Name / Id-4:

Analysis of Algorithms

CSE 5211

Fall 2015

Final Exam
Points 50

Time 110 min

1a. Use v1 as source node. Run 5 iterations of Queue-based Djikstra’s algorithm on the following graph, showing the Queue (and any other relevant intermediate data) in each iteration. [6+3+1]

1b. Briefly comment on your results.

1c. Can Djikstra’s algorithm run on a directed graph? Justify in one/two sentences.

KEY:
Iteration=1: Q=(v1)

v=v1

Updates = none

It=2: Q=(v2, v3, v4, v5)

v=v2

Updates =

It=3: Q=(v3, v4, v5)

v=v3

Updates =

It=4: Q=(v4, v5)

v=v4

Updates= v3(3, v4), v3 goes back to Q

It=5: Q=(v5, v3)

v=v5

Updates = v1 (v5, -6), v2(-5, v5), v4(-5, v5)
One may terminate here detecting negative cycle because v1-v1=negative

It=6: Q=(v3, v1, v2, v4)

v=v3

Updates =
Djikstra will not terminate normally, but any node must not get in queue more than 5 times. And yes, of course Djikstra can run on directed graph. Critical-path-finding algorithm is Djikstra on directed-acyclic-graph.
Q2a. Use the polynomial-reduction algorithm to produce a 3SAT problem instance from the following SAT problem instance.

[4+4+2]
Q2b. Show that your transformation is correct (work with a truth table for only the F values for each source SAT-clause).

Q2c. An unknown class-problem X has a polynomial-reduction to another problem Y, where Y is in NP-class. What does it say about the class for X?

	Input SAT-clauses
	
	Output 3SAT clause(s) for each source clause
	

	(~a, b)
	1. (a=T,b=T): T
2. (T,F): F
3. (F,T): T
4. (F,F): T
	(~a, b, z1), (~a, b, ~z1)
	2. (a=T,b=F, z1=T):

(~a,b,z1) = T, (~a,b,~z1)=F

(a=T, b=F, z1=F)

(~a,b,z1) = F, (~a,b,~z1)=T

Both clauses not true

	(a, b)
	1. (T,T)

2. (T,F)

3. (F,T)

4. (F,F): F
	
	

	(~b)
	1. (T,T): F
2. (T,F): T
3. (F,T): F
4. (F,F): T
	(~b, z3, z4), (~b, ~z3, z4), (~b, z3, ~z4), (~b, ~z3, ~z4),
	1. For (a=T, b=T, z3=T, z4=T):

(~b, z3, z4)=T,

(~b, ~z3, z4)=T,

(~b, z3, ~z4)=T,

(~b, ~z3, ~z4)=F, not all T.
For (a=T, b=T, z3=T, z4=F):

(~b, z3, z4)=T,

(~b, ~z3, z4)=F,

(~b, z3, ~z4)=T,

(~b, ~z3, ~z4)=T, not all T.

… 2 more for first (T,T): F

3. Four such combinations for (F,T):F

Q3a. The following recurrence equation is for finding a shortest distance (Hamiltonian) simple path on a given road network between some cities, where a salesperson wants to travel all those cities with minimum total distance covered, starting from a fixed given city. Distance between a pair of nodes i and j on the input graph is Wij.
P(S, k) is the shortest distance for a simple path from an arbitrary fixed 1st node to the k-th node within the set of nodes S and the path goes via all other nodes in S once and only once (definition of simple path). The set S excludes the starting node 1. Write a recursive algorithm for the recurrence below.

[2+6+2]
P(S, k) =min{P(S-{k}, m) + Wmk , for all nodes m(S-{k}}, size of set S is >1;

= W1k, when the size of the set S =1, i.e. single node k is in S.
Q3b. Write an iterative dynamic programming (DP) algorithm for the above recurrence. Note that you need to grow the size of the set gradually, since you will need to have results for the set size |S|-1 before you can compute for the set size |S|.
Q3c. Run your DP algorithm over the following graph. Show S, k, and P(S,k) in three columns.

KEY:
3a. Function P(S, k)

If |S|==1 then

Return W1k;

Else

Temp = +infinity;

For each node m in S-{k} do

Temp2 = P(S-{k}, m) + Wmk;

If Temp2 < Temp then Temp = Temp2;

Return Temp;

Input: Undirected weighted graph G=(V,E), start node 1

Output: Shortest Hamiltonial path distance starting from node 1

Driver: return min{P(V-{1}, k), for all k in V-{1} }

3b.

DP-TSP (G)

For all k=2 to n do

P(S, k) = W1k;

For each subset S of nodes of set V-{1,} such that |S|=1 to n-1 do

For each node k in S do

Temp = +infinity;

For each node m in S-{k} do

If P(S-{k}, m) +Wmk < Temp then

Temp = P(S-{k}, m) +Wmk;

P(S, k) = Temp;

3c.

