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Presburger’s Article on Integer Arithmetic:

Remarks and Translation

Ryan Stansifer

An early chapter in the development of decision procedures concerns the theory of Presburger arithmetic.

The original article presenting the theory was published in German in 1930 under the title “Über die

Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige

Operation hervortritt.” My translation of this article appears here. The translation is preceded by remarks

about the historical circumstances surrounding the paper and about the paper itself.

The article was written by Mojżesz Presburger, a Polish student of mathematics, and presented at a

conference in Warsaw in 1929. In it Presburger showed that the part of number theory which uses only

the addition function is complete, that is, every formula or its negation is true. This fragment of number

theory has come to be known as Presburger arithmetic. Although the motivation of his paper was to prove

the theory complete, the method of proof is constructive and yields a decision procedure or algorithm with

which every formula of Presburger arithmetic can be determined to be true or false.

Probably the earliest theorem-proving program ever written for the computer employed Presburger’s

algorithm to prove theorems of Presburger arithmetic. Martin Davis wrote the program in the summer of

1954 for an electronic digital computer with a memory of only 1024 words (Davis 1960). Today algorithms

for deciding Presburger arithmetic are important as components of large automatic theorem-proving and

program verification efforts (Bledsoe 1974 and Shostak 1979). The ability to deduce facts about some

portion of arithmetic is useful, where so many facts are out of reach of any decision procedure. Fortunately,

many of the theorems that arise from checking the correctness of computer programs can be established by

Presburger’s algorithm and other related decision procedures.

The Conference. The First Congress of Mathematicians of the Slavic Countries took place on

September 23–27, 1929, at the Polytechnic Institute in Warsaw. Participants came mostly from Poland,

but a few came from as far away as Japan and Texas. (Incidentally, transatlantic flights did not begin until

ten years later.) Among those attending the conference were Stanis law Ulam, who was then a student at
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Lwów,† and John von Neumann, who was a Privatdozent‡ at Berlin at that time. Alfred Tarski, whose

lectures at the University of Warsaw provided the impetus for Presburger’s work, gave two papers. The

opening session on Monday included a lecture by Adolf (Abraham) Fraenkel on the life and work of Georg

Cantor. For the closing session the participants went by sleeping car to Poznań, where Kazimierz Kuratowski

talked about topology. This is reminiscent of the First International Congress of Mathematics in Zürich in

1897 where the participants went by special trains to a mountain retreat for a banquet and the closing

session.

Both the program, published in 1929 for the participants, and the proceedings, which did not appear

until 1930, were published in Polish and French. Everything possible, title page, headings and the like,

appeared in both languages. The welcoming remarks of the mayor of Warsaw, who greeted the participants

himself, also appeared in both languages. However, the contributed articles were published in the original

language, and papers can be found in German, Polish, Russian, French and Italian; French and German

were the most common languages used.

In this brief period between the wars, mathematics flourished in Poland. This was the second interna-

tional conference of mathematicians in Poland, the first being in Cracow during 1927. The universities located

in Cracow and Lwów suffered less under foreign domination than those in Warsaw. As a consequence Cracow

and Lwów emerged as centers of Polish mathematics. Both published their own international journals:

Annales de la Société Polonaise de Mathématique and Studia Mathematica. At Lwów the seeds of Polish

logic were sown by Kazimierz Twardowski, who was appointed to the chair of philosophy in 1895 (Jordan

1945). His students formed the backbone of the school of logic known as the Lwów-Warsaw school.

Despite a hundred years of Prussian and Russian oppression, Warsaw began to emerge as another center

of Polish mathematics. The University of Warsaw and the Polytechnic Institute were organized anew in 1915

† The many names by which this city has been known reflect the turbulence of the time. When Ulam

was born in the city in 1909, Lemberg was the capital of Galicia in Austria-Hungry. In the chaos

accompanying the end of World War I, Lviv was briefly the capital of a Ukranian republic. At the time

of the conference in Warsaw, Lwów was again part of Poland. Today Lvov is found in the Soviet Union.
‡ A Privatdozent in those days was a university lecturer who, unlike a professor, was not a salaried

employee of the state, but rather was permitted to charge students for lectures in order to make a

living.
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after the Tsarist armies left.† As Kuratowski relates (Kuratowski 1980), Samuel Dickstein, Jan  Lukasiewicz

and Stefan Mazurkiewicz were the professors of mathematics at the University. Among the first students

were Bronis law Knaster, Stanis law Saks, and Kuratowski. Soon after came Tarski, who received his Ph.D.

