
Information, Characters, Unicode

Unicode © 1 April 2024 1 / 123

Hidden Moral

Small mistakes can be catastrophic!

Style
Care about every character of your program.

Tip: printf
Care about every character in the program’s output.

(Be reasonably tolerant and defensive about the input. “Fail early” and clearly.)

Unicode © 1 April 2024 2 / 123

Imperative

Thou shalt care about every Ěaracter
in your program.

Unicode © 1 April 2024 3 / 123

Corollaries

Thou shalt know every Ěaracter
in the input.

Thou shalt care about every Ěaracter
in your output.

Unicode © 1 April 2024 4 / 123

Information – Characters

In modern computing, natural-language text is very important information.
(“number-crunching” is less important.) Characters of text are represented in
several different ways and a known character encoding is necessary to exchange
text information.
For many years an important encoding standard for characters has been US
ASCII–a 7-bit encoding. Since 7 does not divide 32, the ubiquitous word size of
computers, 8-bit encodings are more common. Very common is ISO 8859-1 aka
“Latin-1,” and other 8-bit encodings of characters sets for languages other than
English.
Currently, a very large multi-lingual character repertoire known as Unicode is
important.

Unicode Character Sets © 1 April 2024 5 / 123

Information – Characters

Bits are not information until the relevant parties agree and what they represent. A
standard is required to successfully communicate a character of text. The bits are
mostly arbitrary choices.

binary oct dec hex char
0110 0001 041 97 0x61 a the letter ‘a’
0110 0010 042 98 0x62 b the letter ‘b’
0110 0011 043 99 0x63 c the letter ‘c’

Blocks of n bits have 2n different bit patterns and so 2n characters can be
represented.

Unicode Character Sets © 1 April 2024 6 / 123

ASCII (American Standard Code for Information Interchange), is a 7-bit character
encoding standard for digital communication. It has defined 27 = 128 bit patterns.

It was one of the first standards for encoding symbols (letters, numbers, and
punctuation used in English text). This fixed-width encoding evolved in the 1960s
by the institution for standards for the United States. It has been in widespread use
for information exchange ever since, but now supplanted by other standards. A
survey (2023) suggests that US-ASCII is used by far less than 1% of websites and
UTF-8 (described later) by 98% of websites (w3techs.com). (But UTF-8 retains
US-ASCII.)

The Internet Assigned Numbers Authority (IANA) prefers the name US-ASCII for
this character encoding.

Unicode Character Sets © 1 April 2024 7 / 123

https://w3techs.com/technologies/overview/character_encoding

Some US-ASCII Characters

Each character has a unique bit pattern used to represent it (and a Unicode name
as we shall see later).

binary oct dec char Unicode
0000 1001 0011 9 HT U+0009 horizontal tabulation
0010 0000 0040 32 U+0020 space
0010 1110 0056 46 . U+002E full stop
0010 1111 0057 47 / U+002F solidus
0011 0000 0060 48 0 U+0030 digit zero
0011 0001 0061 49 1 U+0031 digit one

Although 8 bits are shown above, only 7 bits are used in the US-ASCII standard.

Unicode Character Sets © 1 April 2024 8 / 123

US ASCII (7-bit), or bottom half of Latin1

NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SS SI

DLE DC1 DC2 DC3 DC4 NAK SYN ETP CAN EM SUB ESC FS GS RS US

! " # $ % & ’ () * + , - . /
0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o
p q r s t u v w x y z { | } ~ DEL

Unicode Character Sets © 1 April 2024 9 / 123

Compromises

With only 27 bit pattern (really 25) many compromises were made. Some
characters did double duty.

binary oct dec char Unicode
0010 0111 0047 39 ’ U+0027 apostrophe
0010 1010 0052 42 * U+002A asterisk
0010 1101 0055 45 - U+002D hyphen-minus

There is a discretization problem when left and right single quotation marks are
represented by the US-ASCII bit patterns for the apostrophe and grave accent
characters.

