CSE 4081/5211
Algorithms
Fall 2003 Mid-Term
Pts 50/60 Time 70 min

Print your name, and Grad/Undergrad status

1a. Prove that x3 = O(3x).
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x
1
2
3
4
5

x3
1
8
27
64
125

3x
3
9
27
81
243

For all x>=1, x3<= c3x, for c=1

1b. Prove that x2 =  ((2 x2 – x)
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lim (x->inf) [(2 x2 – x )/ x2] = lim (x->inf) [2 – 1/x] = 2

2. Solve the following recurrence equation
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Tn+1 = 2Tn  - Tn-1     

Characteristic equation: x2 –2x +1=0, Solutions, x=1, 1

T(n+1) = c.(1)n + d.n.(1)^n, for two constants c and d

T(n) = c + d(n-1) = Theta(n)

3a. The following algorithm takes any sorted array of integers (both the non-decreasing and non-increasing arrays) as its input. What does the algorithm do, or what is its output?

Algorithm Unknown( int [ ] a)
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{


int I=1, j=a.length; // the array is from 1 through a.length


while (I<j)  {

if (a[I] < a[j])


{ int temp=a[I]; a[I]=a[j]; a[j]=temp;};

I++; j--;


};

}

For non-decreasing sorted input, it reverses the input, making it non-increasing.

For non-increasing sorted input, the algorithm just scans it but does not do anything.

3b. What is the algorithm’s asymptotic time complexity?
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n/2 + c = Theta(n)

4. A recursive algorithm multiplies two matrices A and B, both of sizes (N x N) for some integer N =3n, by virtually splitting each matrix into smaller sub-matrices of equal size (N/3 x N/3), and multiplying them recursively (instead of the components of equal size (N/2 x N/2), as in the algorithm on page 382-364). Set up a recurrence equation for this algorithm and solve it. The following is a view of the split for the multiplication R = A X B. Usual formula holds, R ij = (k Aik X Bkj, where X stands for matrix multiplication, and ( for matrix addition over the three values of k, except when i=j, where X is only integer-multiplication and no further splitting is required.  


[4+6]

| R11 | R12 | R13 | 
| A11 | A12 | A13 |
| B11 | B12 | B13 |

| R21 | R22 | R23 |  = 
| A21 | A22 | A23 | X
| B21 | B22 | B23 |

| R31 | R32 | R33 | 
| A31 | A32 | A33 |
| B31 | B32 | B33 |,

each element being a sub-matrix of smaller size.

T(n) = 27T(n/3) + O(n2). So, a=27, b=3, k=2 in the Master’s theorem

Case of a<b^k: T(n)= Theta(N^log-base-b(a)) = Theta(N3)

5. Use Dijkstra’s algorithm for finding the longest paths from the node v1 to each other node on the following directed and weighted graph. It is an adjacency-list representation of the graph. 
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v1: (v2, -2), (v5, -1)

v2:  (v4, -10), (v5, -3)

v3: (v1, -4), (v4, -1)

v5: (v3, -8), (v4, -4)

All negative nodes, algorithm works like finding shortest path on the absolute values of arcs.

picked up v1: (v2, -2(v1)), (v5, -1(v1))

picked up v5: (v3, -9(v5)), (v4, -5(v5))

picked up v2: (v4, -5(v5)), (v5, -1(v1))

picked up v4: nothing

stops.

Additional question only for graduate students:
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6. A strongly connected component (SCC) of a directed graph is where forward and reverse paths exist between any pair of nodes within each SCC. A loosely connected component (LCC) is where between any pair of nodes within the component there exists either a forward path, OR a reverse path, or a common ancestor node, or a common descendant node. Suggest how the SCC-algorithm may be modified for finding such a LCC. 

Disconnected LCC’s have no arc across the components.

Make the graph undirected, then run Depth First Search. Each DFS tree is a LCC.

