
1.3 Conditionals and Loops

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · January 26, 2009 9:41 AM

2

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

arrays

conditionals and loops

Math text I/O

assignment statementsprimitive data types
equivalent

to a calculator

any program you might want to write

3

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

arrays

any program you might want to write

to infinity
and beyond!conditionals and loops

Math text I/O

assignment statementsprimitive data types

4

Control Flow

Control flow.
Sequence of statements that are actually executed in a program.
Conditionals and loops: enable us to choreograph control flow.

statement 2

statement 1

statement 4

statement 3 boolean 2
true

false

statement 2

boolean 1

statement 3

false

statement 1

true

straight-line control flow control flow with conditionals and loops

Presenter
Presentation Notes
straight-line programs: akin to calculator

Conditionals

6

If Statement

The if statement. A common branching structure.
Check boolean condition.
If true, execute some statements.
If false, execute other statements.

if (boolean expression) {
statement T;

}
else {

statement F;
}

can be any sequence
of statements

statement T

true false

boolean expression

statement F

7

If Statement

The if statement. A common branching structure.
Check boolean condition.
If true, execute some statements.
If false, execute other statements.

8

If Statement

Ex. Take different action depending on value of variable.

public class Flip {
public static void main(String[] args) {

if (Math.random() < 0.5) System.out.println("Heads");
elseMath.random() < 0.5) System.out.println("Tails");

}
}

9

If Statement Examples

10

The While Loop

11

While Loop

The while loop. A common repetition structure.
Check a boolean expression.
Execute a sequence of statements.
Repeat.

while (boolean expression) {
statement 1;
statement 2;

} statement 1
true

false

boolean expression

statement 2

loop body

loop continuation condition

Presenter
Presentation Notes
straight-line program: amount of data processed proportional to number of lines of codes written, even with conditionals
loops: brings you to infinite

12

While Loops: Powers of Two

Ex. Print first n powers of 2.
Increment i from 1 to n.
Double v each time.

Click for demo

int i = 0;
int v = 1;
while (i <= N) {

System.out.println(v);
i = i + 1;
v = 2 * v;

}

% java Powers
1
2
4
8
16
32
64

0 1

i v

1 2

2 4

3 8

true

i <= N

true

true

true

4 16

5 32

6 64

7 128

true

true

true

false

n = 6

Presenter
Presentation Notes
Note: assignment is not mathematical equality.

13

Powers of Two

public class PowersOfTwo {
public static void main(String[] args) {

// last power of two to print
int N = Integer.parseInt(args[0]);

int i = 0; // loop control counter
int v = 1; // current power of two
while (i <= N) {

System.out.println(v);
i = i + 1;
v = 2 * v;

}
}

}

% java PowersOfTwo 4
1
2
4
8

% java PowersOfTwo 6
1
2
4
8
16
32
64

print ith power of two

14

While Loop Challenge

Q. Anything wrong with the following code for printing powers of 2?

int i = 0;
int v = 1;
while (i <= N)

System.out.println(v);
i = i + 1;
v = 2 * v;

Presenter
Presentation Notes
YES. Need braces around statements in while loop.
 Indentation does not imply braces!Without braces, program enters an infinite loop printing 1s.
Beginning programmer's first moment of panic: how to stop it?

15

While Loop Challenge

Q. Anything wrong with the following code for printing powers of 2?

A. Need curly braces around statements in while loop; otherwise it
enters an infinite loop, printing 1s.

Moment of panic. How to stop infinite loop?

int i = 0;
int v = 1;
while (i <= N)

System.out.println(v);
i = i + 1;
v = 2 * v;

Presenter
Presentation Notes
 Indentation does not imply braces!
Tools -> Reset Interactions in DrJava
Ctrl-c from command line

16

A Wonderful Square Root

Copyright 2004, Sidney Harris, http://www.sciencecartoonsplus.com

% java Sqrt 60481729
7777.0

17

While Loops: Square Root

Q. How might we implement Math.sqrt() ?
A. To compute the square root of c:

Initialize t0 = c.
Repeat until ti = c / ti, up to desired precision:
set ti+1 to be the average of ti and c / ti.

