
4.2 Sorting and Searching

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · March 30, 2009 9:50 tt

2

Sequential Search

Sequential search. Scan through array, looking for key.
Search hit: return array index.
Search miss: return -1.

public static int search(String key, String[] a) {
int N = a.length;
for (int i = 0; i < a.length; i++)

if (a[i].compareTo(key) == 0)
return i;

return -1;

}

3

Search Client: Exception Filter

Exception filter. Read a sorted list of strings from a whitelist file,
then print out all strings from standard input not in the whitelist.

public static void main(String[] args) {
In in = new In(args[0]);
String s = in.readAll();
String[] words = s.split("\\s+");
while (!StdIn.isEmpty()) {

String key = StdIn.readString();
if (search(key, words) == -1)

StdOut.println(key);
}

}
}

Presenter
Presentation Notes
also filter out misspelled words, network connections to unapproved websites, etc.

4

Searching Challenge 1

Q. A credit card company needs to whitelist 10 million customer
account numbers, processing 1,000 transactions per second.

Using sequential search, what kind of computer is needed?

A. Toaster
B. Cellphone
C. Your laptop
D. Supercomputer
E. Google server farm

Presenter
Presentation Notes
D or E

5

Binary Search

6

Twenty Questions

Intuition. Find a hidden integer.

Presenter
Presentation Notes
Ask students how they would search in (an antiquated catalog known as) a phone book or dictionary. Perhaps bring one to class as a prop.
Each question shrinks by half the interval where the hidden integer lies.

7

Binary Search

Main idea.
Sort the array (stay tuned).
Play "20 questions" to determine index with a given key.

Ex. Dictionary, phone book, book index, credit card numbers, …

Binary search.
Examine the middle key.
If it matches, return its index.
Otherwise, search either the left or right half.

Presenter
Presentation Notes
Dictionaries, phone books, etc. replaced by digital analogs because we can write fast searching algorithm such as binary search

8

Binary Search: Java Implementation

Invariant. Algorithm maintains a[lo] ≤ key ≤ a[hi-1].

Java library implementation: Arrays.binarySearch()

public static int search(String key, String[] a) {
return search(key, a, 0, a.length);

}

public static int search(String key, String[] a, int lo, int hi) {
if (hi <= lo) return -1;
int mid = lo + (hi - lo) / 2;
int cmp = a[mid].compareTo(key);
if (cmp > 0) return search(key, a, lo, mid);
else if (cmp < 0) return search(key, a, mid+1, hi);
else return mid;

}

Presenter
Presentation Notes
Advanced tidbit: use lo + (hi - lo) / 2 instead of (hi + lo)/2 to avoid overflow for large arrays. Subtle bug lurked in Java system library for a decade!
Binary search is simple idea, but notoriously difficult to code correctly. Jon Bentley asked 50 professional programmers to code up binary search from scratch in their favorite language. Only about 10% got it right.

9

Binary Search: Mathematical Analysis

Analysis. To binary search in an array of size N: do one compare,
then binary search in an array of size N / 2.

N → N / 2 → N / 4 → N / 8 → … → 1

Q. How many times can you divide a number by 2 until you reach 1?
A. log2 N.

1
2 → 1

4 → 2 → 1
8 → 4 → 2 → 1

16 → 8 → 4 → 2 → 1
32 → 16 → 8 → 4 → 2 → 1

64 → 32 → 16 → 8 → 4 → 2 → 1
128 → 64 → 32 → 16 → 8 → 4 → 2 → 1

256 → 128 → 64 → 32 → 16 → 8 → 4 → 2 → 1
512 → 256 → 128 → 64 → 32 → 16 → 8 → 4 → 2 → 1

1024 → 512 → 256 → 128 → 64 → 32 → 16 → 8 → 4 → 2 → 1

10

Searching Challenge 2

Q. A credit card company needs to whitelist 10 million customer
account numbers, processing 1,000 transactions per second.

Using binary search, what kind of computer is needed?

A. Toaster
B. Cell phone
C. Your laptop
D. Supercomputer
E. Google server farm

Presenter
Presentation Notes
any of the above (well maybe not the toaster)

Sorting

12

Sorting

Sorting problem. Rearrange N items in ascending order.