from the University in 1923 and then remained as an adjunct professor until the outbreak of World War

II. Also, at about the same time, Adolf Lindenbaum and Presburger were students as well (Jordan 1945).

At the time of conference in 1929 Lindenbaum had obtained his doctorate. Presburger never did receive

a doctorate for the work reported at the conference, apparently because Tarski considered it an obvious

application of the technique for the elimination of quantifiers which Thoralf Skolem had used much earlier

(Crossley 1975). Skolem used this approach to prove that monadic second order logic is a decidable theory

(Skolem 1919).

Because of his important role in the rise of Polish logic,  Lukasiewicz deserves a little more attention. He

was born in Lwów in 1878 and earned his Ph.D. from the University of Lwów in 1902 under Twardowski.

From 1906 he was a Privatdozent of philosophy at Lwów; in 1911 he was made professor. From 1915 to 1939

he was a professor at the University of Warsaw. In July 1944  Lukasiewicz found refuge in Münster, Germany,

where he had previously been given an honorary title. From the end of World War II until he died in 1956, he

was professor of mathematical logic at the Royal Irish Academy in Dublin. He is perhaps best known today

for his invention of a parenthesis-free notation, sometimes called Polish notation. This notation has found

application in the organization of some of today’s hand calculators.  Lukasiewicz also discovered many-valued

logics and used them in proofs of the independence of axioms. In addition, he was the first person to suggest

a natural deduction style method for logical deduction as opposed to the less natural, formalistic logical

systems of Frege, Russell and Hilbert (Prawitz 1965, page 98).  Lukasiewicz’s textbook on mathematical

logic, Elements of Mathematical Logic was published just after the one by Hilbert and Ackermann. These

books are the first textbooks on “modern” or “mathematical” logic, although  Lukasiewicz’s book is heavily

influenced by the philosophical approach to logic dominated by Aristotle and his syllogisms. The book was

compiled by Presburger from oral lectures given by  Lukasiewicz at the University of Warsaw.

This era of Polish mathematical activity is fast receding into history. Kuratowski died in June 1980.

Tarski died in California in October 1983. Ulam, who like Tarski emigrated to the United States, died in

May 1984.

† The expulsion of the Russians by the Germans did not end the military conflicts which had to have an

effect on university life. After the defeat of the Germans and the restoration of Poland by the Treaty of

Versailles, the Russians threatened Warsaw in 1920. Then internal problems culminated in a military

coup d’état which took place in Warsaw in 1926.
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The Paper. Presburger’s paper was scheduled to start Section I at 10:30 on Tuesday, September 24,

1929. In the program the title is listed in Polish: “Zagadnienie zupe lności i rozstrzygalności w zastosowanie do

pewnego systemu arytmetya liczb ca lkowitych.” The finished article, which was not due until the November

after the conference, was published in German and appears on pages 92 through 101. There is an unnumbered

“supplement” page appearing after the last numbered page in the proceedings which contains an addition

to Presburger’s article and errata to another article. This page is cited by several authors as page 395.

The translation here of Presburger’s paper uses the phrase “meaningful statements.” Today this might

be more correctly rendered as “well-formed statements” or “well-formed formulas.” Presburger in his paper,

and Tarski and  Lukasiewicz in their writings use the German term “sinnvolle Ausdrücke.”  Lukasiewicz, if

not the others, uses the equivalent Polish “wyrażenia sensowne.” (See  Lukasiewicz 1934 written in Polish

and his own translation into German,  Lukasiewicz 1935.) In the preface of Elements of Mathematical Logic

 Lukasiewicz attributes the phrase to his colleague at the University of Warsaw, Stanis law Leśniewski. Both

the translator of this book and Storrs McCall in his translation of  Lukasiewicz’s 1934 article into English use

the the phrase “meaningful statements.” Even more recently Kurt Gödel used the phrase in English (van

Heijenoort 1977, page 616). Apparently the Polish mathematicians were stressing the “meaningful” over

the “well-formed” on purpose. Tarski gives the reason: “Instead of ‘meaningful statements’ one could also

say ‘regularly constructed statements.’ When I use the word ‘meaningful,’ I do so to express my agreement

with the doctrine of intuitionistic formalism.” (See Tarski 1930, page 363.) Perhaps they were trying not

to commit themselves to the precept that they had captured the meaningful statements with their choice of

formalism.