t0 = 2.0
t1 = 1

2 (t0 + 2
t0

) = 1.5
t2 = 1

2 (t1 + 2
t1

) = 1.416666666666665
t3 = 1

2 (t2 + 2
t2

) = 1.4142156862745097
t4 = 1

2 (t3 + 2
t3

) = 1.4142135623746899
t5 = 1

2 (t4 + 2
t4

) = 1.414213562373095

computing the square root of 2

Presenter
Presentation Notes
This is also known as the "Babylonian method". Used of 6000 years ago by Babylonians on clay tablet (in base 60).
bottleneck in many computer graphics and particle physics simulations is computing the square root!
Fast approximate methods are often preferred in practice
Vanderbei: twin sister called him from Arizona regarding the size of a piece of property she was going to buy. It was 400,000 square feet. She wanted to know how big that was. It could be 400,000 x 1 feet or 1 x 400,000. Take average 200,000 x 2 or 2 x 200,000.
100,000 x 4, 50,000 x 8, 25,000 x 16. She was at a bar and was scribbling on a napkin and called up Bob to see whether anyone had ever used that method before. Bob replied "you've just rediscovered Newton's method."

18

public class Sqrt {
public static void main(String[] args) {

double EPS = 1E-15;
double c = Double.parseDouble(args[0]);
double t = c;
while (Math.abs(t - c/t) > t*EPS) {

t = (c/t + t) / 2.0;
}
System.out.println(t);

}
} % java Sqrt 2.0

1.414213562373095

error tolerance

15 decimal digits of accuracy in 5 iterations

While Loops: Square Root

Q. How might we implement Math.sqrt() ?
A. To compute the square root of c:

Initialize t0 = c.
Repeat until ti = c / ti, up to desired precision:
set ti+1 to be the average of ti and c / ti.

19

Newton-Raphson Method

Square root method explained.
Goal: find root of function f(x).
Start with estimate t0.
Draw line tangent to curve at x= ti.
Set ti+1 to be x-coordinate where line hits x-axis.
Repeat until desired precision.

f(x) = x2 - c to compute √c

Presenter
Presentation Notes
Applications and extensions.
Find roots of a differentiable function (of one or several variables).
Optimize a twice differentiable function. (check where derivative is zero)

20

The For Loop

Copyright 2004, FoxTrot by Bill Amend
www.ucomics.com/foxtrot/2003/10/03

21

For Loops

The for loop. Another common repetition structure.
Execute initialization statement.
Check boolean expression.
Execute sequence of statements.
Execute increment statement.
Repeat.

for (init; boolean expression; increment) {
statement 1;
statement 2;

}

statement 1
true

false

boolean expression

statement 2

init
increment

body

loop continuation condition

Presenter
Presentation Notes
Compact notation for common looping scheme.

22

Anatomy of a For Loop

Q. What does it print?
A.

Presenter
Presentation Notes
A. powers of two

23

For Loops: Subdivisions of a Ruler

Create subdivision of a ruler.
Initialize ruler to empty string.
For each value i from 1 to N:
sandwich two copies of ruler on either side of i.

public class Ruler {
public static void main(String[] args) {

int N = Integer.parseInt(args[0]);
String ruler = " ";
for (int i = 1; i <= N; i++) {

ruler = ruler + i + ruler;
}
System.out.println(ruler);

}
}

1 " 1 "

i ruler

2 " 1 2 1 "

3 " 1 2 1 3 1 2 1 "

" "

Presenter
Presentation Notes
good style to declare loop iteration variable in initialization statement.
Example of automatic type conversion from integer to string.

24

% java Ruler 1
1

% java Ruler 2
1 2 1

% java Ruler 3
1 2 1 3 1 2 1

% java Ruler 4
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

% java Ruler 5
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

% java Ruler 100
Exception in thread "main"
java.lang.OutOfMemoryError

For Loops: Subdivisions of a Ruler

Observation. Loops can produce a huge amount of output!

Presenter
Presentation Notes
Program produces 2^N - 1 integers

25

Loop Examples

26

Nesting

27

Nesting Conditionals and Loops

Conditionals enable you to do one of 2n

sequences of operations with n lines.

More sophisticated programs.
Nest conditionals within conditionals.
Nest loops within loops.
Nest conditionals within loops within loops.

if (a0 > 0) System.out.print(0);
if (a1 > 0) System.out.print(1);
if (a2 > 0) System.out.print(2);
if (a3 > 0) System.out.print(3);
if (a4 > 0) System.out.print(4);
if (a5 > 0) System.out.print(5);
if (a6 > 0) System.out.print(6);
if (a7 > 0) System.out.print(7);
if (a8 > 0) System.out.print(8);
if (a9 > 0) System.out.print(9);

Loops enable you to do an operation
n times using only 2 lines of code.

double sum = 0.0;
for (int i = 1; i <= 1024; i++)

sum = sum + 1.0 / i;

210 = 1024 possible results, depending on input

computes 1/1 + 1/2 + ... + 1/1024

Presenter
Presentation Notes
Nth harmonic number is approximately ln(n) + 0.57721....