Unicode Character Sets © 1 April 2024 10 / 123

Alice in Wonderland

It was all very well to say "Drink me," but the wise little Alice was
not going to do _that_ in a hurry. "No, I’ll look first," she said,
"and see whether it’s marked ’_poison_’ or not";

It was all very well to say “Drink me,” but the wise little Alice was
not going to do that in a hurry. “No, I’ll look first,” she said,
“and see whether it’s marked ‘poison’ or not”;

Unicode Character Sets © 1 April 2024 11 / 123

Combining Characters

Diacritic marks (uncommon in English) are parts of characters. The design of
US-ASCII includes diacritic marks and this gives rise to the notion of combining
characters in encode letters like ô or è.

binary oct dec char Unicode
0101 1110 0136 94 ^ U+005E cicumflex accent
0110 0000 0140 96 ` U+0060 grave accent

Unicode Character Sets © 1 April 2024 12 / 123

Control Characters

Notice that the first twos rows are filled with so-called control characters. These
characters have no printable representation and were introduced to control
hardware. For example: BEL “ring the bell.” Except for various conventions for
indicating lines of text, most of these characters have no use today. So, nearly
one-quarter of the space available for representing characters is wasted.
Of course, the space character does not have a printable representation (no ink is
used to print a space), but it is extremely useful.

Unicode Character Sets © 1 April 2024 13 / 123

Top half of Latin-1
With 8 bits 256 characters can be encoded. Latin-1 is twice as big as US-ASCII.
The extra characters allow languages like Icelandic, Spanish and German to be
written in Latin-1.

XXX XXX BPH NBH IND NEL SSA ESA HTS HTJ VTS PLD PLU RI SS2 SS3

DCS PU1 PU2 SST CCH MS SPA EPA SOS XXX SCI CSI ST OSC PM APC

¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ SHY ® ¯
° ± 2 3 ´ µ ¶ · ¸ 1 º » ¼ ½ ¾ ¿
À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
à á â ã ä å æ ç è é ê ë ì í î ï
đ ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Unicode Character Sets © 1 April 2024 14 / 123

Some Characters

Here are some of the characters in Latin-1 not used in writing English.

binary oct dec Unicode
1100 0011 0303 195 Ã U+00C3 latin capital letter a with tilde

1101 0111 0327 215 × U+00D7 multiplication sign

1101 1111 0337 223 ß U+00DF latin small letter sharp s

1110 1101 0355 237 í U+00ED latin small letter i with acute

1111 1110 0376 254 þ U+00FE latin small letter thorn

An 8-bit character set is a convenient size and so US-ASCII is for the most part
replaced by Latin-1 which supports some European languages. Microsoft’s CP1252
is somewhat similar.

Unicode Character Sets © 1 April 2024 15 / 123

Some Characters

For fear of low-level bit confusion the two rows of control characters were repeated
in the section with the 8th bit set.

binary oct dec Unicode
1001 0001 0231 145 PU1 U+0091 private use one
1001 0010 0232 146 PU2 U+0092 private use two
1001 1000 0240 152 SOS U+0098 start of string
1001 1011 0243 155 CSI U+009B control sequence introducer

(So-called “private use” code points were introduced in the C1 controls. These are
reserved for private parties to agree upon.)

Unicode Character Sets © 1 April 2024 16 / 123

The new ISO 8859-15 (Latin-9) nicknamed Latin-0 updates Latin-1 by replacing
eight infrequently used characters ¤¦¨´¼½¾ with left-out French letters (ÿ, œ) and
Finnish and Lithuanian letters (š, ž), and placing the Euro sign e in the cell 0xA4
of the former (unspecified) currency sign ¤.

¤ U+00A4 currency sign → e U+20AC euro sign
¦ U+00A6 broken bar → Š U+0160 latin capital letter s with caron
¨ U+00A8 diaeresis → š U+0161 latin small letter s with caron
´ U+00B4 acute accent → Ž U+017D latin capital letter z with caron
¸ U+00B8 cedilla → ž U+017E latin small letter z with caron
¼ U+00BC vulgar frac 1 quarter → Œ U+0152 latin capital ligature oe
½ U+00BD vulgar fraction 1 half → œ U+0153 latin small ligature oe
¾ U+00BE vulgar frac 3 quarters→ Ÿ U+0178 latin capital letter y with diaeresis