The mathematical notation used by Presburger is one that may not be familiar to the modern reader.

For one thing Presburger uses the summation symbol “Σ” for the existential quantifier. This notation was

first used by the American mathematician Benjamin Osgood Peirce before the turn of the century. At that

time logic was studied like a special form of algebra where conjunction acted like multiplication and the exists

operator acted like summation. The disjunctive and conjunctive normal forms which Presburger uses date

back to these earliest origins of modern logic. Presburger also uses  Lukasiewicz’s parenthesis-free notation

with “A” and “K” as prefix, binary operators for “or” and “and” respectively. This notation is occasionally

used today.

The Algorithm. The proof of completeness Presburger gives in his paper contains a decision procedure

for formulas of integer arithmetic containing just the plus symbol. The presentation is quite clear and the

algorithm is simple enough that one can almost read off a program to implement it directly from the article.
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The majority of the article is devoted to describing how to eliminate the quantifier “there exists an x” from

equations containing x. Here is an example†,

∃x (x + x + 1 = y) & (x + z = 0).

One can replace this formula with another without a quantifier

y ≡2 1 & y + z = 1

where y ≡2 1 means that y is congruent to 1 modulo 2, or, in other words, y divided by 2 leaves a remainder

of 1. By repeatedly eliminating a quantifier, a formula is obtained with no variables, and it can easily be

checked if it is true or false. This is the essence of quantifier elimination.

In preparation for quantifier elimination the formula to be tested must be put in a special form where

all quantifiers are at the beginning. The remainder of the formula, called the matrix, must also be put in a

special form, the so-called disjunctive normal form, where the matrix is one big disjunction. Every disjunct

contains any number of conjuncts. Each conjunct can be either an equation or a congruence and each of

these can be negated or not. Thus there are four possibilities. Negated congruences can be eliminated in

favor of the other three types, thus simplifying the number of possible to three.

Presburger deals with the six cases formed from a combination of two from the three types of conjuncts:

equations, negated equations and congruences. The generalization to more than two conjuncts is easy, but

notationally cumbersome, and can be found in Monk 1970. Presburger does not explicitly mention the case

where a disjunct consists of a single equation, negated equation or congruence. Since this case provides

simple examples of the mathematical reasoning Presburger uses, they are given here as a prelude to the

complete article. A disjunct consisting of an equation,

∃x(αx + a = b) 7−→ a ≡α b

is really the definition of congruence. It appears to be cheating to eliminate a quantifier by forming a

congruence, but it is computationally easy to determine if two numbers are congruent, so this approach is

justified. A negated equation,

∃x ¬ (αx + a = b) 7−→ 0 = 0

† Here in this section the vertical bar “|” and the ampersand “&” are used for disjunction and conjunction

respectively. This notation is by no means standard today, but has the virtue that these characters

appear on the keyboard of most computer terminals. On the other hand, the backwards “E” introduced

by Peano is standard notation today for the existential quantifier. This has become generally accepted

precisely because it distinguishes logic from algebra.
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can always be satisfied. There is always some integer x that will make the equation false, hence the formula

can be replaced by any true formula. A little bit of number theory will convince one that a disjunct consisting

of a congruence,

∃x(αx + a ≡β b) 7−→ a ≡gcd(α,β) b

can be replaced by a congruence modulo the greatest common divisor of α and β.

The asymptotic running time of Presburger’s algorithm is governed, not by the mathematically inter-

esting part of the algorithm, but by putting formulas in disjunctive normal form. In general this increases

the length of a formula by a considerable amount with the result that the algorithm can consume much time

and space. This combinatorial explosion led Davis in 1954 to despair of implementing more complicated

decisions procedures.