28

Nested If Statements

Ex. Pay a certain tax rate depending on income level.

double rate;
if (income < 47450) rate = 0.22;
else if (income < 114650) rate = 0.25;
else if (income < 174700) rate = 0.28;
else if (income < 311950) rate = 0.33;
else if (income < 311950) rate = 0.35;

graduated income tax calculation

0 - 47,450 22%

Income Rate

47,450 – 114,650 25%

114,650 – 174,700 28%

174,700 – 311,950 33%

311,950 - 35%

5 mutually exclusive
alternatives

Presenter
Presentation Notes
nested conditionals: this is actually 4 different if-else statements, but no need for braces

29

Nested If Statements

is shorthand for

Be careful when nesting if-else statements (see Q+A p. 75).

if (income < 47450) rate = 0.22;
else if (income < 114650) rate = 0.25;
else if (income < 174700) rate = 0.28;
else if (income < 311950) rate = 0.33;
else if (income < 311950) rate = 0.35;

if (income < 47450) rate = 0.22;
else {

if (income < 114650) rate = 0.25;
else {

if (income < 174700) rate = 0.28;
else {

if (income < 311950) rate = 0.33;
else if (income < 311950) rate = 0.35;

}
}

}

Presenter
Presentation Notes
nested conditionals: this is actually 4 different if-else statements, but no need for braces

30

Nested If Statement Challenge

Q. Anything wrong with the following for income tax calculation?

double rate = 0.35;
if (income < 47450) rate = 0.22;
if (income < 114650) rate = 0.25;
if (income < 174700) rate = 0.28;
if (income < 311950) rate = 0.33;

wrong graduated income tax calculation

0 - 47,450 22%

Income Rate

47,450 – 114,650 25%

114,650 – 174,700 28%

174,700 – 311,950 33%

311,950 - 35%

Presenter
Presentation Notes
find the bug
yes, each if statement undoes the previous one
Code is equivalent to
if (income < 311950) rate = 0.33;
else rate = 0.35;

31

Monte Carlo Simulation

32

Gambler's Ruin

Gambler's ruin. Gambler starts with $stake and places $1 fair bets
until going broke or reaching $goal.

What are the chances of winning?
How many bets will it take?

One approach. Monte Carlo simulation.
Flip digital coins and see what happens.
Repeat and compute statistics.

Presenter
Presentation Notes
discrete analog of Brownian motion (applications to stock market – Black-Scholes, behavior of atomic particles predicted by quantum physics, dispersion of ink flowing in water)
Simulations of this sort are widely used in economics, science and engineering

33

public class Gambler {
public static void main(String[] args) {

int stake = Integer.parseInt(args[0]);
int goal = Integer.parseInt(args[1]);
int trials = Integer.parseInt(args[2]);
int wins = 0;

System.out.println(wins + " wins of " + trials);
}

}

// repeat experiment N times
for (int i = 0; i < trials; i++) {

}

// do one gambler's ruin
experiment
int t = stake;
while (t > 0 && t < goal) {

}
if (t == goal) wins++;

// flip coin and update
if (Math.random() < 0.5) t++;
else t--;

Gambler's Ruin

Presenter
Presentation Notes
This program is worthy of careful study.
Conditional within a while loop within a for loop.
Inner loop uses && to continue as long as gambler is not broke and didn't reach goal

34

Digression: Simulation and Analysis

Fact. Probability of winning = stake ÷ goal.
Fact. Expected number of bets = stake × desired gain.
Ex. 20% chance of turning $500 into $2500,
but expect to make one million $1 bets.

Remark. Both facts can be proved mathematically; for more complex
scenarios, computer simulation is often the best plan of attack.

% java Gambler 5 25 1000
191 wins of 1000

% java Gambler 5 25 1000
203 wins of 1000

% java Gambler 500 2500 1000
197 wins of 1000

stake goal trials

after a substantial wait….

500/2500 = 20%

500 * (2500 - 500) = 1 million

Presenter
Presentation Notes
substantial wait = hours

35

Control Flow Summary

Control flow.
Sequence of statements that are actually executed in a program.
Conditionals and loops: enables us to choreograph the control flow.

Straight-line
programs

All statements are
executed in the order given.

