
2.3 Recursion

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · January 26, 2009 10:01 tt

Presenter
Presentation Notes
do automated demo of towers of hanoi before class

2

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
New mode of thinking.
Powerful programming paradigm.

Many computations are naturally self-referential.
Mergesort, FFT, gcd.
Linked data structures.
A folder contains files and other folders.

Closely related to mathematical induction.
Reproductive Parts
M. C. Escher, 1948

Presenter
Presentation Notes
Recursion and self reference are hugely important concepts in computer science and the natural world. (Perhaps a picture of a recursive tree or other object would be useful here)
Escher. title = "Drawing Hands". We use title (Escher's reproductive parts) due to Bernard Chazelle. Also nice pic for circular linked list.

3

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. gcd(4032, 1272) = 24.

Applications.
Simplify fractions: 1272/4032 = 53/168.
RSA cryptosystem.

4032 = 26 × 32 × 71

1272 = 23 × 31 × 531

gcd = 23 × 31 = 24

Presenter
Presentation Notes
How would you implement gcd?

4

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]

gcd(4032, 1272) = gcd(1272, 216)
= gcd(216, 192)
= gcd(192, 24)
= gcd(24, 0)
= 24.

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

⎧
⎨
⎩

base case

reduction step,
converges to base case

4032 = 3 × 1272 + 216

Presenter
Presentation Notes
Depiction from 1800's. Not much known about Euclid - spent time in Alexandria, Egypt.
gcd = one of world's oldest algorithms

5

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

p

p % qq

x x x x x x x x

p = 8x
q = 3x
gcd(p, q) = x

q

gcd

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

⎧
⎨
⎩

base case
reduction step,
converges to base case

6

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Java implementation.

base case
reduction step

public static int gcd(int p, int q) {
if (q == 0) return p;
else return gcd(q, p % q);

}

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

⎧
⎨
⎩

base case
reduction step,
converges to base case

Recursive Graphics

8

Presenter
Presentation Notes
Amazing hand-drawn image in NY Times by Serkan Ozkaya
[Serkan Ozkaya] simply wanted to draw and see printed a faithful copy of all the type and pictures planned for a broadsheet page of this newspaper: this very page you are reading right now, which shows his version of the page you are reading right now, which shows his version of his version of the page you are reading right now, which...

9

10

Htree

H-tree of order n.
Draw an H.
Recursively draw 4 H-trees of order n-1, one connected to each tip.

and half the size

order 1 order 2 order 3

tip

size

Presenter
Presentation Notes
Application: distribute clock signal to endpoints on integrated circuit. Want distance from clock to each endpoint to be the same. Otherwise clock skew.

11

Htree in Java

public class Htree {
public static void draw(int n, double sz, double x, double y) {

if (n == 0) return;
double x0 = x - sz/2, x1 = x + sz/2;
double y0 = y - sz/2, y1 = y + sz/2;

StdDraw.line(x0, y, x1, y);
StdDraw.line(x0, y0, x0, y1);
StdDraw.line(x1, y0, x1, y1);

draw(n-1, sz/2, x0, y0);
draw(n-1, sz/2, x0, y1);
draw(n-1, sz/2, x1, y0);
draw(n-1, sz/2, x1, y1);

}

public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
draw(n, .5, .5, .5);

}
}

draw the H, centered on (x, y)

recursively draw 4 half-size Hs

12

20% 40% 60% 80% 100%

Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.

Presenter
Presentation Notes
do demo using AnimatedHtree.java - observe order in which H-tree pattern is drawn

http://en.wikipedia.org/wiki/Image:Hanoiklein.jpg

Towers of Hanoi

14

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
Only one disc may be moved at a time.
A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi demo

start finish

Edouard Lucas (1883)

Presenter
Presentation Notes
Edouard Lucas invented Towers of Hanoi puzzle (1883)
Lucas died as the result of a freak accident at a banquet when a plate was dropped and a piece flew up and cut his cheek. He died of erysipelas (rare skin infection) a few days later.

http://www.cs.princeton.edu/introcs/27recursion/hanoi/

15

Towers of Hanoi: Recursive Solution

Move n-1 smallest discs right.

Move n-1 smallest discs right. Move largest disc left.
cyclic wrap-around

Presenter
Presentation Notes
Consider the task of moving n discs from leftmost pole to rightmost pole.
It is definitely the case that you need to transfer the biggest disc to the bottom of the rightmost pole,
but you can't do that until all the remaining n-1 discs are removed from pole A.
To get them out of the way, a good place to store them would be the middle pole.
Once you have done this, you move the largest disc to pole C, and then transfer the rest of the discs from pole B to pole C.

16

Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
64 golden discs on 3 diamond pegs.
World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?