Unicode Character Sets © 1 April 2024 17 / 123

Top half of Latin-0

PAD HOP BPH NBH IND NEL SSA ESA HTS HTJ VTS PLD PLU RI SS2 SS3

DCS PU1 PU2 SST CCH MW SPA EPA SOS SGC SCI CSI ST OSC PM APC

¡ ¢ £ e ¥ Š § š © ª « ¬ SHY ® ¯
° ± 2 3 Ž µ ¶ · ž 1 º » Œ œ Ÿ ¿
À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
à á â ã ä å æ ç è é ê ë ì í î ï
đ ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Unicode Character Sets © 1 April 2024 18 / 123

Differences in Character Encodings

binary oct dec hex MacR 1252 Latin1 Latin0
0111 0011 0163 115 0x73 s s s s
1000 0000 0200 128 0x80 Ä e XXX PAD

1000 0101 0205 135 0x85 Ö . . . NEL NEL

1000 1010 0212 138 0x8A ä Š VTS VTS

1010 0100 0244 164 0xA4 § ¤ ¤ e

1010 0110 0246 166 0xA6 ¶ ¦ ¦ Š
1011 0110 0266 182 0xB6 ∂ ¶ ¶ ¶
1101 1011 0333 219 0xDB e Û Û Û
1110 0100 0344 228 0xE4 ‰ ä ä ä
1111 0011 0363 243 0xF3 Û ó ó ó

Unicode Character Sets © 1 April 2024 19 / 123

http://en.wikipedia.org/wiki/Mac_OS_Roman
http://en.wikipedia.org/wiki/Cp1252

Standards help insure that the bit patterns are understood the same way. But
which standard? The applicable standard must be clearly known.

Unicode Character Sets © 1 April 2024 20 / 123

Source Code

Source code is a text file

What encoding does it use? Ada, Go, Haskell, Java, Python use Unicode.

Unicode Character Sets © 1 April 2024 21 / 123

Go Source Code

Unicode Character Sets © 1 April 2024 22 / 123

Haskell Source Code

“Haskell uses the Unicode character set. However, source programs are
currently biased toward the ASCII character set used in earlier versions of
Haskell.

This syntax depends on properties of the Unicode characters as defined
by the Unicode consortium. Haskell compilers are expected to make use of
new versions of Unicode as they are made available.”

Unicode Character Sets © 1 April 2024 23 / 123

Python Source Code

Python supports writing source code in UTF-8 by default, but you can use almost
any encoding if you declare the encoding being used. This is done by including a
special comment as either the first or second line of the source file Python looks for
coding: name or coding=name in the comment.
encoding : latin -1 [Must be on 1st or 2nd line]

u = ’abcdé’
print(ord(u[-1]))

If you don’t include such a comment, the default encoding used will be UTF-8 as
already mentioned. See PEP 263 for more information.

Unicode Character Sets © 1 April 2024 24 / 123

https://www.python.org/dev/peps/pep-0263/

Python Tip

-*- coding : ascii -*-

Emacs recognizes the character set name “ascii” and variables in the three
character sequence -*- See Emacs §22.18 Charsets and Python recognizes the
character set name “ascii” See Python known Standard Encodings .
Of, if you are not using Emacs:
This Python file uses the following encoding : ascii

Unicode Character Sets © 1 April 2024 25 / 123

https://www.gnu.org/software/emacs/manual/html_node/emacs/Charsets.html
https://docs.python.org/3.8/library/codecs.html#standard-encodings

Java Source Code

You can write a Java program in any character set. Because Unicode is essentially
a super set of all characters sets the programs is first translated into Unicode.
javac SourceCode .java # platform default
javac -encoding US -ASCII SourceCode .java
javac -encoding ASCII SourceCode .java # ASCII = US -ASCII
javac -encoding UTF -8 SourceCode .java # What about BOM?
javac -encoding UTF8 SourceCode .java # UTF -8 = UTF8
javac -encoding utf8 SourceCode .java # UTF -8 = utf8
javac -encoding latin1 SourceCode .java
javac -encoding latin0 SourceCode .java
javac -encoding utf32 SourceCode .java
javac -encoding cp1252 SourceCode .java

The encoding UTF-8 in Java 11 does not like the optional byte order mark (BOM).
(But then neither do I.) This may have been a bug.

