Algorithms
CSE5811
MidTerm
Fall2006
Points
40
Time 70 min
1. Describe what does the following algorithm produce, and analyze its asymptotic time-complexity. [For analyzing complexity, presume n = 2k, for some positive integer k.]
Algorithm Unknown(rational a, positive int n)

If n = = 1 return a
Else

If n%2 = = 0 then

Return Unknown(a, n/2)*Unknown(a, n/2)

Else

Return a*Unknown(a, (n-1)/2)*Unknown(a, (n-1)/2)

End algorithm.

2. For a weighted undirected graph G a culprit set C of arcs has the following property: if all the elements of C are removed from G it becomes acyclic (tree), and a min-culprit set M of arcs is such that the aggregate weight of arcs in M is minimum for all such sets C.

Write a greedy algorithm to find M given a graph G.
[Hint: First try to find appropriate G – M.]
3a. The following is a directed graph G: [a: b, d], [b: c], [c: a], [d: e], [e: f], [f: d], where [a: b, d] means there is a directed arc in G from a to b and from a to d. Draw G.
You are to find the strong connected components (SCCs) of the graph by running the relevant algorithm. Show (i) the first DFS-spanning tree of G starting with the node a, along with the post-order traversal numbers; (ii) the post-order traversal numbers shown on the nodes of the reverse graph G’; and (iii) the second set of DFS spanning trees on the reverse graph G’, which identifies the SCCs of G.

3b. Discuss why the following fact is true for the SCC algorithm.

There exists a path in G from the root of each output tree T of the algorithm to each of the nodes in the tree T.

4. The binomial coefficients C(N, k) can be defined recursively as follows:
C(N, 0) = C(N, N) = 1, and

for 0<k<N, C(N, k) = C(N-1, k) + C(N-1, k-1).

Write (a) a recursive algorithm to compute this and guess its complexity (no formal analysis is required), and (b) a dynamic programming algorithm for the same purpose and analyze its complexity.

Algorithms
CSE5811
MidTerm II
Fall2006
Points
20
Time 70 min
1a.

	Object Id.
	1
	2
	3
	4

	Weights
	2
	10
	1
	1

	Profits
	6
	10
	3
	4

Above listed are some semi-precious stones available for you to pick up. Modify and use the Rational-knapsack problem’s (RKS) greedy algorithm such that the knapsack has a maximum profit limit over the chosen objects as 12, and you are to fill the knapsack with minimum possible total weight. Note that in RKS you are allowed to break any object.
1b. For the 0-1 Knapsack (0-1KS) version of the above problem description (upper bound on profit limit, and minimize total weight), develop a Dynamic programming algorithm, after writing the relevant recurrence equation (along with the boundary conditions). Dry run the algorithm on the above problem instance.
Question 2 on the back.
2. Write the relevant recurrence equation, and write the corresponding Dynamic programming algorithm for approximately aligning a pair of character-sequences (strings). Show how the resulting matrix will look like and very briefly describe in what sequence the matrix will be computed according to your algorithm.

Consider two sequences, s = gacggattag, and t = gatcggaatag. A visual scan shows that the two sequences are quite similar. If you score each matching character as +1 and each unmatched character as -1, then the score for the similarity between them for the following alignment with a gap at the end for the shorter sequence s, would be 3-8 = -5.

gacggattag

gatcggaatag

A better alignment appears to be

 g a c g g a t t a g

g a t c g g a a t a g

with a gap in front of the string s. The similarity sore for this alignment is 7-4 = 3.

However, the following alignment is even better,

g a – c g g a t t a g

g a t c g g a a t a g

The similarity score here is 9-2=7. If we decide to penalize each gap, say, with -2, rather than score a gap just as a mismatched character, then the three respective scores would be 3-7-2 = -6, 7-3-2 = 2, and 9-1-2 = 6 respectively for the above three alignments. Obviously, the third alignment is much better. The question is how to find such optimal similarity score and its corresponding alignment. One can try all possible alignments but that is a huge exponential number of possibilities, with respect to the problem size, which is the number of characters in the respective strings. Note that there is no limit on how many gaps can be introduced. The following is a strategy to systematically build the alignment score.

At each iteration build the alignment between subsequences s[1..i] and t[1..j], where

1 (i (m and 1 (j (n, for the two sequences s and t of lengths m and n respectively. Thus, the algorithm builds a matrix for the similarity score values, sim(s[1..i], t[1..j]) and the final optimal alignment score is obtained at the end of all iterations as sim(s[1..m], t[1..n]). Simplifying the notations we will write a[i,j] instead of sim(s[1..i], t[1..j]). Thus, a[i,j] has three choices of values, for all 1 (i (n, and 1 (j (m.

(1) Align substring s[1..i] with substring t[1..j-1] and match a space/gap in s with the character t[j], score a[i,j] = a[i,j-1] –g (g = 2, penalty for a gap);

(2) align s[1..i-1] with t[1..j] and match s[i] with a space/gap in t, score a[i,j]= a[i-1,j] –g; or (3) align s[1..i-1] with t[1..j-1] and match s[i] with t[j], score a[i,j]= a[i-1,j-1] + p(i,j), where p(i,j) = +1 for a match s[i] = t[j], and p(i,j) = -1 for a mismatch s[i] (t[j]. The algorithm will choose the best (max) of these three options. You can compute the matrix iteratively once you have the initial values.

Initial values: For all 0 (i (m, a[i,0] = i*g, indicating increasing gaps for the s[i]-th position. Also, for all 0 (j (n, a[0,j] = j*g, indicating increasing gaps for the t[j]-th position.