17

Towers of Hanoi: Recursive Solution

public class TowersOfHanoi {

public static void moves(int n, boolean left) {
if (n == 0) return;
moves(n-1, !left);
if (left) System.out.println(n + " left");
else System.out.println(n + " right");
moves(n-1, !left);

}

public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
moves(N, true);

}

}

moves(n, true) : move discs 1 to n one pole to the left
moves(n, false): move discs 1 to n one pole to the right

smallest disc

18

Towers of Hanoi: Recursive Solution

% java TowersOfHanoi 4
1 right
2 left
1 right
3 right
1 right
2 left
1 right
4 left
1 right
2 left
1 right
3 right
1 right
2 left
1 right

% java TowersOfHanoi 3
1 left
2 right
1 left
3 left
1 left
2 right
1 left

subdivisions of ruler

every other move is smallest disc

19

Towers of Hanoi: Recursion Tree

3, true

2, false

1, true 1, true

2, false

1, true 1, true

1 left 2 right 1 left 3 left 2 right 1 left1 left

n, left

1 14

2 7

3 4 65 9 10 1211 17 18 2019 23 24 2625

138 16 21 2722

2815

20

Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.
Takes 2n - 1 moves to solve n disc problem.
Sequence of discs is same as subdivisions of ruler.
Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!
Alternate between two moves:
– move smallest disc to right if n is even
– make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.
Takes 585 billion years for n = 64 (at rate of 1 disc per second).
Reassuring fact: any solution takes at least this long!

to left if n is odd

Presenter
Presentation Notes
Perhaps a physicist would argue that it will take much longer for the world to end. 

21

Divide-and-Conquer

Divide-and-conquer paradigm.
Break up problem into smaller subproblems of same structure.
Solve subproblems recursively using same method.
Combine results to produce solution to original problem.

Many important problems succumb to divide-and-conquer.
FFT for signal processing.
Parsers for programming languages.
Multigrid methods for solving PDEs.
Quicksort and mergesort for sorting.
Hilbert curve for domain decomposition.
Quad-tree for efficient N-body simulation.
Midpoint displacement method for fractional Brownian motion.

Divide et impera. Veni, vidi, vici. - Julius Caesar

Presenter
Presentation Notes
"Divide and conquer", Caesar's other famous quote "I came, I saw, I conquered"
Divide-and-conquer idea dates back to Julius Caesar . (100 BCE - 44 BCE).
Favorite war tactic was to divide an opposing army in two halves, and then assault one half with his entire force.

Integer arithmetic for RSA cryptography.
Adaptive quadrature for integration.

Fibonacci Numbers

23

Fibonacci Numbers and Nature

pinecone

cauliflower

Presenter
Presentation Notes
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html
Here is picture of an ordinary pinecone seen from its base where the stalk connects it to the tree. spirals in one direction, 13 in the other.
Florets in cauliflower are organized in spirals around this centre in both directions. 5 in one direction, 8 in the other.
Never think about cauliflower the same way!
Lilies, irises, and the trillium have three petals; columbines, buttercups, larkspur, and wild rose have five petals; delphiniums, bloodroot, and cosmos have eight petals; corn marigolds have 13 petals; asters have 21 petals; and daisies have 34, 55, or 89 petals-

24

Fibonacci Numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Fibonacci rabbits

L. P. Fibonacci
(1170 - 1250)

F(n) =
0 if n = 0
1 if n =1
F(n −1) + F(n − 2) otherwise

⎧

⎨
⎪

⎩ ⎪

Presenter
Presentation Notes
In 1225 Fibonacci took part in a tournament at Pisa ordered by the emperor himself, Frederick II. It was in just this type of competition that the following problem arose: Beginning with a single pair of rabbits, if every month each productive pair bears a new pair, which becomes productive when they are 1 month old, how many rabbits will there be after n months?

Imagine that there are xn pairs of rabbits after n months. The number of pairs in month n+1 will be xn (in this problem, rabbits never die) plus the number of new pairs born. But new pairs are only born to pairs at least 1 month old, so there will be xn-1 new pairs. xn+1 = xn + xn-1

Don't want to think about the family tree!

honeybee family tree: # of grandparents, great-grandparents are Fibonacci numbers (males have 1 parent, females have 2)

Simplification: If a cow produces its first she-calf at age two years and after that produces another single she-calf every year, how many she-calves are there after 12 years, assuming none die?

25

A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

A natural for recursion?

public static long F(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return F(n-1) + F(n-2);

}

F(n) = φ n − (1−φ)n

5
= φ n 5⎣ ⎦

φ = golden ratio ≈ 1.618

FYI: classic math

F(n) =
0 if n = 0
1 if n =1
F(n −1) + F(n − 2) otherwise

⎧

⎨
⎪

⎩ ⎪

Presenter
Presentation Notes
Virgil's Aeneid was analyzed at Princeton during the 1940s, and the proportions of lengths of paragraphs were close to the Golden Ratio.
interesting formula since phi is irrational, and formula only involves power and square roots, yet gives integer for all integer values of n!

26

Recursion Challenge 1 (difficult but important)

Q. Is this an efficient way to compute F(50)?

A. No, no, no! This code is spectacularly inefficient.

public static long F(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return F(n-1) + F(n-2);

}

F(50)

F(49) F(48)

F(48)

F(47) F(46)

F(47)

F(46) F(45)

F(46)

F(45) F(44)

F(47)

F(46) F(45)

F(50) is called once.

F(49) is called once.

F(48) is called 2 times.