Unicode Character Sets © 1 April 2024 26 / 123

Encoding of Data Stream

Indicate to the Scanner class which character encoding is to be expected, and
Java will interpret the bytes correctly. This is because Java uses Unicode internally
which is a super-set of all commonly used character set encodings.

Scanner s = new Scanner (System .in , "LATIN -1");

Scanner s = new Scanner (System .in , " Cp1252 ");

Without a specified character encoding, the computer’s default encoding is used.
Scanner s = new Scanner (System .in);

A program with such a scanner may behave differently on different computers.

Unicode Character Sets © 1 April 2024 27 / 123

Java Tip

All the input in lab will be US-ASCII, so please use the two argument form of the
Scanner class at all times.

Scanner s = new Scanner (System .in , "US -ASCII");

A bad bit pattern in the input (there won’t be one) would result in a Unicode
character for “bad character” – 0xFFFD replacement character – in your
input. The behavior of the programs for the exercises in lab is never defined on any
“bad” input whatsoever. The program may do anything at all including loop or
result in a runtime error. In particular the program does not have to detect “bad”
input or report it.

Unicode Character Sets © 1 April 2024 28 / 123

Java Tip

As of Java 18 IO is done in the default character set regardless of the platform.
The default character set java.nio.charset.Charset.defaultCharset() is
UTF-8, unless overridden by the system property file.encoding.

It is no longer necessary to be explicit about the character set in order to be
platform independent, but it does not bad practice to be explicit anyway.

One can specify the platform dependent character set with the value COMPAT for
file.encoding. The platform characters set typically depends upon the locale
and charset of the underlying operating system.

Unicode Character Sets © 1 April 2024 29 / 123

Whitespace

Six invisible or white-space characters are legal in a Java program. No other
control characters are legal in a Java program. A Java program used to be
permitted to end with the “substitute” character.

binary dec Latin1 Unicode
0000 1001 9 HT U+0009 horizontal tabulation
0000 1010 10 LF U+000A line feed
0000 1100 12 FF U+000C form feed
0000 1101 13 CR U+000D carriage return
0001 1010 26 SUB U+001A substitute
0010 0000 32 U+0020 space

Unicode Character Sets © 1 April 2024 30 / 123

There is no advantage to using a horizontal tabulation or a substitute character in
a Java program. But there is a risk of breaking some application that uses Java
source code for input (pretty-printers, text beautifiers, metric tools, etc.)
Newlines indications are necessary for formatting programs, and Java permits all
three of the common newline conventions: the line feed character (common in
Unix applications), the carriage return (Mac applications), and the carriage return
character followed by the line feed (Microsoft applications).

MacOS CR "\r"
Unix LF "\n"
Windows CR,LF "\r\n"

Other newline markers are much less common. Next-line (NEL x85) is used to
mark end-of-line on some IBM mainframes. Unicode has its own approach to
indicating a new line:

Unicode
U+2028 line separator

Unicode Character Sets © 1 April 2024 31 / 123

The method readLine() of the Java class BufferedReader tolerates MacOS,
Unix or Window (but not Unicode) new-line indications.
The Java JVM initializes the new-line indication according to the platform it is
running. This value is available through system properties:
System.getProperty("line.separator"). The method format in class
Formatter recognizes %n in format strings as the value of the line separator.

// Use Unicode line separator character
System . setProperty ("line. separator ","\u2028");
System .out. format ("A line .%n");

Python
print ("A line.", end=u"\2028")
print ("A line.", end="\r\n")
print ("A line.", end="\n")
print ("A line.") # end ="\n" by default

Unicode Character Sets © 1 April 2024 32 / 123

Newline

From Wikipedia:
In computing a newline, also known as a line break or end-of-line (EOL)

marker, is a special character or sequence of characters signifying the end
of a line of text.

