BACKTRACKING (Continued)

Note that Backtracking algorithms run in a depth first search fashion.
Refer to the call sequence of the bit-string printing algorithm's recursion tree.

Sometimes some nodes and their descendants are not explored (pruned) because we know that they will not produce a better value than what we have already achieved on a previously explored leaf. 

Refer to the 0-1 Knapsack algorithm, where a node crosses the Knapsack weight-limit (or, where the upper bound for the profit is lower than the best profit made on a leaf before the current node is explored in the algorithm) is pruned.

Game-search Algorithms

Computer games playing against adversary (human beings) often deploy some search algorithm: called adversarial search. Tic-tac-toe is an example. [DRAW]

The problem is, (Input:) given a board position, (Output:) to generate a good move. Objective is to win the game. Board positions are evaluated by an evaluation function for their goodness toward wining the game.

Each node in the search tree is a board position. Children-nodes are valid board positions that can be generated at the next step.

In its search for the next move a computer has to go all the way down to the terminal board positions (leaf), and percolate the values (win/draw/loss) up to the children of its current board (in order to decide which child to move to).

However, at every alternate level what the search algorithm looks into is actually to be made by the opponent (human). Thus, it needs an honest adversary simulator. Algorithm bi-recursively calls each other.
While computer tries to maximize its evaluation function human-simulator would try to minimize it (assuming values for win >0, draw=0, and loss<0). [This is an assumption often human players may violet and make the computer confused: called the gambling-strategy in Chess.]

This leads to the Minimax strategy. The evaluation value for a node is chosen as the max or min value of all its children, depending on whose move it is (min for human move, and max for computer move).

The search tree (for tic-tac-toe) is exhaustive enumeration of all board positions at each step down to all terminal-boards. Down from the terminal board max or min values are percolated up - to the current node's all children. Then the computer makes the move to one of the best (max-value) children.

The algorithm has two recursive parts: ComputerMove and HumanMove. Each routine recursively calls the other until terminal-board is reached.

The two-part algorithm is described (Java pseudo-code) from Weiss’ book below.

Figure 10.66 (Weiss) Minimax tic-tac-toe algorithm: computer selection

public class MoveInfo

{

public int move; 

public int value;

public MoveInfo( int m, int v)

  { move = m; value = v; }

}

/**

* Recursive method to find best move for computer.

* MoveInfo.move returns a number from 1-9 indicating square.

* Possible evaluations satisfy COMP_LOSS < DRAW < COMP_WIN.

* Complementary method findHumanMove is Figure 10.67.

*/ 

public MoveInfo findCompMove( )

{

int i, responseValue;

int value, bestMove = 1;

MoveInfo quickWinInfo;

if( fullBoard( ) ) 

value = DRAW;

else if( ( quickWinInfo = immediateCompWin( ) ) != null ) 

return quickWinInfo;  // if the next move ends the game; rec termination
else

{

value = COMP_LOSS; // initialize with lowest value
for( i = 1; i <= 9; i++ )  // Try each square in tic-tac-toe
{

if( isEmpty( i) )

{

place( i, COMP ); // temporary placement, 


     //      on global var board
responseValue = findHumanMove( ).value;

unplace( i ); 
// Restore board: alg does not actually place

if( responseValue > value )

{  

// Update best move 

value = responseValue;

bestMove = i;

}

}

}

}

return new Movelnfo( bestMove, value );

}

The next part of the algorithm is: Minimax tic-tac-toe algorithm: human selection, 

Figure 10.67

public MoveInfo findHumanMove( )

{

int i, responseValue;

int value, bestMove = 1;

MoveInfo quickWinInfo;

if ( fullBoard( ) ) value = DRAW;

else if( ( quickWinInfo = immediateHumanWin( ) ) != null ) 

return quickWinInfo;

el se

{

value = COMP-WIN;

for( i = 1; i <= 9; i++ )  // Try each square

{

if( isEmpty( i) )

{

place( i, HUMAN) ;

responseValue = findCompMove( ).value;

unplace( i );   // Restore board

if( responseValue < value )

{

// Update best move 

value = responseValue;

bestMove = i;

}

}

}  // end for

}  // end else

return new MoveInfo( bestMove, value );

}

Alpha-Beta Pruning

The above algorithms for tic-tac-toe cannot be applied to the game of chess. WHY?

One may have to stop recursion at some non-terminal level (depth of recursion is called ply of search). 

The board position is evaluated at a leaf by its possibility of a win, and is percolated up to the inner nodes of the search tree by the minimax strategy.

The ply depends on (1) the amount of available time you have for the search (say, 3 minutes in Chess) and (2) smartness/efficiency of the algorithm/strategy. 

The faster your search algorithm is (i.e., the faster your system is) the deeper you can go in the search tree in the same time, thus leading to a better move.

Just like 0-1 Knapsack BT algorithm careful observations of a game's strategy can lead to pruning of some nodes (and all its descendants, or the whole subtree below it). Pruning of subtrees leads to a faster or “deeper” search.

Alpha-Beta pruning: 
is a game-independent technique that could be used along with the Minimax strategy.

Def: Call a node max-node if its next move should be a maximzing move, and min-node if … minimzing move. Note that any node's two parent nodes are alternately min and max (or max and min, depending on the current node’s type). 

The strategy for Alpha-beta pruning is that if a node's (parent, grandparent) has (max-node's value ( min-node's value) then prune that node (and all its siblings).

Example is in the figures below (note, DFS searches left to right):

Fig 10.71: consider both the cases, at D, parent is already ( 40, but grandparent expects more, >40. 

Alpha-pruning: if a minimizer (D’s parent) knows that one of its children has lower value than that of its parent, then do not expand any more children.

Fig 10.72: consider both the cases, at C, parent wants ( 68, but grandpa will not take it, needs <68. 

Beta-pruning: if a maximizer (C’s parent) knows that one of its children has a higher value than that of its parent, then do not expand any more children.
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 The alpha-beta pruning algorithm from the Weiss’ book is described below.

Figure 10.73: Minimax tic-tac-toe algorithm with alpha-beta pruning: computer selection.

/**

* Same as before, but performs alpha-beta pruning.

* The main routine should make the call with 

* alpha = COMP_LOSS and beta = COMP_WIN.

*/ 

public MoveInfo findCompMove{ int alpha, int beta )

{

int i, responseValue;

int value, bestMove = 1;

MoveInfo quickWinInfo;

if( fullBoard( ) ) value = DRAW;

else if( ( quickWinInfo = immediateCompWin( ) ) != null ) 

return quickWinInfo;

else

{

value = alpha; // maxmzr inits with parent’s value as low end
for( i = 1;  i <= 9  &&  value < beta;  i++ )

 // as value becomes more than beta stop the for loop, 

 // rest of the children are useless: 

 // beta pruning by the maximizer (computer)

{

if( isEmpty( i) )

{

place( i, COMP );

responseValue = 

findHumanMove(value, beta ).value;  

// pass the largest value so-far to 

// the next child for alpha pruning
unplace( i ); 

if( responseValue > value )

{
// Update best move 

value = responseValue;

bestMove = i;

}

}



}


}


return new MoveInfo( bestMove, value);

}

[TRY HUMAN-MOVE PART YOURSELF.]

Alpha-beta pruning limits search to O(Sqrt(N)) nodes, instead of O(N) nodes otherwise, for N nodes on the search tree. This means that for the same amount of time a computer can search one more ply (deep).