The problem with putting formulas in disjunctive normal form is that there are formulas with n literals

that for any integer c the disjunctive normal form has more than nc literals. For example, consider the

formula

(x1 | x2) & (y1 | y2) & · · · & (z1 | z2).

Let it have a conjuncts, say. It originally has 2a literals. In disjunctive normal form it will have 2a+1 literals.

Since a can be chosen so that nc = (2a)c < 2a+1, there is no polynomial bound on the increase in size of

formulas put in disjunctive normal form.

It is now known that there are more efficient algorithms for deciding formulas of Presburger arithmetic.

One is described in Cooper 1972. The basic idea is to test the matrix with a small number of integers that

cover all possible cases. These integers can be determined without putting the matrix in disjunctive normal

form. Thus a quantifier can be eliminated by replacing the matrix by the disjunction of all the different

cases. The same idea works for rational numbers as well. See Hopcroft and Ullman 1979. Curiously the

decision procedure for rationals is even more efficient. A general case for algebraically closed fields was solved

by Tarski. The main results in this case were obtained in 1927–1928 in lectures at the University of Warsaw,

but nothing was published until after World War II (Tarksi 1951).

Derek Oppen has shown that Cooper’s algorithm for deciding Presburger arithmetic increases a formula

of length n by no more that 222cn

for some constant c. He has also shown the asymptotic running time is

essentially the same function (Oppen 1978). This is most probably optimal since it has been shown that

Presburger arithmetic requires non-deterministic time 22cn

for some constant c. See Fischer and Rabin 1974.

Any algorithm that would run significantly faster would imply that non-deterministic Turing machines could

be simulated by deterministic Turing machines with less than an exponential slowdown.
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The role of Presburger’s algorithm in the development of logic can be appreciated by consulting Beth’s

copious work, The Foundations of Mathematics. Beth actually treats a subtheory with a severe restriction

on equations. The place of Presburger’s decision procedure as it stands in the edifice of modern logic can

be found in Monk 1970. This exposition has the algorithm in its most general form with the “less than”

predicate in the theory as well as equality. Presburger, as the addendum to the article shows, was aware

that this extension was possible. For a broad treatment of quantifier elimination, see Kreisel and Krivine

1967.

The translation of Presburger’s paper now follows. The footnotes are his own, but pointers to trans-

lations and more modern literature are added to the footnotes in brackets. A bibliography is given at the

end. It includes all the original references used by Presburger and related literature, historical background

material, and contemporary literature concerning Presburger arithmetic.
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About the completeness of a certain system of integer arithmetic

in which addition is the only operation

by

M. Presburger (Warsaw)

The present note contains a result1 about the completeness of a set2 of sentences of integer arithmetic.

The proof of completeness sketched below also gives, as a result of its effective character, a process which

decides if a given statement in the part of arithmetic under consideration is a true sentence of arithmetic.3

We consider a set of statements which we will call meaningful statements. The meaningful statements

are built with the following symbols:

Individual symbols: Implication symbol–“C”

Negation symbol–“N”

Equals symbol–“=”

Exists symbol–“Σ”

Plus sign–“+”

Symbol for zero–“0”

Symbol for unit–“1”.

Symbols for variables: Predicate variables–“p”, “q”, “r” . . .

Integer variables–“x”, “a”, “b”, “c” . . .

A rigorous definition of a meaningful statement will be omitted here. We mention only that the statement

“Cpq” is a meaningful statement and stands for the proposition “if p, then q”. Also the statement “Np” is a

1 The result was obtained in May 1928. The problem was posed by Mr. A. Tarski.
2 See A. Tarski, “Remarques sur les notions fondamentales de la Méthodologie des Mathématiques,”

Annales de la Société Polonaise de Mathématique, volume VII, 1928, pages 270–272. [Since the publi-

cation of this article (Tarski 1928), Tarski has written several, more comprehensive articles concerning

the nature of deductive science. These can be found translated into English in Tarski 1956, articles III,

V and XII. But here Presburger is only assuming the reader knows Tarski’s definition of completeness

in a deductive theory which is: every sentence or its negation is in the theory.]
3 On the topic of completeness and decidability see: D. Hilbert and W. Ackermann, Grundzüge der

theoretischen Logik, (Berlin: Springer 1928). [There is an English translation of the second edition of

this classic work Hilbert and Ackermann 1950.]
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meaningful statement which stands for the proposition “not p”. The meaningful statement “Σa(a + 1 = 0)”

stands for the proposition that “there is an integer a such that a + 1 = 0”.