Applications. Statistics, databases, data compression, bioinformatics,
computer graphics, scientific computing, (too numerous to list), ...

Hanley

Haskell

Hauser

Hayes

Hong

Hornet

Hsu

Hauser

Hong

Hsu

Hayes

Haskell

Hanley

Hornet

Presenter
Presentation Notes
we use sorting as case study because it is an important fundamental problem and it is fairly well understood
data compression = Burrows-Wheeler transform
computational biology = longest common substring [stay tuned]
computer graphics = convex hull, etc.

13

Insertion Sort

14

Insertion sort.
Brute-force sorting solution.
Move left-to-right through array.
Exchange next element with larger elements to its left, one-by-one.

Insertion Sort

15

Insertion sort.
Brute-force sorting solution.
Move left-to-right through array.
Exchange next element with larger elements to its left, one-by-one.

Insertion Sort

16

Insertion Sort: Java Implementation

public class Insertion {

public static void sort(String[] a) {
int N = a.length;
for (int i = 1; i < N; i++)

for (int j = i; j > 0; j--)
if (a[j-1].compareTo(a[j]) > 0)

exch(a, j-1, j);
else break;

}

private static void exch(String[] a, int i, int j) {
String swap = a[i];
a[i] = a[j];
a[j] = swap;

}
}

17

Insertion Sort: Empirical Analysis

Observation. Number of compares depends on input family.
Descending: ~ N 2 / 2.
Random: ~ N 2 / 4.
Ascending: ~ N.

0.001

0.1

10

1000

100000

10000000

1000 10000 100000 1000000

Input Size

Descendng
Random
Ascending

18

Insertion Sort: Mathematical Analysis

Worst case. [descending]
Iteration i requires i comparisons.
Total = (0 + 1 + 2 + ... + N-1) ~ N 2 / 2 compares.

Average case. [random]
Iteration i requires i / 2 comparisons on average.
Total = (0 + 1 + 2 + ... + N-1) / 2 ~ N 2 / 4 compares

E F G H I J D C B A

A C D F H J E B I G

i

i

19

Sorting Challenge 1

Q. A credit card company sorts 10 million customer account numbers,
for use with binary search.

Using insertion sort, what kind of computer is needed?

A. Toaster
B. Cell phone
C. Your laptop
D. Supercomputer
E. Google server farm

Presenter
Presentation Notes
D or E
on your laptop running time for N = 10^8 is about 3.5 * 10^-9 * 10^16 ~ 1 year

20

Insertion Sort: Lesson

Lesson. Supercomputer can't rescue a bad algorithm.

1 second

1 day

Million

instant

instant

Thousand BillionComparisons
Per SecondComputer

3 centuries107laptop

2 weeks1012super

Presenter
Presentation Notes
Validation: we got it right!
reference: Sedgewick, Analysis of Algorithms Theorem 6.7

21

Moore's Law

Moore's law. Transistor density on a chip doubles every 2 years.

Variants. Memory, disk space, bandwidth, computing power per $.

http://en.wikipedia.org/wiki/Moore's_law

Presenter
Presentation Notes
In 1965 Gordon Moore, co-founder of Intel, wrote "the complexity for minimum component costs has increased at a rate of roughly a factor of two per year ... Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years."

The number of transistors produced annually is now roughly equal to the number of letters and/or characters printed annually--and they cost about the same to produce, Moore noted. The amount of transistors produced each year outnumbers the worldwide ant population by 10 to 100 times.

22

Moore's Law and Algorithms

Quadratic algorithms do not scale with technology.
New computer may be 10x as fast.
But, has 10x as much memory so problem may be 10x bigger.
With quadratic algorithm, takes 10x as long!

Lesson. Need linear (or linearithmic) algorithm to keep pace with
Moore's law.

“Software inefficiency can always outpace
Moore's Law. Moore's Law isn't a match
for our bad coding.” – Jaron Lanier

Presenter
Presentation Notes
Jaron Lanier computer scientist, composer, visual artist, and author. Coined the term "virtual reality."

23

Mergesort

Presenter
Presentation Notes
bottom-up version of mergesort appeared in von Neumann report on the EDVAC June 30, 1945
picture is von Neumann with the EDVAC

24

Mergesort

Mergesort.
Divide array into two halves.
Recursively sort each half.
Merge two halves to make sorted whole.

