two pointers, leftptr and rightptr starting at both ends of the input array. 

Choose an element as pivot.

Incerment leftptr as long as it points to element<pivot. 

Then decrement rightptr as long as it points to an element>pivot. 

When both the loops stop, both are pointing to elements on the wrong sides, so, exchange them. 

An element equal to the pivot is treated (for some reason) as on the wrong side .

Force the respective pointers to increment (leftptr) and decrement (rightptr), 

and continue doing as above (loop) until the two pointers cross each other - 

then we are done in partitioning the input array 
(after putting the pivot in the middle with another exchange, i.e., at the current leftptr, if you started with swapping pivot at one end of the array as in the text).

Then recursively quicksort both the rightside of the pivot and leftside of the pivot. 

Recursion stops, as usual, for a single-element array.

End algorithm.


8  1  4  9  0  3  5  2  7  6
Starting picture: Pivot picked up as 6.


^                              *






8>pivot: stop,  pivot<7: move left…

8  1  4  9  0  3  5  2  7  6
Both the ptrs stopped, exchange(2, 8) & mv 

^                          *


2  1  4  9  0  3  5  8  7  6

               ^                  *


2  1  4  9  0  3  5  8  7  6

                       ^          *


2  1  4  5  0  3  9  8  7  6

                           ^  *






Rt ptr stopped at 3 waiting for Lt to stop, but 

2  1  4  5  0  3  9  8  7  6
Lt stopped right of Rt, so, break loop, and
                              *  ^


2  1  4  5  0  3  6  8  7  9
// last swap Lt with pivot, 6 and 9

Then,     QuickSort(2 1 4 5 0 3) and QuickSort(8 7 9).

[READ THE ALGORITHM IN BOOK]

Analysis of quicksort

Not worth for an array of size ( 20, insertion-sort is typically used instead (for small arrays)!

Choice of the pivot could be crucial. We will see below.

Worst-case

Pivot is always at one end (e.g., sorted array, with pivot being always the last element).  T(N) = T(N-1) + cN.

The additive cN term comes from the overhead in the partitioning (swapping operations - the core of the algorithm) before another QuickSort is called. 

Because the pivot here is at one end, only one of the two QuickSort calls is actually invoked. 

That QuickSort call gets one less element (minus the pivot) than the array size the caller works with. Hence T(N-1).

Telescopic expansion of the recurrence equation (as before in mergesort):

T(N) = T(N-1) + cN = T(N-2) + c(N-1) + cN = …. 

= T(1) + c[N + (N-1) + (N-2) + …. + 2]

= c[N + (N-1) +(N-2) + …. + 1], 
for T(1) = c

= O(N2)

Best-case

Pivot luckily always (in each recursive call) balances the partitions equally.

T(N) = 2T(N/2) + cN

Similar analysis as in mergesort. T(N) = O(NlogN).

Average-case

Suppose the division takes place at the i-th element. 

T(N) = T(i) + T(N -i -1) + cN

To study the average case, vary i from 0 through N-1.

T(N)= (1/N) [ (i=0 N-1 T(i) + (i=0 N-1 T(N -i -1) + (i=0 N-1 cN]

This can be written as, [HOW? Both the series are same but going in the  opposite direction.]
NT(N) = 2(i=0 N-1 T(i) + cN2
(N-1)T(N-1) = 2(i=0 N-2 T(i) + c(N-1)2
Subtracting the two, 

NT(N) - (N-1)T(N-1) = 2T(N-1) + 2(i=0 N-2 T(i) 

-2(i=0 N-2 T(i) +c[N2-(N-1)2]


= 2T(N-1) +c[2N - 1]

NT(N) = (N+1)T(N-1) + 2cN -c,     

T(N)/(N+1) = T(N-1)/N + 2c/(N+1) –c/(N2), approximating N(N+1) with (N2) on the denominator of the last term

Telescope, 

T(N)/(N+1) = T(N-1)/N + 2c/(N+1) –c/(N2)

T(N-1)/N = T(N-2)/(N-1) + 2c/N –c/(N-1)2
T(N-2)/(N-1) = T(N-3)/(N-2) + 2c/(N-1) –c(N-2)2
….