The following expressions will be used as abbreviations for meaningful statements:

“Apq” for “CNpq”, a disjunction of two statements,

“Kpq” for “NCpNq” a conjunction of two statements.4

Let A be a set of meaningful statements that contains, to start out with, the following sentences:

1. CCpqCCqrCpr

2. CCNppp

3. CpCNpq

These are the three axioms of propositional calculus determined by Mr. J.  Lukasiewicz.5

Furthermore two sentences about equality belong to A:

4. a = a

5. C(a = b)C(a = c)(b = c)

as well as the following sentences about arithmetic:

6. C(a = b)(a + c = b + c)

7. C(a + c = b + c)(a = b)

8. a + b = b + a

9. a + (b + c) = (a + b) + c6

10. a + 0 = a

11. Σb(a + b = c)

4 The notation we use here originates from Mr. J.  Lukasiewicz. See  Lukasiewicz, Elemente der mathema-

tischen Logik, prepared by M. Presburger, (University lecture notes, Polish), Warsaw, 1929. [ Lukasiewicz

takes credit for the parenthesis-free notation in the author’s preface. See page ix of the English edition

 Lukasiewicz 1963.]
5 See  Lukasiewicz, loc. cit., page 45. [These axioms are on page 28 of the English edition.]
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Sentence 11 asserts that the difference of two integers always exists.

Three recursive sets of statements are added to the eleven sentences already mentioned.

12. C(a + a = b + b)(a = b)

C(a + a + a = b + b + b)(a = b)
...

C(a + a + . . . + a︸ ︷︷ ︸
α

= b + b + . . . + b︸ ︷︷ ︸
α

)(a = b)

...

The sentences in 12 could have been expressed as:

C(αa = αb)(a = b),

but since we do not have the multiplication symbol, a recursive set of statements has been used. When in

the future we use an expression of the form “αa”, where α is a natural number, it is to be viewed as an

abbreviation for the expression “a + a + . . . + a︸ ︷︷ ︸
α

”.

13. ΣxA(x + x = a)(x + x + 1 = a)

ΣxAA(x + x + x = a)(x + x + x + 1 = a)(x + x + x + 1 + 1 = a)
...

ΣxA . . . A(x + x + x = a)(x + x + x + 1 = a)(x + x + x + 1 + 1 = a)

ΣxA . . . A︸ ︷︷ ︸
α−1

(αx = a)(αx + 1 = a) . . . (αx + 1 + 1 + . . . + 1︸ ︷︷ ︸
α−1

= a)

...

The statements in 13 could be read as follows: for every natural number α and for every integer a there is

always an integer x such that αx = a or αx + i = a, where i is a natural number less than a.

14. N(a + a + 1 = 0)

N(a + a + a + 1 = 0)
...

N(αa + 1 = 0)
...

6 This sentence permits the parentheses to be left out in all expressions of the form “a + (b + c)” and

“(a + b) + c”.
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The sentences in 14 say that for no natural number α larger than 1 does the equality αa + 1 = 0 hold.

The statements 1 through 14 which comprise the set A could be understood as an infinite axiom system

(if one wanted to introduce such a notion) for a theory of integers in which addition is the only operation.

We now introduce the set of consequences of the set A which we will denote Ax. Ax is the smallest set

which contains A and fulfills the following four conditions:7

1. If a statement p belongs to Ax, so does every statement which can be obtained from p by substitution.8

2. If two statements of the form p and Cpq belong to Ax, then q belongs to Ax as well.

3. If a statement of the form CΣaqr belongs to Ax, then Cqr belongs to Ax as well.

4. If a statement of the form Cqr belongs to Ax, and q contains a free variable of the same form as “a”,

then CΣaqr belongs to Ax, as long as no such variable occurs in r.