Conditionals
Certain statements are

executed depending on the
values of certain variables.

if
if-else

Loops
Certain statements are

executed repeatedly until
certain conditions are met.

while
for

do-while

Control Flow Description Examples

1.4

Presenter
Presentation Notes
Loops save ink

36

Program Development

Admiral Grace Murray HopperAda Lovelace

Presenter
Presentation Notes
Etymology and Entomology of Computer "Bug"
Reportedly, first bug discovered by Lieutenant Grace Hopper in 1945 while in US Navy. Grace Hopper also helped develop COBOL.
Moth found trapped between points at Relay # 70, Panel F, of the Mark II Aiken Relay Calculator while it was being tested at Harvard University, 9 September 1945. The operators affixed the moth to the computer log, with the entry: "First actual case of bug being found". They put out the word that they had "debugged" the machine, thus introducing the term "debugging a computer program".�In 1988, the log, with the moth still taped by the entry, was in the Naval Surface Warfare Center Computer Museum at Dahlgren, Virginia.

Term "bug" was already in use in other areas prior to this ironic twist.

37

95% of Program Development

Program development. Creating a program and putting it to good use.
Def. A bug is a mistake in a computer program.

Programming is primarily a process of finding and fixing bugs.

Good news. Can use computer to test program.
Bad news. Cannot use computer to automatically find all bugs.

Presenter
Presentation Notes
http://www.history.navy.mil/photos/images/h96000/h96566kc.htm
Program development (aka programming)
No program is perfect.
Bad news. Conditionals/loops open up huge number of possibilities.
Stay tuned for why we can't automatically find all bugs.

38

95% of Program Development

Debugging. Cyclic process of editing, compiling, and fixing errors.
Always a logical explanation.
What would the machine do?
Explain it to the teddy bear.

You will make many mistakes as you write programs. It's normal.

“ If I had eight hours to chop down a tree, I would spend
six hours sharpening an axe. ” — Abraham Lincoln

“As soon as we started programming, we found out to our
surprise that it wasn't as easy to get programs right as we had
thought. I can remember the exact instant when I realized that
a large part of my life from then on was going to be spent in
finding mistakes in my own programs. ” — Maurice Wilkes

Presenter
Presentation Notes
"Another effective [debugging] technique is to explain your code to someone else. This will often cause you to explain the bug to yourself. Sometimes it takes no more than a few sentences, followed by an embarrassed "Never mind, I see what's wrong. Sorry to bother you." This works remarkably well; you can even use non-programmers as listeners. One university computer center kept a teddy bear near the help desk. Students with mysterious bugs were required to explain them to the bear before they could speak to a human counselor". - B. Kernighan & D. Pike (in "The Practice of Programming" pp. 123)

Consider bringing a bear and explaining the program to it.

39

Debugging Example

Factor. Given an integer N > 1, compute its prime factorization.

Application. Break RSA cryptosystem (factor 200-digit numbers).

3,757,208 = 23 × 7 × 132 × 397

98 = 2 × 72

17 = 17

11,111,111,111,111,111 = 2,071,723 × 5,363,222,357

Presenter
Presentation Notes
Note: 1 is not prime (else it would have to be in every prime factorization)

40

Debugging Example

Factor. Given an integer N, compute its prime factorization.

Brute-force algorithm. For each putative factor i = 2, 3, 4, …,
check if N is a multiple of i, and if so, divide it out.

3757208/8

Presenter
Presentation Notes
See Bob's slides in 04delta for more debugging examples

41

Debugging: 95% of Program Development

Programming. A process of finding and fixing mistakes.
Compiler error messages help locate syntax errors.
Run program to find semantic and performance errors.

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0])
for (i = 0; i < N; i++) {

while (N % i == 0)
System.out.print(i + " ")
N = N / i

}
}

}

this program has many bugs!

as long as i is a
factor, divide it out

check if i
is a factor

Presenter
Presentation Notes
silence is golden in CS

42

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0])
for (i = 0; i < N; i++) {

while (N % i == 0)
System.out.print(i + " ")
N = N / i

}
}

}
% javac Factors.java
Factors.java:6: ';' expected

for (i = 2; i < N; i++)
^

1 error

Debugging: Syntax Errors

Syntax error. Illegal Java program.
Compiler error messages help locate problem.
Goal: no errors and a file named Factors.class.

the first error

43

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0]);
for (int i = 0; i < N; i++) {

while (N % i == 0)
System.out.print(i + " ");
N = N / i;

}
}

}

Debugging: Syntax Errors

Syntax error. Illegal Java program.
Compiler error messages help locate problem.
Goal: no errors and a file named Factors.class.

syntax (compile-time) errors

need to
declare

variable i

need terminating
semicolons

44

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0]);
for (int i = 0; i < N; i++) {

while (N % i == 0)
System.out.print(i + " ");
N = N / i;

}
}

}

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.
Run program to identify problem.
Add print statements if needed to produce trace.