There is also some confusion whether newlines terminate or separate
lines. If a newline is considered a separator, there will be no newline after
the last line of a file. The general convention on most systems is to add a
newline even after the last line, i.e. to treat newline as a line terminator.
Some programs have problems processing the last line of a file if it is not
newline terminated.

Unicode Character Sets © 1 April 2024 33 / 123

Thou shalt end every line
in your program and output
with a line terminator.

Conveniently, the number of line terminators in a file is the number of lines in the
file.
Failing to abide by this convention may lead to miscommunication and the loss of
points on tests and programs.

Unicode Character Sets © 1 April 2024 34 / 123

What Do Characters Mean?

Some characters, like the tab, have no fixed meaning, even though it has an agreed
upon code point. Tabs are interpreted differently by different applications leading
to confusion.

binary dec Latin1 Unicode
0000 1001 9 HT U+0009 horizontal tabulation
1010 0100 164 ¤ U+00A4 currency sign

What good is a standard when the meaning is unclear?

Unicode Character Sets © 1 April 2024 35 / 123

A consortium of companies got together in the 1990’s to solve the
information confusion caused by competing character encodings by creating

one universal encoding for everybody.

The consortium thought at first it would be a simple, fixed-width (16 bit)
encoding. Java, developed at the same time, immediately adopted the standard
instead of defining their own units for Java source and Java strings.

Unicode Unicode © 1 April 2024 36 / 123

Unicode Versions

version date scripts characters bits
1.0 Oct 1991 24 7,161 12.81
2.0 Jul 1996 24 38,950 15.25
3.0 Sep 1999 38 49,249 15.59
4.0 Apr 2003 52 96,447 16.56
5.0 Jul 2006 64 99,098 16.60
6.0 Oct 2010 93 109,449 16.74
7.0 Jun 2014 123 113,021 16.79
8.0 Jun 2015 123 120,737 16.88
9.0 Jun 2016 135 128,237 16.97

Here characters mean the number of encoded characters: graphic characters,
format characters plus control characters. This does not include unassigned code
points (permanently reserved), private use characters, non-characters (66 code
points), or surrogate code points (2,048 reserved for the convenience of multi-byte
encoding).

Unicode Unicode © 1 April 2024 37 / 123

Unicode Versions

version date scripts characters bits
6.0 Oct 2010 93 109,449 16.74
7.0 Jun 2014 123 113,021 16.79
8.0 Jun 2015 123 120,737 16.88
9.0 Jun 2016 135 128,237 16.97
10.0 Jun 2017 139 136,690 17.06
11.0 Jun 2018 146 137,374 17.07
12.0 Mar 2019 150 137,928 17.07
13.0 Mar 2020 154 143,849 17.13
14.0 Sep 2021 159 144,697 17.14
15.0 Sep 2022 161 149,186 17.19

Unicode Unicode © 1 April 2024 38 / 123

Unicode 13.0 (2020 March 10) adds 5,930 characters, for a total of 143,859 (wiki:
+65=143,924) characters, and the first block in plane 3 for CJK ideographs.
These additions include 4 new scripts, for a total of 154 scripts, as well as 55 new
emoji characters. Characters: segmented digits. Scripts: historic Yezidi, historic
Chorasmian
Unicode 14.0 (2021 Sept 14) adds 838 characters, for a total of 144,697. These
additions include 5 new scripts, for a total of 159 scripts, as well as 37 new emoji
characters.
Unicode 15.0 (2022 Sept 13) adds 4,489 characters, for a total of 149,186. These
additions include 2 new scripts (historical Kawi and Mundari), for a total of 161
scripts, as well as 20 new emoji characters, and 4,192 CJK ideographs.

The character counts above exclude code points with General Category CC (ASCII control
characters). There are exactly 65 such code points and this will never change. Wikipedia
includes graphic, format and control characters in the character count, and excludes
private-use characters, non-characters, and surrogate code points (used for encoding).