T(2)/3 = T(1)/2 + 2c/3 – c/22
Adding all,

T(N)/(N+1) = 1/2 + 2c (i=3 N+1(1/i) – c (i=2 N(1/(i2)),    for T(1) = 1,

T(N)/(N+1) = O(logN),   note the corresponding integration, the last term being ignored as a non-dominating, on approximation O(1/N)

T(N) = O(NlogN).

IMPORTANCE OF PIVOT SELECTION PROTOCOL

Choose at one end: could get into the worst case scenario easily, e.g., pre-sorted list

Choose in the middle may not balance the partition. Balanced partition is ideal: best case complexity.

Random selection, or even better, median of three is statistically ideal.

SELECTION ALGORITHM

Problem: find the k-th smallest element. Sometimes a purpose behind sorting is just finding that.

One way of doing it: build min-heap, deletemin k times: O(N + klogN). 

If k is a constant, say, the 3rd element, then the complexity is O(N).

If k is a function of N, say, the middle element or the N/2-th element, then it is O(NlogN).

Another algorithm based on quicksort is given here.

Algorithm QuickSelect(array A, k)


If k > length(A)  then return “no answer”;


if single element in array then  return it as the answer;



// k must be = = 1 in the above case


pick a pivot from the array and QuickPartition the array; 


// as is done in QuickSort)

say, the left half of A is L including the pivot, and 

say, the right half is R;


if  length(L) ( k then QuickSelect(L, k)


else QuickSelect(R, k - size(L) -1);  
// previous call’s  k-th  element is  k-|L|-1  in R
End algorithm.

Complexity: note that there is only one recursive call instead of two of them as in quicksort. This reduces the average complexity from O(NlogN) to O(N).

[SOLVE THE RECURRENCE EQUATION: replace the factor of 2 with 1 on the right side.]

[RUN THIS ALGORITHM ON A REAL EXAMPLE, CODE IT.]

These types of algorithms (mergesort, quicksort, quickselect) are called Divide and Conquer algorithms.

LOWER BOUND FOR A SORTING PROBLEM
In the sorting problem you do comparison between pairs of elements plus exchanges. 
Count the number of #comparisons one may need to do in the worst case in order to arrive at the sorted list:  from the input, on which the algorithm have no idea on how the elements compare with each other. [Ignore actual data movements.]
Draw the decision tree for the problem. 

[PAGE 253, FIG 7.17, Weiss]

Insertion sort, or Bubble sort: 

all possible comparisons are done anyway: N-choose-2 = O(N^2)

Initially we do not know anything.  So, all orderings are possible. 

Then we start comparing pairs of elements - one by one. We do not have to compare all pairs, because some of them are inferred by the transitivity of the "comparable" property (if a<b, and b<c we can infer a<c). [Ignore actual data movements.]

However, the comparison steps are actually navigating along a binary tree for each decision (a<b, or a>b). View that binary decision tree. [Weiss:PAGE 253, FIG 7.17]

The number of leaves in the tree is N! (all possible permutations of the N-elements list). Hence the depth of the tree is ( log2N! = ((NlogN). 
Since, the number of steps of the decision algorithms is bound by the maximum depth of this (decision) tree, any algorithm’s worst-case complexity cannot be better than O(NlogN). 

Comparison-based sort algorithms has a lower bound: Ώ(NlogN).
Hence any sorting algorithm based on comparison operations cannot have a better complexity than ((NlogN) on an average.







Note 1: An algorithm actually may be lucky on an input and finish in less number of steps, note the tree. Max height of the tree is ( log2(N!)
Note 2: You may, of course, develop algorithms with worse complexity – insertion sort takes O(N2).   
O(N log N) is the best worst-case complexity you could expect from any comparison-based sort algorithm!

This is called the information theoretic lower bound, not of a particular algorithm - it is valid over all possible comparison-based algorithms solving the sorting problem.

Any algorithm that has the complexity same as this bound is called an optimal algorithm, e.g. merge-sort.

COUNT SORT (case of a non-comparison based sort)
When the highest possible number in the input is provided, in addition to the list itself, we may be able to do better than O(NlogN), because we do not need to use comparison between the elements.

Suppose, we know that (1) all elements are positive integers (or mappable to the set of natural numbers), and (2) all elements are ( an integer M.

Create an array of size M, initialize it with zeros in O(M) time.

Scan your input list in O(N) time and for each element  e, increment the e-th element of the array value once.