% javac Factors.java
% java Factors
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 0

at Factors.main(Factors.java:5)

oops, no argument

Presenter
Presentation Notes
silence is golden in CS

45

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0]);
for (int i = 0; i < N; i++) {

while (N % i == 0)
System.out.print(i + " ");
N = N / i;

}
}

}

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.
Run program to identify problem.
Add print statements if needed to produce trace.

% javac Factors.java
% java Factors 98
Exception in thread "main"
java.lang.ArithmeticExeption: / by zero

at Factors.main(Factors.java:8)

need to start at 2
because 0 and 1

cannot be factors

46

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0]);
for (int i = 2; i < N; i++) {

while (N % i == 0)
System.out.print(i + " ");
N = N / i;

}
}

}

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.
Run program to identify problem.
Add print statements if needed to produce trace.

% javac Factors.java
% java Factors 98
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 … infinite loop!

indents do not
imply braces

47

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0]);
for (int i = 2; i < N; i++) {

while (N % i == 0) {
System.out.print(i + " ");
N = N / i;

}
}

}
}

Debugging: The Beat Goes On

Success. Program factors 98 = 2 × 72.
But that doesn't mean it works for all inputs.
Add trace to find and fix (minor) problems.

% java Factors 98
2 7 %

% java Factors 5

% java Factors 6
2 %

need newline

??? no output

??? missing the 3

48

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0]);
for (int i = 2; i < N; i++) {

while (N % i == 0) {
System.out.println(i + " ");
N = N / i;

}
System.out.println("TRACE: " + i + " " + N);

}
}

}

Debugging: The Beat Goes On

Success. Program factors 98 = 2 × 72.
But that doesn't mean it works for all inputs.
Add trace to find and fix (minor) problems.

% java Factors 5
TRACE 2 5
TRACE 3 5
TRACE 4 5

% java Factors 6
2
TRACE 2 3

Aha!
Print out N

after for loop
(if it is not 1)

Presenter
Presentation Notes

49

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0]);
for (int i = 2; i < N; i++) {

while (N % i == 0) {
System.out.print(i + " ");
N = N / i;

}
}
if (N > 1) System.out.println(N);
else System.out.println();

}
}

Success. Program seems to work.

Debugging: Success?

"corner case"

% java Factors 5
5

% java Factors 6
2 3

% java Factors 98
2 7 7

% java Factors 3757208
2 2 2 7 13 13 397

50

Performance error. Correct program, but too slow.

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0]);
for (int i = 2; i < N; i++) {

while (N % i == 0) {
System.out.print(i + " ");
N = N / i;

}
}
if (N > 1) System.out.println(N);
else System.out.println();

}
}

Debugging: Performance Error

% java Factors 11111111
11 73 11 137

% java Factors 11111111111
21649 51329

% java Factors 11111111111111
11 239 4649 909091

% java Factors 11111111111111111
2071723

very long wait
(with a surprise ending)

51

public class Factors {
public static void main(String[] args) {

long N = Long.parseLong(args[0]);
for (int i = 2; i <= N/i; i++) {

while (N % i == 0) {
System.out.print(i + " ");
N = N / i;

}
}
if (N > 1) System.out.println(N);
else System.out.println();

}
}

Performance error. Correct program, but too slow.

Solution. Improve or change underlying algorithm.

Debugging: Performance Error

% java Factors 11111111
11 73 11 137

% java Factors 11111111111
21649 51329

% java Factors 11111111111111
11 239 4649 909091

% java Factors 11111111111111111
2071723 5363222357

fixes performance error:
if N has a factor, it has one

less than or equal to its square root

52

Q. How large an integer can I factor?

Note. Can't break RSA this way (experts are still trying).

% java Factors 3757208
2 2 2 7 13 13 397

% java Factors 9201111169755555703
9201111169755555703

Program Development: Analysis

† estimated

largest factor 3 instant

digits (i <= N)

6 0.15 seconds

9 77 seconds

12 21 hours †

instant

(i*i <= N)

instant

instant

0.16 seconds

15 2.4 years †

18 2.4 millennia †

2.7 seconds

92 seconds

after a few minutes of
computing….