The set Ax defines the system of arithmetic9 for which we will outline a completeness proof. Without

getting into details, we remark that to prove the completeness of the set Ax it is sufficient to show that

for all p, a meaningful statement without free variables, either p or Np belongs to Ax. In other words it is

sufficient to prove the decidability of meaningful statements without free variables.

Among those meaningful statements present are those that express the congruence of two integers

modulo α, where α is a natural number. For example, the expression Σx(x + x + a = b) means the same as

a ≡ b mod 2. Statements of the form Σx(αx + a = b) will be written from now on by a ≡α b for the sake of

brevity.

Now we introduce the concept of a ground statement. We understand a ground statement to be a

meaningful statement in one of the following two forms: a = b or a ≡α b.

The principle lemma which leads up to our completeness theorem is:

7 See A. Tarski, loc. cit.
8 It is easy to surmise what the definition of substitution should be in our system. See Hilbert and

Ackermann, loc. cit., pages 53–54. [Formulating substitution correctly is apparently not that easy.

Hilbert and Ackermann failed to get it right once again in the revised, second edition. See Church 1956,

page 289. The (incorrect) formulation of substitution by Hilbert and Ackermann can be found on pages

69–70 of the English edition.]
9 The logical model for the system Ax originates from A. Tarksi, who in his university lectures in the

academic year 1927–1928 covered deductive systems without function variables. Among other things,

Tarski proved the completeness of the geometry of straight lines which is based on the notions: “b lies

between a and c” and “a is the same distance from b as c from d.” Tarksi also investigated all the

complete systems of the calculus of classes. [See Beth 1965, page 584.]
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Every meaningful statement without free variables can be transformed into an equivalent statement

in disjunctive normal form,10 where the members of the disjuncts are either ground statements or their

negations without free variables.

Ground statements without free variables can be converted to one of the following four forms by simple

transformations:

0 = 0, 1 + 1 + . . . + 1 = 0, 0 ≡α 0, 1 + 1 + . . . + 1︸ ︷︷ ︸
β

≡α 0

Every one of these statements is decidable in our system. In particular it is easy to show that the statement

1 + 1 + . . . + 1︸ ︷︷ ︸
β

≡α 0 is in Ax if and only if β is divisible by α. The expression N(1 + 1 + . . . + 1︸ ︷︷ ︸
β

≡α 0)

belongs to Ax if and only if β is not divisible by α.

So if an expression is in disjunctive normal form as referred to in the lemma, then our system is decidable.

As a consequence, every meaningful statement without free variables is decidable.

The proof of our principle lemma is based on the fact that every meaningful statement can be transformed

into an equivalent normal form, so that the “exists” symbol (negated or not) is at the beginning of the

expression,11 and then into an expression in disjunctive normal form in which equations (hence ground

statements) or negated equations appear as the members of the disjuncts. The following is an example of

an expression in the normal form just described:

ΣaNΣbΣcNΣdAAKKr11r12r13Kr21r22Kr31r32,

where rϑι is an equation or the negation of an equation.

The basic idea of the proof is that one can progressively eliminate the innermost “exists” symbol from

the above normal form expression obtaining the equivalent form:

ΣaNΣbΣcNAAΣdKKr11r12r13ΣdKr21r22ΣdKr31r32.

Suppose then that one could replace every expression of the form

ΣdK . . .Kr1r2 . . . rα,

where ri is a ground statement or the negation of one, by an equivalent expression of the form

K . . . Kr′1r
′
2 . . . r′α′ ,

10 See Hilbert and Ackermann, loc. cit., page 13. [This can be found on page 17 of the English edition.]
11 See Hilbert and Ackermann, loc. cit., page 63. [First called prenex normal form in the second edition,

this can be found on page 83 of the English edition.]
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where r′i is again either a ground statement or the negation of one, without introducing any new free variables.

Then we could obtain an expression in disjunctive normal form by eliminating the “exists” symbols step by

step.12 Because this transformation introduced no free variables, the last expression will have no free variables

if the original expression had no such variables.

