Homework 3
Fall 2003 Algorithms

Points: 50/60

Due: November 11, 2003 in class

1. Write down a pseudo-code for the divide-and-conquer Integer Multiplication algorithm.

[10]

function Mul(x,y)

n = common bit length of x and y

if n = = 1 then

return x*y

else

a=first half of x; b=second half of x;

c=first half of y; d=second half of y;

p1 = Mul (a,c)

p2 = Mul (a,d) + Mul (b,c)

p3 = Mul (b,d)

return 2^n*p1 + 2^(n/2)*p2 + p3

end if

end function

T(n) = 4T(n/2)+O(n)

There are other answers.

http://www-inst.eecs.berkeley.edu/~cs170/Notes/lecture2.pdf
2. Analyze the (a) time and (b) space complexities of the Dynamic programming algorithm for the Matrix-chain multiplication problem.

[10+5]

(c) Prove the correctness of the above algorithm by mathematical (strong) induction. [5]

[Hint: use n=1, one matrix as induction base, and assuming that the induction hypothesis to be true for all the chain sizes 1, 2, …, n-1 convince that it is also true for the chain size n.]

a)

[image: image1.wmf])

(

)

(

1

)

(

1

0

1

1

1

1

1

1

n

O

k

n

O

n

T

k

n

l

n

k

k

l

l

i

k

n

l

n

k

+

=

+

=

å

å

å

å

å

-

-

=

-

=

-

+

=

-

=

-

=

[image: image2.wmf])

(

6

)

1

2

)(

1

(

2

)

1

)(

(

)

(

)

(

)

(

3

1

1

1

1

1

1

2

n

O

n

n

n

n

n

n

n

O

k

nk

n

O

k

k

n

n

k

n

k

n

k

å

å

å

-

=

-

=

-

=

=

-

-

+

-

=

+

+

=

+

-

=

b)

This algorithm creates a n by n matrix in order to store information, where n is the number of matrix: O(n2)

Each iteration takes wost-case O(n) space for calculating the minimum. The space is reused from iteration to iteration.

Total: O(n2) + O(n) = O(n2)

c)

Base:

d=0: C(I, I) = 0 for all I, because there is no multiplication

d=1: C(I, I+1) = ri * r(I+1) * c(I+1), for all I, because there is only one way to multiply between a pair of matrices and this is the respective cost function.

Hypothesis: Suppose the algorithm correctly calculates C(I, I+d) for d=2, 3, …, k-1 (for all d<k).

Step:

Prove for d=k.

C(I, I+k): there are k ways to break up and multiply subsequent lower sub-chains:

[M(i).M(I+1).M(I+2)…M(I+p)]. [M(I+p+1).M(I+p+2)…M(I+k)], for k values of p,

I <= p <= I+k-1.

The optimal cost for each of these two sub-chains are presumed to be correctly known as C(I,p) and C(p+1,I+k) by the hypothesis, as they are for d<k.

The cost for multiplying the two sub-chains is r(i)*r(p+1)*c(I+k).

Hence the cost for each break up is C(I,p) + C(p+1,I+k) + r(i)*r(p+1)*c(I+k).

Minimal of the break up for all p is the optimal cost function C(I, I+k) that is being calculated by the algorithm.

Hence the algorithm m correctly calculates C(1, n).

3. Some dietary fluid-packs have the following properties:

[10+10]

Fluid pack id:
f1
f2
f3
f4
f5
f6

Wt. (ounces):
20
30
40
50
60
70

Calories:
40
30
60
50
30
210

Create a diet out of these fluids for 160 ounces so that the total calorie value is the MAXIMUM. One may not take only a portion from a pack. Use the appropriate Dynamic programming algorithm producing (a) the corresponding table. You must show some important steps of your calculation in order to illustrate your knowledge of working with the relevant formula. Also, from this table (b) compute back the actual dietary content (which particular packs). You must show all the steps of this computation.

a) The diet with 160 ounces that has the highest calorie value is a diet with 340 calories.

	P W
	0
	10
	20
	30
	40
	50
	60
	70
	80
	90
	100
	110
	120
	130
	140
	150
	160

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1.
	0
	0
	40
	40
	40
	40
	40
	40
	40
	40
	40
	40
	40
	40
	40
	40
	40

	2.
	0
	0
	40
	40
	40
	70
	70
	70
	70
	70
	70
	70
	70
	70
	70
	70
	70

	3.
	0
	0
	40
	40
	60
	70
	100
	100
	100
	130
	130
	130
	130
	130
	130
	130
	130

	4.
	0
	0
	40
	40
	60
	70
	100
	100
	100
	130
	130
	150
	150
	150
	180
	180
	180

	5.
	0
	0
	40
	40
	60
	70
	100
	100
	100
	130
	130
	150
	150
	150
	180
	180
	180

	6.
	0
	0
	40
	40
	60
	70
	100
	210
	210
	250
	250
	270
	280
	310
	310
	310
	340

“To get the value for column 60 and pack 3 we subtract pack 3’s weight from 60 and we get 20. So going to column 20 and pack 2 we get 40 which we add to pack 3’s calories. We get 100=60+40.

To get the value for column 60 and pack 4 we subtract pack 4’s weight from 60 and we get 10. So we go to column 10 and pack 3 and we get 0 which we add to pack 4’s calories which is 0+50=50. But the value for pack 3 and column 60 is 100 which is greater than 50, so we replace 50 with a 100.”

b) Starting in row 6 and column 160, we have the maximum calorie value so we know that fluid pack 6 is a constituent of the diet. Subtracting the 210 calories that pack 6 provides leaves us with 130 calories.

Now inverting the algorithm used to produce the table, the value 130 came from column 90 and row 5. But 130 in this column originated in row 3 which means that fluid pack 3 is also a component of this diet. Subtracting 60 calories that pack 3 provides leaves us with 70 calories.

Again inverting the algorithm, the value 70 came from column 50 and row 2 which means that fluid pack 2 is also a component of this diet. Subtracting 30 calories that pack 2 provides leaves us with 40 calories.

Inverting the algorithm on last time, the value 40 came from column 20 and row 1 which means that fluid pack 1 is also a component of the diet and this brings the last 40 calories to the total of 340 calories.

4. Regular question for Graduate Students; Bonus Pts for Undergraduate Stds.:
[8+2]

(a) Write a recursive divide and conquer algorithm for finding the minimum number in an array of unsorted numbers. (b) Analyze the complexity of your algorithm.

(a) modify mergesort: instead of merge just choose min of the two returned scalar.

(b) T(n) = 2T(n/2) + c, (master’s theorem) 2>2^0:: T(n) = O(N^(log_2 (2)))=O(N)

a)

Function min(array a)

If (a.size()==1) return a[0]

Else

Int x = min(number[0..a.size()/2])

Int y = min(number[a.size()/2+1..a.size()]

If (x<y) return x else return y

End if

End function

b)

T(n)=2T(n/2)+c

Brief explanation. assume n=2m
By Applying telescope method:

T(n)=2T(n/2)+c

21T(n/2)=22T(n/22)+21c

22T(n/22)=23T(n/23)+22c

23T(n/23)=24T(n/24)+23c

... until n=2m
2m-1T(n/2m-1)=2mT(1)+2m-1c

T(n)=2mT(1) + c(21+22+23+…+2m-1) = n+2m=n+n = O(n)

Alternatively use Master’s theorem.

_1130586777.unknown

_1130586771.unknown