25

Mergesort: Example

26

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

27

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

String[] aux = new String[N];
// merge into auxiliary array
int i = lo, j = mid;
for (int k = 0; k < N; k++) {

if (i == mid) aux[k] = a[j++];
else if (j == hi) aux[k] = a[i++];
else if (a[j].compareTo(a[i]) < 0) aux[k] = a[j++];
else aux[k] = a[i++];

}

// copy back
for (int k = 0; k < N; k++) {

a[lo + k] = aux[k];
}

28

public class Merge {

public static void sort(String[] a) {
sort(a, 0, a.length);

}

// Sort a[lo, hi).
public static void sort(String[] a, int lo, int hi) {

int N = hi - lo;
if (N <= 1) return;

// recursively sort left and right halves
int mid = lo + N/2;
sort(a, lo, mid);
sort(a, mid, hi);

// merge sorted halves (see previous slide)
}

}

Mergesort: Java Implementation

lo mid hi

10 11 12 13 14 15 16 17 18 19

29

Analysis. To mergesort array of size N, mergesort two subarrays
of size N / 2, and merge them together using ≤ N comparisons.

T(N)

T(N / 2)T(N / 2)

T(N / 4)T(N / 4)T(N / 4) T(N / 4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

N

T(N / 2k)

2 (N / 2)

4 (N / 4)

N / 2 (2)

.

.

.

log2 N

N log2 N

we assume N is a power of 2

Mergesort: Mathematical Analysis

Presenter
Presentation Notes
assumption that N is a power of 2 is for simplicity. ~ N lg N bound holds regardless

30

Mergesort: Mathematical Analysis

Mathematical analysis.

Validation. Theory agrees with observations.

N log2 Naverage

1/2 N log2 N

N log2 N

comparisonsanalysis

worst

best

1,279 million1,216 million50 million

485 million460 million20 million

133 thousand

predictedactualN

120 thousand10,000

Presenter
Presentation Notes
Prediction overestimates because there can be < N comparisons in a merge and N not being a power of 2
In the real world, not much difference between log N and 30

31

Sorting Challenge 2

Q. A credit card company sorts 10 million customer account numbers,
for use with binary search.

Using mergesort, what kind of computer is needed?

A. Toaster
B. Cell phone
C. Your laptop
D. Supercomputer
E. Google server farm

Presenter
Presentation Notes
any of the above (well maybe not the toaster)
laptop takes a couple seconds

32

Sorting Challenge 3

Q. What's the fastest way to sort 1 million 32-bit integers?

Presenter
Presentation Notes
any of the above (well maybe not the toaster)
laptop takes a couple seconds

33

Mergesort: Lesson

Lesson. Great algorithms can be more powerful than supercomputers.

N = 1 billion

2 weeks

3 centuries

Insertion MergesortCompares
Per SecondComputer

3 hours107laptop

instant1012super

34

Longest Repeated Substring

35

Longest repeated substring. Given a string, find the longest substring
that appears at least twice.

Brute force.
Try all indices i and j for start of possible match.
Compute longest common prefix for each pair (quadratic+).

Applications. Bioinformatics, data compression, …

Redundancy Detector

a a c a a g t t t a c a a g c

i j

a a c a a g t t t a c a a g c

Presenter
Presentation Notes
only need to check i < j
Burrows-Wheeler -> bzip data compression

36

Music is characterized by its repetitive structure.

http://www.bewitched.com

Mary Had a Little Lamb

LRS Application: The Shape of a Song

Like a Prayer

Presenter
Presentation Notes
arc diagram that highlighted repeated sections of music,
from the deep structure of Bach to the crystalline beauty of Philip Glass

37

Longest repeated substring. Given a string, find the longest substring
that appears at least twice.

Brute force.
Try all indices i and j for start of possible match.
Compute longest common prefix (LCP) for each pair.

Mathematical analysis.
All pairs: 0 + 1 + 2 + … + N-1 ~ N2/2 calls on LCP.
Way too slow for long strings.

