HomeWork 2
Algorithms
CSE 4081/5211
Fall 2005

Points 25 (UG) /35 (Grad):
Due: 9/20/05, Tuesday
1. Algorithm tracing [Points 15]: Implement the two Topological Sort algorithms (Naïve and Q-based). Implementations must use adjacency list as the graph data structure. Print the identifier for a node whenever it is looked up in the algorithm. Specifically in my algorithms:

(In Naïve Topo-sort)

Print each node when its indegeree is initially calculated; each node when it is checked for its indegree in the loop for “v = a vertex with zero indegree;” and each node w before the line “decrement indegree of w by 1;”

(In Q-based Topo-Sort)

Print each node  v when its indegeree is calculated before line “calculate indegree(v);” each node  v after it is dequed in line “v = dequeue from the head of Q;” each node w  before line “decrement indegree of w;” 

Run your implementations over the following three input directed graphs.

Graph 1: V={a, b, c}, E={(a,b), (a, c), (b, c)}

Graph 2: V={a, b, c, d, e, f}, E={(a,b), (b,c), (b,e), (b,f), (c,d), (d,e), (f,e)}

Graph 3: V={a, b, c, d, e, f}, E={(a,b), (b,c), (c,e), (e,b), (c,d), (d,e), (f,e)}

Count the print statements from each loop of the algorithms and compare the numbers with respect to the respective asymptotic complexities for the loops in terms of N and |E|. Submission: Output from the six runs and a short discussion on the comparison.

1b. GRADUATE CLASS [5]: Suggest a way to extend the topological sort algorithm such that the nodes (and only those nodes) involved in cycles could be detected, when such cycles exist in the input. [Algorithm sketch/strategy, not pseudo-code.]
2. Algorithm analysis [10]: Graph coloring problem is defined over a (undirected) graph G=(V, E), where each node vi in V has a domain Di of a finite set of colors, and each labeled arc specifies a constraint that the adjacent nodes in each edge in E may not have the same color simultaneously. The following algorithm filters the domain of each respective node by removing the values that should not be in that domain as per the constraints in the problem. (Note that the algorithm is not for finding solutions of the graph coloring problems.)
(1) Repeat 

(2) For each node v in V do

(3)    For each w in V adjacent to v do

(4)      For each value a in Dv do

(5)          If a has no support in Dw remove a from Dv;

(6) End for loops;

(7) Until there is no change in ANY domain (of any node);

Assume that initially each domain (Dv) is of the same size k, |V|=n, and |E|=e. Analyze the asymptotic time-complexity of the algorithm. Hint: presume that in each iteration of the repeat-loop only one value of one node is removed - as the worst-case scenario. Be careful with an implicit loop in line 5.

2b. GRADUATE CLASS [5]: Replace the repeat-loop by using a Queue-based algorithm, and analyze your algorithm’s complexity. Hint: only those nodes whose values have changed in an iteration need to be used for further changes in the subsequent iterations. 

Ans: 

(1) Enqueue all ars in Q; // O(e)

(2) While Q is not empty do

(3)
(v, w) := pop(Q);

(4)
 For each value a in Dv do

(5)
 
If a has no support in Dw remove a from Dv //O(k^2)

     End while;

// Max Queue length 2ek, an arc can go into queue 2k times

// Total complexity O(e times k^3)

