CSE 5211
Class Project
Fall 2005
Due: November 10, 2005
Design and implement a dynamic programming algorithm for approximately aligning a pair of sequences (global).

Consider two sequences, s = gacggattag, and t = gatcggaatag. A visual scan shows that two sequences are very similar. If you score each matching character as +1 and each unmatched character as -1, then the score for similarity between them for the following trivial alignment with a gap at the end for the shorter sequence s, would be 3-8=-5.

gacggattag

gatcggaatag

A better alignment appears to be
 g a c g g a t t a g

g a t c g g a a t a g

with a gap in front of s. The similarity sore for this alignment is 7-4=3.

However, the following alignment is even better,

g a – c g g a t t a g

g a t c g g a a t a g

The similarity score here is 9-2=7. If we decide to penalize gaps more (-2) than just mismatched character, then the three respective scores would be 3-7-2=-6, 7-3-2=2, and 9-1-2=6. Obviously, the third alignment is much better. The question is how to find such optimal similarity score and its corresponding alignment. One can try all possible alignments but that is a huge exponential number of possibilities, with respect to the problem size – the number of characters. The following is a strategy to systematically build the alignment.
At each iteration build the alignment between subsequences s[1..i] and t[1..j], where 1<=i<=m and 1<=j<=n, for the two sequences of length m and n respectively. Thus, the algorithm builds a matrix for the similarity score values, sim(s[1..i], t[1..j]) and the final optimal alignment score is obtained at the end of all iterations as sim(s[1..m], t[1..n]). Simplifying notations we will write a[i,j] instead of sim(s[1..i], t[1..j]). Thus, a[i,j] has three choices of values.
.(1) Align s[1..i] with t[1..j-1] and match a space in s with t[j], score a[i,j]= a[i,j-1] –g (g=2 penalty for a gap);
.(2) align s[1..i-1] with t[1..j] and match s[i] with a space in t, score a[i,j]= a[i-1,j] –g; or .(3) align s[1..i-1] with t[1..i-1] and match s[i] with t[j], score a[i,j]= a[i-1,j-1] +p(i,j), where p(i,j)=+1 for a match s[i]=t[j] and p(i,j)=-1 for a mismatch s[i]=/=t[j]. The algorithm will choose the best (max) of these three options. The final formula, a[i,j]= max{a[i,j-1] –g, a[i-1,j] –g, a[i-1,j-1] +p(i,j)}. You can compute the matrix iteratively once you have the initial values.
Initial values: For all 0<=i<=m, a[i,0]=i*g, indicating increasing gaps for the s[i]-th position. Also, for all 0<=j<=n, a[0,j]=j*g. An example matrix is provided in the figure.
Design and implement an iterative algorithm for the above strategy. Analyze the algorithm’s complexity. Hand-calculate the matrix for two small examples and output the same from your program for your comparison.
The whole matrix need not be computed when one knows that the two sequences are closely of same length, or |m-n| <= 2d, for some small constant integer d << min{m, n}. Improve your algorithm for such cases and analyze its complexity.

Submission: a report (<= 10 pages) including output, and source code as appendix. There will possibly be a demo session over inputs provided during the session.