Hence we have shown that in order to prove the completeness of the system Ax it is sufficient to prove

the following lemma.

Every expression of the form:

ΣxK . . .Kr1r2 . . . rα,

where each ri is a ground statement or negated ground statement, can be converted into an equivalent form:

K . . . Kr′1r
′
2 . . . r′α′ ,

where each ri is again a ground statement or negated ground statement not containing new free variables.

We will consider the case where each disjunct has only two conjuncts; the generalization to more than

two can be easily derived.

We must examine four types of conjuncts: equations, negated equations, congruences, and negated

congruences. However, negated congruences can be reduced to congruences, since the statement N(a ≡α b)

is equivalent to13

AA . . . A(a + 1 ≡α b)(a + 1 + 1 ≡α b) . . . (a + 1 + 1 + . . . + 1︸ ︷︷ ︸
α−1

≡α b).

So there are three types of conjuncts remaining, and we must examine the following combinations:

12 The process described here has already been used by Mr. Th. Skolem and Mr. C. H. Langford. (See

Th. Skolem, “Untersuchungen über die Axiome des Klassenkalkuls und über Produktations- und

Summationsprobleme, welche gewisse Klassen von Aussagen betreffen,” Videnskapsselskapets Skrifter.

I Mat. nat. Klasse, number 3, 1919. See also Annals of Mathematics, Second series, volume 28, Prince-

ton, N.J., 1926–27, “Some theorems on deducibility,” by C. H. Langford, page 16 and “Theorems on

deducibility (Second paper),” by C. H. Langford, page 459.) Mr. Tarski developed it into a systematic

and general method. [See section 101 of Beth 1965 for a description of the quantifier elimination

procedure for the theory of dense orderings that Langford developed.]
13 This simplification was noticed by Mr. A. Lindenbaum. [Adolf Lindenbaum was killed by the Gestapo

in occupied Poland (Luschei 1962).]
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I. equation, equation

II. congruence, congruence

III. negated equation, negated equation

IV. equation, negated equation

V. equation, congruence

VI. congruence, negated equation.

I. A statement of the form ΣxKr1r2, where r1, r2 are equations, can easily be transformed to the

form:

ΣxK(αx + a = b)(α′x + a′ = b′).

Now we have two linear equations in one unknown x which we can transform so that they have the same

coefficient β (the least common multiple of α and α′):

ΣxK(βx + c = d)(βx + c′ = d′).

By further transformations we obtain:

ΣxK(βx + c = d)(d + c′ = d′ + c)

KΣx(βx + c = d)(d + c′ = d′ + c)

K(c ≡β d)(d + c′ = d′ + c)

Thus the lemma is proved for the case of two equations.

II. A statement of the form ΣxKr1r2, where r1 and r2 are congruences, can easily be put in the form:

ΣxK(αx + a ≡β b)(α′x + a′ ≡β′ b′).

By the theorem that asserts the equivalence of a ≡α b and βa ≡βα βb, we can write our two congruences as

congruences with the same modulus δ (the least common multiple of β and β′):

ΣxK(γx + c ≡δ d)(γ′x + c′ ≡δ d′)

We obtain further, when, say, γ > γ′:

ΣxK(γ′′x + c + d′ ≡δ d + c′)(γ′x + c′ ≡δ d′),

where γ′′ = γ − γ′. In this way the coefficient of the unknown in one of the given congruences is reduced

from γ to γ′. After repeating this process, we obtain a system of two congruences with the same coefficient

of the unknown:

ΣxK(ηx + e ≡δ f)(ηx + e′ ≡δ f ′).

14



Further transformations give the equivalent forms:

ΣxK(ηx + e ≡δ f)(f + e′ ≡δ f ′ + e)

KΣx(ηx + e ≡δ f)(f + e′ ≡δ f ′ + e)

A necessary and sufficient condition for the solution of the congruence ηx + e ≡δ f is that e ≡ϑ f holds,

where ϑ is the greatest common divisor of η and δ. So finally we get:

K(e ≡ϑ f)(f + e′ ≡δ f ′ + e)

Thus the lemma is proved for the case of two congruences.