Unicode Unicode © 1 April 2024 39 / 123

Some Unicode Characters

binary Unicode
0000 0000 1111 0110 ö U+00F6 latin small letter o with diaeresis

0000 0001 0100 0010 ł U+0142 latin small letter l with stroke

0000 0001 0111 0101 ŵ U+0175 latin small letter w with circumflex

0000 0011 1001 0100 ∆ U+0394 greek capital letter delta

0010 0000 0010 1000 U+2028 line separator

0010 0010 0010 1011
∫

U+222B integral

0010 0010 0100 0111 ̸∼= U+2247 neither approximately nor actually equal to

0010 0010 1001 0111 ⊗ U+2297 circled times

The customary way to refer to a Unicode point is with U+ followed by the 4 (or 5)
hexadecimal digits.

Unicode Unicode © 1 April 2024 40 / 123

Where do characters come from?

Unicode Unicode © 1 April 2024 41 / 123

A recent graphic character added to Unicode is a currency symbol for the Turkish
Lira. It is the winning design of a competition held by the Turkish central bank.
The design for the symbol was revealed to the public in March 2012. It was the
only character added to Unicode 6.2 in September 2012. The bitcoin symbol
(designed by the creator of the currency) was added in Unicode 10; the Som sign
(Kyrgyzstan) in Unicode 14.

Unicode Unicode © 1 April 2024 42 / 123

IPA

Letter-like

Mathematical

Dingbats

Ideographs

Unicode Unicode © 1 April 2024 43 / 123

Other Symbols
Multiple snowflake symbols are encoded in Unicode including: “snowflake" at
U+2744; “tight trifoliate snowflake" at U+2745; and “heavy chevron snowflake" at
U+2746.

Multiple hand symbols are encoded in Unicode including: “reversed victory hand”
at U+1F594, “reversed hand with middle finger extended” at U+1F595, “raised
hand with part between middle and ring fingers” at U+1F596.

Unicode Unicode © 1 April 2024 44 / 123

xkcd
https://xkcd.com/2606/

Making fun of all the Unicode math symbols
Roll-over pop-up: U+2A0B Mathematicians need

to calm down

Unicode Unicode © 1 April 2024 45 / 123

https://xkcd.com/2606/

Unicode Mistakes

In something as complex as encoding all the writing systems of the world, mistakes
are bound to happen.

Unicode

U+156F canadian syllabics tth

U+263A white smiling face

Meaning of U+156F is said by Unicode to be “probably a mistaken interpretation
of an asterisk used to mark a proper noun”

U+263A predates emoji.

Unicode Unicode © 1 April 2024 46 / 123

Unicode Mistakes

See the code points marked “correction” in the text file NameAliases.txt .
There are enough code points so that a few can be wasted.

The consortium works hard to vet proposals for inclusion, but it is gigantic semiotic
undertaking.

Unicode has now been around long enough that the gradual changes in written
communications of society are a factor.

Unicode Unicode © 1 April 2024 47 / 123

https://www.unicode.org/Public/13.0.0/ucd/NameAliases.txt

Unicode Scripts © 1 April 2024 48 / 123

Unicode Supports Many Scripts

Latin: . . .

Arabic: . . .

Hebrew: . . .

Armenian: . . .

Cyrillic: . . .

Devanagari: . . .

Thai: . . .

Unicode Scripts © 1 April 2024 49 / 123

Cherokee Script

glyph Unicode

U+13A0 cherokee letter a

U+13A1 cherokee letter e

U+13A2 cherokee letter i

U+13A3 cherokee letter o

U+13A4 cherokee letter u

U+13A5 cherokee letter v

U+13A7 cherokee letter ka

U+13CE cherokee letter se

U+13D2 cherokee letter sv

Unicode Scripts © 1 April 2024 50 / 123

(Notice the similarity with the Latin letter forms. The Cherokee script was invented
by Sequoyah around 1820 with knowledge of the Latin script, but without
consideration of English sounds.)

Thou shalt not reason by analogy.

Unicode Scripts © 1 April 2024 51 / 123

Unicode Emoji

The word emoji comes from the Japanese: (e-mo-ji).

U+7D75 U+6587 U+5B57
e mo ji

picture writing character

Unicode Emoji © 1 April 2024 52 / 123

Unicode Emoji

Some emoji as designed by Apple.