Presenter
Presentation Notes
Note: worst-case for Factors3.java is when number is prime (or a product of a tiny prime and a huge prime). When it is a product of two big primes, Factors3.java is same order of magnitude as Factors.java.
Running depends roughly depends on magnitude of biggest factor.
9,223,372,036,854,775,807 = 2^63 – 1 = biggest long
Digits = Decimal digits
running times on opus: Dell 2.2MhZ, running RedHat Linux 7.3

53

Debugging

Programming. A process of finding and fixing mistakes.

1. Create the program.

2. Compile it.
Compiler says: That’s not a legal program.
Back to step 1 to fix syntax errors.

3. Execute it.
Result is bizarrely (or subtly) wrong.
Back to step 1 to fix semantic errors.

4. Enjoy the satisfaction of a working program!

5. Too slow? Back to step 1 to try a different algorithm.

54

U.S.S. Grace Murray Hopper

Presenter
Presentation Notes
You are now prepared to go out and write interesting Java programs.
"A ship in port is safe, but that is not what ships are built for. I want all the youngsters to sail out to sea and be good ships." - Grace Hopper

Extra Slides

56

Oblivious Sorting

Sort. Read in 3 integers and rearrange them in ascending order.

Puzzle 1. Sort 4 integers with 5 compare-exchanges.
Puzzle 2. Sort 6 integers with 12.

public class Sort3 {
public static void main(String[] args) {

int a = Integer.parseInt(args[0]);
int b = Integer.parseInt(args[1]);
int c = Integer.parseInt(args[2]);

if (b > c) { int t = b; b = c; c = t; }
if (a > b) { int t = a; a = b; b = t; }
if (b > c) { int t = b; b = c; c = t; }

System.out.println(a + " " + b + " " + c);
}

}

read in 3 integers
from command-line

swap b and c

% java Sort3 9 8 7
7 8 9

% java Sort3 2 1 7
1 2 7

swap a and b

swap b and c

Presenter
Presentation Notes
idiom for swapping
trace through code on blackboard
after first two compare-exchange, c contains the largest integer; a and b contain the smallest two

57

Do-While Loop

The do-while loop. A less common repetition structure.
Execute sequence of statements.
Check loop-continuation condition.
Repeat.

do {
statement 1;
statement 2;

} while (boolean expression);

do-while loop syntax

statement 2

true

false

boolean expression

statement 1

Presenter
Presentation Notes
; is part of do-while

58

Do-While Loop

Ex. Find a point (x, y) that is uniformly distributed in unit disc.
Pick a random point in unit square.
Check if point is also in unit disc.
Repeat.

do {
x = 2.0 * Math.random() - 1.0;
y = 2.0 * Math.random() - 1.0;

} while (x*x + y*y > 1.0);

(1, 1)

(0, 0)

1in

out

between –1 and 1

	1.3 Conditionals and Loops
	A Foundation for Programming
	A Foundation for Programming
	Control Flow
	Conditionals
	If Statement
	If Statement
	If Statement
	If Statement Examples
	Slide Number 10
	While Loop
	While Loops: Powers of Two
	Powers of Two
	While Loop Challenge
	While Loop Challenge
	A Wonderful Square Root
	While Loops: Square Root
	While Loops: Square Root
	Newton-Raphson Method
	Slide Number 20
	For Loops
	Anatomy of a For Loop
	For Loops: Subdivisions of a Ruler
	For Loops: Subdivisions of a Ruler
	Loop Examples
	Slide Number 26
	Nesting Conditionals and Loops
	Nested If Statements
	Nested If Statements
	Nested If Statement Challenge
	Slide Number 31
	Gambler's Ruin
	Gambler's Ruin
	Digression: Simulation and Analysis
	Control Flow Summary
	Slide Number 36
	95% of Program Development
	95% of Program Development
	Debugging Example
	Debugging Example
	Debugging: 95% of Program Development
	Debugging: Syntax Errors
	Debugging: Syntax Errors
	Debugging: Semantic Errors
	Debugging: Semantic Errors
	Debugging: Semantic Errors
	Debugging: The Beat Goes On
	Debugging: The Beat Goes On
	Debugging: Success?
	Debugging: Performance Error
	Debugging: Performance Error
	Program Development: Analysis
	Debugging
	U.S.S. Grace Murray Hopper
	Extra Slides
	Oblivious Sorting
	Do-While Loop
	Do-While Loop