Longest Repeated Substring: Brute-Force Solution

a a c a a g t t t a c a a g c

i j

a a c a a g t t t a c a a g c

Presenter
Presentation Notes
only need to check i < j
Burrows-Wheeler -> bzip data compression

38

Longest Repeated Substring: A Sorting Solution

sort suffixes to bring repeated substrings together
form suffixes

compute longest prefix
between adjacent suffixes

Presenter
Presentation Notes
Form suffixes, and sort them to bring repeated substrings together.
Compute longest prefix between N – 1 adjacent suffixes.

39

Longest Repeated Substring: Java Implementation

Suffix sorting implementation.

Longest common prefix. lcp(s, t)
Longest string that is a prefix of both s and t.
Ex: lcp("acaagtttac", "acaagc") = "acaag".
Easy to implement (you could write this one).

Longest repeated substring. Search only adjacent suffixes.

int N = s.length();
String[] suffixes = new String[N];
for (int i = 0; i < N; i++)

suffixes[i] = s.substring(i, N);
Arrays.sort(suffixes);

String lrs = "";
for (int i = 0; i < N-1; i++) {

String x = lcp(suffixes[i], suffixes[i+1]);
if (x.length() > lrs.length()) lrs = x;

}

40

String representation.
A String is an address and a length.
Characters can be shared among strings.
substring() computes address and length.

Consequences.
substring() is constant-time operation (instead of linear).
Creating suffixes takes linear space (instead of quadratic).
Running time of LRS is dominated by the string sort.

OOP Context for Strings

a

D0

a

D1

c

D2

a

D3

a

D4

g

D5

t

D6

t

D7

t

D8

a

D9

c

DA

a

DB

D0

A0

15

A1
s

lengthaddress

D5

B0

10

B1
t

a

DC

g

DD

c

DE

s = "aacaagtttacaagc";

t = s.substring(5, 15);

does not copy chars

Presenter
Presentation Notes
both strings reference into different segments of the same array of characters

41

Sorting Challenge 4

Q. Four researchers A, B, C, and D are looking for long repeated
sequences in a genome with over 1 billion characters.

Which one is more likely to find a cure for cancer?

A. has a grad student to do it.
B. uses brute force (check all pairs) solution.
C. uses sorting solution with insertion sort.
D. uses sorting solution with mergesort.

Presenter
Presentation Notes
A. Need to be able to program to do science nowadays
B, C. No, not in this century.
D. Fast sort enables progress.

Note: linear-time algorithm for LRS is known (see COS 226 or COS 423).

42

Longest Repeated Substring: Empirical Analysis

Lesson. Sorting to the rescue; enables new research.

2160.25 sec37 sec18,369Amendments

730.14 sec0.6 sec2,162 LRS.java

581.0 sec3958 sec191,945Aesop's Fables

12,56761 sec2 months †7.1 million Chromosome 11

84 sec

34 sec

7.6 sec

Suffix Sort

144 months †10 million Pi

1120 days †4.0 million Bible

7943 hours †1.2 million Moby Dick

Brute LengthCharactersInput File

† estimated

Presenter
Presentation Notes
Many, many, many other things enabled by fast sort and search!

43

Summary

Binary search. Efficient algorithm to search a sorted array.

Mergesort. Efficient algorithm to sort an array.

Applications. Many many applications are enabled by fast
sorting and searching.

44

Extra Slides

45

Searching a Sorted Array

Searching a sorted array. Given a sorted array, determine the index
associated with a given key.

Ex. Dictionary, phone book, book index, credit card numbers, …

Binary search.
Examine the middle key.
If it matches, return its index.
Otherwise, search either the left or right half.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo mid hi

46

Binary Search: Nonrecursive Implementation

Invariant. Algorithm maintains a[lo] ≤ key ≤ a[hi].

Java library implementation: Arrays.binarySearch()

public static int search(String[] a, String key) {
int lo = 0;
int hi = N-1;
while (lo <= hi) {

int mid = lo + (hi - lo) / 2;
int cmp = key.compareTo(a[mid]);
if (cmp < 0) hi = mid - 1;
else if (cmp > 0) lo = mid + 1;
else return mid;

}
return -1;

}

Presenter
Presentation Notes
non-recursive version

47

Data analysis. Plot # comparisons vs. input size on log-log scale.

Hypothesis. # comparisons grows quadratically with input size ~ N 2 / 4.