Unicode Emoji © 1 April 2024 53 / 123

Google “Cheeseburger” [U+1f354] Controversy (2017)

Apple Facebook LG5 Microsoft

Unicode Emoji © 1 April 2024 54 / 123

2017 Controversy
Google CEO Sundar Pichai

before after
Google “Cheeseburger” [U+1f354]

Google Unicode Emoji

auto ballon dog fire pie snake zebra

U+1F697 U+1F388 U+1F415 U+1F525 U+1F967 U+1F40D U+1F993

Unicode Emoji © 1 April 2024 56 / 123

Unicode: U+260E U+1F9D1 U+26F5 U+1F433 U+1F4CC
:telephone: :person: :sailboat::spouting_whale::ok_hand:

Apple:

Google:

Call me Ismael.

Unicode Emoji © 1 April 2024 57 / 123

“Call me Ishmael” – How do you translate
emoji? by Will Radford, Andrew Chisholm, Ben
Hachey, Bo Ha

Unicode Emoji © 1 April 2024 58 / 123

Fitzpatrick Skin Color

Skin tone modifiers were released as part of Unicode 8.0.

Unicode

U+1F3FB emoji modifier fitzpatric type-1-2

U+1F3FC emoji modifier fitzpatric type-3

U+1F3FD emoji modifier fitzpatric type-4

U+1F3FD emoji modifier fitzpatric type-5

U+1F3FD emoji modifier fitzpatric type-6

Unicode Emoji © 1 April 2024 59 / 123

Emoji Sequences
An example sequence: police officer, medium skin color, zero width joiner, female,
request emoji presentation

Unicode
U+1F46E police officer

U+1F3FD emoji modifier fitzpatric type-4

U+ 200D zero width joiner

U+ 2640 female sign

U+ FE0F variation selector-16

Unicode Emoji © 1 April 2024 60 / 123

Unicode Emoji © 1 April 2024 61 / 123

Glyph Versus Character

It is economical to encode the information content of writing regardless of the
variety of forms. A character is the unit of information; a glyph is a particular form
in which a character is represented. A letter in English may have different forms,
but it means the same thing.

Unicode Nature of Characters © 1 April 2024 62 / 123

Unicode Nature of Characters © 1 April 2024 63 / 123

Unicode Nature of Characters © 1 April 2024 64 / 123

As far as possible a code point is assigned an abstract character and not a
particular glyph. However, it is not always clear how to discretize the information
content of scripts. For example, the Latin, Greek, and Cyrillic capital A (U+0041,
U+0391, U+0410) have different code points.

Yet, the glyphs for these characters are the same.

Latin A, B, . . . , R, S, T , U versus Greek A, B, . . . , P, Σ, T , Υ.
This confusion along with the subtext that goes in the language of mathmatics,
required a remark in HMU, page 142, footnote 2: “That ’T’ should be thought of
as a Greek captial tau, the letter following sigma.”

Unicode Nature of Characters © 1 April 2024 65 / 123

In Arabic calligraphy, the Basmala is a prevalent motif. In Unicode, the
Basmala is encoded as one symbol at code point:

U+FDFD ARABIC LIGATURE BISMILLAH AR-RAHMAN AR-RAHEEM

The Basmala is the Islamic phrase “In the name of God, the Most
Gracious, the Most Merciful.”

bi-smi llāhi r-rah.māni r-rah. ı̄mi
In the name of / Allah / The Beneficent / The Merciful

U+0628 arabic letter beh
U+0650 arabic kasra
U+0633 arabic letter seen
U+0652 arabic sukun
U+0645 arabic letter mem
U+0650 arabic kasra
U+0020 space
U+0671 arabic letter alef wasla
U+0644 arabic letter lam
U+0644 arabic letter lam
U+064e arabic fatha
U+0651 arabic shadda
U+0670 arabic letter superscript alef
U+0647 arabic letter heh
U+0650 arabic kasra
U+0020 space
U+0671 arabic letter alef wasla
U+0644 arabic letter lam
U+0631 arabic letter reh
U+064e arabic fatha
U+0651 arabic shadda
U+062d arabic letter hah
U+0652 arabic sukun
U+0645 arabic letter meem
U+064e arabic fatha
U+0670 arabic letter superscript alef
U+0646 arabic letter noon
U+0650 arabic kasra
U+0020 space
U+0671 arabic letter alef wasla
U+0644 arabic letter lam
U+0631 arabic letter reh
U+064e arabic fatha
U+0651 arabic shadda
U+062d arabic letter hah
U+0650 arabic kasra
U+064A arabic letter yeh
U+0645 arabic letter meem
U+0650 arabic kasra