F(47) is called 3 times.

F(46) is called 5 times.

F(45) is called 8 times.
...

F(1) is called 12,586,269,025 times.recursion tree for naïve Fibonacci function

F(50)

Presenter
Presentation Notes
Run Fibonacci.java for various values of n. Will we be able to compute F(50) before the end of class?
F(51- i) is called F(i) times for i = 1..50.

27

Recursion Challenge 2 (easy and also important)

Q. Is this an efficient way to compute F(50)?

A. Yes. This code does it with 50 additions.
Lesson. Don’t use recursion to engage in exponential waste.

Context. This is a special case of an important programming technique
known as dynamic programming (stay tuned).

public static long(int n) {
long[] F = new long[n+1];
F[0] = 0; F[1] = 1;
for (int i = 2; i <= n; i++)

F[i] = F[i-1] + F[i-2];
return F[n];

}

28

Summary

How to write simple recursive programs?
Base case, reduction step.
Trace the execution of a recursive program.
Use pictures.

Why learn recursion?
New mode of thinking.
Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

Towers of Hanoi by W. A. Schloss.

Presenter
Presentation Notes
Towers of Hanoi = recursive music

Extra Slides

Fractional Brownian Motion

31

Fractional Brownian Motion

Physical process which models many natural and artificial phenomenon.
Price of stocks.
Dispersion of ink flowing in water.
Rugged shapes of mountains and clouds.
Fractal landscapes and textures for computer graphics.

Presenter
Presentation Notes
continuous version of gambler's ruin problem or random walk

32

Simulating Brownian Motion

Midpoint displacement method.
Maintain an interval with endpoints (x0, y0) and (x1, y1).
Divide the interval in half.
Choose δ at random from Gaussian distribution.
Set xm = (x0 + x1)/2 and ym = (y0 + y1)/2 + δ.
Recur on the left and right intervals.

Presenter
Presentation Notes
decreasing variance in each step by 2 makes it Brownian motion. If you change the scaling parameter e.g., to 4) you get fractional Brownian motion
Note: this method of generating Brownian motion does not need to fix step size a priori (can zoom in indefinitely)

33

Simulating Brownian Motion: Java Implementation

Midpoint displacement method.
Maintain an interval with endpoints (x0, y0) and (x1, y1).
Divide the interval in half.
Choose δ at random from Gaussian distribution.
Set xm = (x0 + x1)/2 and ym = (y0 + y1)/2 + δ.
Recur on the left and right intervals.

public static void curve(double x0, double y0,
double x1, double y1, double var) {

if (x1 - x0 < 0.01) {
StdDraw.line(x0, y0, x1, y1);
return;

}
double xm = (x0 + x1) / 2;
double ym = (y0 + y1) / 2;
ym += StdRandom.gaussian(0, Math.sqrt(var));
curve(x0, y0, xm, ym, var/2);
curve(xm, ym, x1, y1, var/2);

}

variance halves at each level;
change factor to get different shapes

Presenter
Presentation Notes
Assume penDown() so that it traces the full path (must do left half before right half)

34

Plasma Cloud

Plasma cloud centered at (x, y) of size s.
Each corner labeled with some grayscale value.
Divide square into four quadrants.
The grayscale of each new corner is the average of others.

– center: average of the four corners + random displacement
– others: average of two original corners

Recur on the four quadrants.

c2 +c4
2

c1 +c2
2

c3 +c4
2

c1 +c3
2

(c1+c2+c3+c4)
4 + δ

c1 c2

c3 c4

35

Plasma Cloud

Presenter
Presentation Notes
some artifacts parallel to x and y axes since it's not actually 2d Brownian motion - can use "diamond-square" algorithm to get 2d Brownian motion

36

Brownian Landscape

Reference: http://www.geocities.com/aaron_torpy/gallery.htm

37

Brown

Robert Brown (1773-1858)

38

Brownian Motion

(Brown University Men’s Ultimate Frisbee Team)

	2.3 Recursion
	Overview
	Greatest Common Divisor
	Greatest Common Divisor
	Greatest Common Divisor
	Greatest Common Divisor
	Recursive Graphics
	Slide Number 8
	Slide Number 9
	Htree
	Htree in Java
	Animated H-tree
	Towers of Hanoi
	Towers of Hanoi
	Towers of Hanoi: Recursive Solution
	Towers of Hanoi Legend
	Towers of Hanoi: Recursive Solution
	Towers of Hanoi: Recursive Solution
	Towers of Hanoi: Recursion Tree
	Towers of Hanoi: Properties of Solution
	Divide-and-Conquer
	Fibonacci Numbers
	Fibonacci Numbers and Nature
	Fibonacci Numbers
	A Possible Pitfall With Recursion
	Recursion Challenge 1 (difficult but important)
	Recursion Challenge 2 (easy and also important)
	Summary
	Extra Slides
	Fractional Brownian Motion
	Fractional Brownian Motion
	Simulating Brownian Motion
	Simulating Brownian Motion: Java Implementation
	Plasma Cloud
	Plasma Cloud
	Brownian Landscape
	Brown
	Brownian Motion