Scan the array in O(M) time and output its index as many times as its value indicates (for duplicity of elements).

Example,

Input I[0-6]: 6, 3, 2, 3, 5, 6, 7.  Say, given M = 9.

Array A[1-9] created: 0  0  0  0  0  0  0  0  0   (9 elemets).

After the scan of the input,  the array A is:  0  1  2  0  1  2  1  0  0

Scan A and produce the corresponding sorted output B[0-6]: 2  3  3  5  6  6  7.

Complexity is O(M+N) ≡ O(max{M, N}). 

Dependence on M, an input value rather than the problem size, makes it a pseudo-polynomial (pseudo-linear in this case) algorithm, rather than a linear algorithm. 

Suppose, input list is 6.0, 3.2, 2.0, 3.5, …

Here, you will need 10M size array, complexity would be O(max{10M, N})!!!

EXTENDING THE CONCEPT OF SORTING

(Not in any text)

Sorting with relative information

Suppose elements in the list are not constants (like numbers) but some comparable variable-objects whose values are not given. Input provides only relations between some pairs of objects, e.g., for {a, b, c, d} the input is

Example 1:  {a<b, d<c, and b<c}. 

Can we create a sorted list out of (example 1)? The answer obviously is yes. One of such sorted lists is (a, d, b, c). Note that it is not unique, another sorted list could be (a, b, d, c).

Inconsistency

Example 2: If the input is {a<b, b<c, c<d, and d<a}. There is no sort. This forms an impossible cycle!

Such impossible input could be provided when these objects are events (i.e., time points in history) supplied by multiple users at different locations (or, alibi of suspects, or genes on chromosome sequences).

Hence, a decision problem has to be solved first before creating the sort (or actually, while TRYING to sort them): Does there exist a sort? Is the information consistent?
Also, note that the non-existent relations (say, between a and c in the second example) are actually disjunctive sets (a is <  or  =  or  > c) initially. They are  provided in the input implicitly.

This disjunctive set in input could be reduced to a smaller set while checking consistency, e.g., to a<c in that example may be derived from a<b, and b<c, by using transitivity.

Thus, deriving the NEW relations is one of the ways to check for consistency and come up with a sort. 

Note that the transitivity was implicitly presumed to hold, when we worked with the numbers, instead of variables and relations between them.

The transitivity table for the relations between "comparable" objects (points) (a to c  below) is as follows.

b->c
:
<

>

=

---------------------------------------

a->b
|

|--------------------------------

<
|
<

< = >
<

>
|
< = >
>

>

=
|
<

>

=

Only transitive operations are not enough. In case there already exists some relation (say, user-provided, or derived from other relations) you have to take intersection afterwards with the existing relation between the pair of objects (say, a->c) in order to "reduce" the relation there. In this process of taking intersection, if you encounter a null set between a pair of objects, then the whole input is "inconsistent."

Thus, in the second example above, the result of the two transitive operations would produce a<d (from, a<b ( b<c = a<c, and then a<c ( c<d = a<d). Intersect that with the existing relation a>d, you get a null relation. Hence, the input was inconsistent.

Incomeplete information

Furthermore, since we are allowing users to implicitly provide disjunctive information (we call it "incomplete information") why not allow explict disjunctive information!

So, the input could be {a(b, b<>c, d=b}. 

[A sort for this is (c, a), with a=b=d.]

Transitive operations with disjunctive sets are slightly more complicated: union of each individual transtive operations. 

[(a<b)((b>c) Union (a=b)((b>c)]

Extending the relation-set further
Suppose the allowed relations are: (<, =, >, || ). The fourth one says some objects are inherently parallel (so, objects here cannot be numbers, raher they get mapped onto a partial order).

Objects could be points on branching time, or web-documents, or addresses on a road network, versions of documents, distributed threads running on multiple machines, or machines on a directed network, business information flow mode, or anything mappable to a partially ordered set.

One has to start with the transitive tables and devise algorithms for checking consistency and come up with one or more "solutions" if they exists.

You can think of many other such relation sets, e.g., 13 primary relations between time-intervals (rather than between time-points), 5 primary relations between two sets, 8 primary relations between two geographical regions, etc.
We call this field the Spatio-temporal reasoning.

No orderings known





a >= b





a < b





Height= log2 (N!)





One of the orderings achieved out of N! possibilities