III. In the case of two negated equations:

ΣxKN(αx + a = b)N(α′x + a′ = b′)

we have a statement that always holds, so it is equivalent to, say, the statement 0 = 0.

IV. In the case of an equation and a negated equation we have:

ΣxK(αx + a = b)N(α′x + a′ = b′)

ΣxK(βx + c = d)N(βx + c′ = d′)

ΣxK(βx + c = d)N(d + c′ = d′ + c)

K(c ≡β d)N(d + c′ = d′ + c)

V. In the case of an equation and a congruence, we have:

ΣxK(αx + a = b)(α′x + a′ ≡β b′)

ΣxK(γx + c = d)(γx + c′ ≡β′ d′)

ΣxK(γx + c = d)(d + c′ ≡β′ d′ + c)

K(c ≡γ d)(d + c′ ≡β′ d′ + c)

VI. Now we consider the case of a congruence and a negated equation:

ΣxK(αx + a ≡β b)N(α′x + a′ = b′).

It is easy to show that this system is equivalent to the following condition:

Σx(αx + a ≡β b)

which in turn is equal to the congruence:

a ≡γ b,
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where γ is the greatest common divisor of α and β. Thus the last case of the lemma is confirmed.

In conclusion we want to note that all the arithmetic transformations used above are justified by the

definition of the set Ax. This can be checked out in detail.

Thus we have sketched the completeness proof. It is easy to see that the given proof gives us at the same

time a process by which one can decide if a given meaningful statement p is in the set Ax in a finite number

of steps. That is, in the area of integer arithmetic restricted to the set Ax there are no more undecidable

problems.

Should we want to introduce the multiplication symbol to our system, we would encounter unsolved

problems in the proof of decidability. Since in such an expanded system we could formulate, for instance,

the statement:

NΣxΣyΣz(x · x · . . . · x︸ ︷︷ ︸
α

+ y · y · . . . · y︸ ︷︷ ︸
α

= z · z · . . . · z︸ ︷︷ ︸
α

)

which is a special case of the Fermat’s last theorem. Because α can be an arbitrary number, in order to prove

the decidability of the expanded system we would have to be able to decide each special case of Fermat’s

last theorem.

Additions to the communication by M. Presburger:

1. Sentence 7 in the definition of the set A is superfluous, since it can be derived from the other

sentences.

2. The completeness result can be extended to the arithmetic of whole numbers with “0”, “1”, “+” and

“>” as primitive notions.
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Kongresu matematyków krajów s lowiańskich, Warszawa 1929 (Comptes-rendus du I Congrés

des Mathématiciens des Pays Slaves, Varsovie 1929), Warsaw, 1930, pages 92–101, 395.

[37] Reid, Constance. Hilbert. Springer-Verlag, New York, 1970.

[38] Scholz, Heinrich. “In Memoriam Jan  Lukasiewicz.” Archiv für Mathematische Logik und Grundlagen-

forschung, volume 3, 1956, pages 3–18.

[39] Shostak, Robert E. “On the SUP-INF Method for Proving Presburger Formulas.” Journal of the

ACM, volume 24, number 4, October 1977, pages 529–543.

[40] Shostak, Robert E. “A Practical Decision Procedure for Arithmetic with Function Symbols.” Journal

of the ACM, volume 26, number 2, April 1979, pages 351–360.

[41] Skolem, Thoralf Albert. Selected Works in Logic. Edited by Jens Erik Fenstad with a survey of

Skolem’s contribution to logic by Hao Wang. Universitetsforlaget, Oslo, 1970.

[42] Skolem, Thoralf Albert. “Untersuchungen über die Axiome des Klassenkalkuls und über Produkta-

tions- und Summationsprobleme, welche gewisse Klassen von Aussagen betreffen.” Skrifter utgit

av Videnskapsselskapet i Kristiania, I. Matematisk-naturvidenskabelig klasse, number 3, 1919.

This report to the Norkse Videnskaps-akademi (Norwegian Academy of Sciences) located in

Kristiania (now called Oslo) was issued in a number by itself as is customary, and is reprinted

in [41] on pages 67–101.

[43] Tarski, Alfred. “Remarques sur les notions fondamentales de la Méthodologie des Mathématiques.”
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