Insertion Sort: Empirical Analysis

1

10

100

1000

10000

100000

1000 10000 100000 1000000
Input Size

 Actual
 Fitted

slope

Presenter
Presentation Notes
log-log plot identifies power law relationships

48

Insertion Sort: Observation

Observe and tabulate running time for various values of N.
Data source: N random numbers between 0 and 1.
Machine: Apple G5 1.8GHz with 1.5GB memory running OS X.
Timing: Skagen wristwatch.

5.6 seconds400 million40,000

1.5 seconds99 million20,000

0.43 seconds25 million10,000

0.13 seconds6.2 million5,000

23 seconds

TimeComparisonsN

1600 million80,000

49

Insertion Sort: Prediction and Verification

Experimental hypothesis. # comparisons ~ N2/4.

Prediction. 400 million comparisons for N = 40,000.

Observations.

Prediction. 10 billion comparisons for N = 200,000.

Observation.
145 seconds9.997 billion200,000

TimeComparisonsN

5.573 sec399.7 million40,000

5.648 sec401.6 million40,000

5.632 sec400.0 million40,000

5.595 sec

TimeComparisonsN

401.3 million40,000

Agrees.

Agrees.

Presenter
Presentation Notes
This is for random inputs. Very accurate predictions. Each observation uses a different random input, so there is some variation in number of comparisons.
5x input size -> 25x increase in running time

50

Insertion Sort: Mathematical Analysis

Mathematical analysis.

Validation. Theory agrees with observations.

1/6 N 3/2N 2 / 4Average

N

N 2 / 2

Comparisons

-

-

StddevAnalysis

Worst

Best

9.9997 billion 10.000 billion200,000

401.3 million 400 million40,000

Actual PredictedN

Presenter
Presentation Notes
Validation: we got it right!
reference: Sedgewick, Analysis of Algorithms Theorem 6.7

51

Mergesort: Preliminary Hypothesis

Experimental hypothesis. Number of comparisons ~ 20N.

0.1

1

10

100

1000

1000 10000 100000 1000000

Input Size

Insertion sort
Mergesort

52

Mergesort: Prediction and Verification

Experimental hypothesis. Number of comparisons ~ 20N.

Prediction. 80 million comparisons for N = 4 million.

Observations.

Prediction. 400 million comparisons for N = 20 million.

Observations.

17.5 sec460 million20 million

45.9 sec

TimeComparisonsN

1216 million50 million

3.22 sec82.7 million4 million

3.25 sec82.7 million4 million

3.13 sec

TimeComparisonsN

82.7 million4 million
Agrees.

Not quite.

Presenter
Presentation Notes
To run must allocate additional memory to JVM with java –Xms700m –Xmx700m

	4.2 Sorting and Searching
	Sequential Search
	Search Client: Exception Filter
	Searching Challenge 1
	Slide Number 5
	Twenty Questions
	Binary Search
	Binary Search: Java Implementation
	Binary Search: Mathematical Analysis
	Searching Challenge 2
	Sorting
	Sorting
	Slide Number 13
	Insertion Sort
	Insertion Sort
	Insertion Sort: Java Implementation
	Insertion Sort: Empirical Analysis
	Insertion Sort: Mathematical Analysis
	Sorting Challenge 1
	Insertion Sort: Lesson
	Moore's Law
	Moore's Law and Algorithms
	Slide Number 23
	Mergesort
	Mergesort: Example
	Merging
	Merging
	Mergesort: Java Implementation
	Mergesort: Mathematical Analysis
	Mergesort: Mathematical Analysis
	Sorting Challenge 2
	Sorting Challenge 3
	Mergesort: Lesson
	Slide Number 34
	Redundancy Detector
	LRS Application: The Shape of a Song
	Longest Repeated Substring: Brute-Force Solution
	Longest Repeated Substring: A Sorting Solution
	Longest Repeated Substring: Java Implementation
	OOP Context for Strings
	Sorting Challenge 4
	Longest Repeated Substring: Empirical Analysis
	Summary
	Slide Number 44
	Searching a Sorted Array
	Binary Search: Nonrecursive Implementation
	Insertion Sort: Empirical Analysis
	Insertion Sort: Observation
	Insertion Sort: Prediction and Verification
	Insertion Sort: Mathematical Analysis
	Mergesort: Preliminary Hypothesis
	Mergesort: Prediction and Verification