S

k

P(S,k)

|S|=1

{2}

2

5

{3}

3

9

{4}

4

2

|S|=2

{2,3}

2

v1-v3-v2 = 12

3

v1-v2-v3 = 8

{3,4}

3

3

4

10

{2,4}

2

inf

4

inf

|S|=3

{2,3,4}

2

min{P({3,4},3) +W32=6, P({3,4},4) +W42=inf}=6

3

min{P({2,4},2)+W23=inf,P({2,4},4)+W43=inf}=in

4

min{P({2,3},2)+W24=inf,P({2,3},3)+W34=9}=9
Q4a. Set up and discuss the recurrence relation for time complexity function T(n), n is the input array size, for the following recursive divide and conquer algorithm. Analyze the time complexity of the algorithm by applying Master’s theorem to solve your recurrence relation.

[4+6]

Q4b. Show the recursion tree (for recursive calls) for the following input to the driver call:
[1, 2, 3, 4].
MyAlgorithm (array a)
1. n = a. length

2. if n == 1

3. return a;

4. p = 1;

5. a[1] = (a0, a2, …, an-2);

6. a[2] = (a1, a3, … an-1);

7. vector x[1] = MyAlgorithm(a[1]);

8. vector x[2] = MyAlgorithm(a[2]);

9. For j = 0 to n-1

10. k = floor(j/2);
11. xj = xk[1] + p*xk[2]; (x not y, index k on right
12. p = p*2n;

13. return vector x;

End.

KEY:

4a. Two recursive calls of half-size on lines 7 and 8: T(n) = 2T(n/2) + overhead.

Lines 9-11, overhead: O(n)

Recurrence for time-complexity: T(n) = 2T(n/2) + O(n).

In Master’s theorem, a=2, b=2, i=1, a=b^i: T(n) = O(n^I log_n)= O(n log n)

4b. (1,2,3,4)

(1,3)

(2,4)

1
3

2
4

<<above for UG, below added for Grad>>

1*2^0 3

2
4

X1[1]=1+3*2

x1[2]=2+4

X2[1]=1+3^4

x2[2]=2+4*4

X1= 7 + 6

X2= 7 + 6*16

X3= 6 + 18*32

X4= 6 + 18*64

Q5a. Write a recursive backtracking algorithm for the shortest Hamiltonian path finding problem (refer to Q3 for the definition, but this question is not related to the recurrence equation there).

[4+4+2]
Q5b. Run your algorithm on the following network, showing your backtrack tree over the nodes. Start with node v1, and always use the lower indexed node when you have multiple options. Note: even if you cannot write the above algorithm, show a backtrack tree anyway.
Q5c. Suggest a correct bounding function for your algorithm.

KEY:
5a. Using 0-1Knapsack backtracking algorithm’s format:
Input: (level lvl, ordered nodes: V, arcs: E)

Returns: Shortest Hamiltonian path starting with arbitrary node 1 in V

Function Ham_Path (int lvl, Array A as path, current unfinished nodes V)

 If lvl = n // or equivalently |V| = empty

PathLength = Sum of arcs along sequence of nodes in A;

If PathLength < OptPath then

OptPath = PathLength;

 Else

For each node v in V

V = V – {v};

A[lvl+1] = v;

Ham_Path (lvl+1, A, V);

Driver:

Global OptPath = +infinity;
A[0] = 1;

Ham_Path(lvl=0, A, V-{1});
Return OptPath;

5c. For loop in else part:

For each node v in V connected to node A[lvl]

This will prun trying unconnected path.

In case it is done in the first place in 5a student gets points for both 5a and 5c.

A correct bounding function: b = length of minimum arc (v, x) from current node v.

If (PathLength so far on A + b < OptPath) then only make recursive call, otherwise not worth exploring the branch. <<Is it correct??>>
Haoran: Let me know if you see any innovative pruning idea.

5b. Backtrack tree from v1 below, with pruning

Algorithm Dijkstra (graph G, source node s)

1 Initialize a queue Q with the s;

2	While Q not empty do

3	 v = pop(Q);

4	 For each w such that (v, w) ϵ E do

5		If (v.distance + Dvw < w.distance) then	

6		 w.distance = v.distance +Dvw;

7		 w.parent = v;

8		 If w is not already in Q then push(Q, w);

 		 // if it is already in Q do not duplicate, w.dist is already

 // updated, however, w may have been in Q before

		end if

	 end for

	end while

End Algorithm.

v1

9

v2

v3

v4

v5

5

-6

1

2

1

1

v1

9

v2

v3

v4

5

3

2

1

v1

9

v2

v3

v4

v5

5

6

1

2

1

1

v1

V5

V4

V3

v2

Returned

OptPath=8

Pruned

X

V3

Pruned

X

Pruned

X

v2

Pruned

X

Length=12

OptPath

remains=8

v2

V5

PathLength=8

OptPath=8

V3

V4

V4

V2

V5

V3

V4

V5