Unicode Arabic © 1 April 2024 66 / 123

Unicode Cuneiform © 1 April 2024 67 / 123

U+103AC U+103A0 U+103BC U+103B9 U+103BA U+103A2 U+103C1 U+103D0 U+103A7 U+103C1 U+103A0 U+103B9 U+103B0 U+103A1 U+103B9 U+103D0

da a ra ya va u sha \ xa sha a ya tha i ya \

U+103BA U+103C0 U+103BC U+103A3 U+103D0 U+103A7 U+103C1 U+103A0 U+103B9 U+103B0 U+103A1 U+103B9 U+103D0 U+103A7 U+103C1 U+103A0

va za ra ka \ xa sha a ya tha i ya \ xa sha a

U+103B9 U+103B0 U+103A1 U+103B9 U+103A0 U+103B4 U+103A0 U+103B6 U+103D0 U+103A7 U+103C1 U+103A0 U+103B9 U+103B0 U+103A1 U+103B9 U+103D0

ya tha i ya a na a ma \ xa sha a ya tha i ya \

U+103AD U+103C3 U+103B9 U+103A2 U+103B4 U+103A0 U+103B6 U+103D0 U+103BB U+103A1 U+103C1 U+103AB U+103A0 U+103BF U+103B1 U+103C3 U+103B9

da ha ya u na a ma \ vi i sha ta a sa pa ha ya

Unicode Cuneiform © 1 April 2024 68 / 123

Darius / king / great / king / king of kings/ king / of the provinces / of
Vistaspes/ son / the Achaemenid / who / this palace / made

Darius the Great King, King of Kings, King of countries, son of Hystaspes, an
Achaemenian, built this palace.

Unicode Cuneiform © 1 April 2024 69 / 123

Happy New Year!

U+65B0 U+5E74 U+5FEB U+4E50
new year happiness

In Mandarin (Pinyin): x̄ın nián kuài lè
In Cantonese (Jyutping): san1 nin4 faai3 lok6

Sunday, 22 Jan 2023, year of the rabbit
Saturday, 10 Feb 2024, year of the dragon

Unicode Cuneiform © 1 April 2024 70 / 123

CKJV Unification

Because of the enormous number of Asian glyphs, a saving of space can be
achieved by unifying glyphs as single ideographs.

Unicode Cuneiform © 1 April 2024 71 / 123

16 bits?

Unicode originally planned a 16 bit encoding. So the char data type in Java is 16
bits. But soon there were too many characters. Now Unicode encodes characters
into a 21 bit space.
For all practical purposes it is possible work in what is called the 16 bit “base
multi-lingual plane.” However, in Java you cannot assume that one char is one
Unicode character. See UTF-16.

Unicode Code Point Space © 1 April 2024 72 / 123

17 Unicode Planes

00: Basic Multilingual Plane (00000-00FFFF)
01: Supplementary Multilingual
02: Supplementary Ideographic
03
04
05
06
07
08
09
0A
0B
0C
0D
0E: Supplementary Special-Purpose
0F: Private Use Plane (0F000-0FFFF)
10: Private Use Plane (10000-1FFFF)

unassigned

Unicode Code Point Space © 1 April 2024 73 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 74 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 75 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 76 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 77 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 78 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 79 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 80 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 81 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 82 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi

Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 83 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 84 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 85 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area

Compatibility

Unicode Code Point Space © 1 April 2024 86 / 123

Basic Multilingual Plane (U+0000 – U+FFFF)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 A B C D E F

28

210

212

214

Alphabetic scripts

CKJV Unified Ideographs

Yi
Hangul

Private Use Area Compatibility

Unicode Code Point Space © 1 April 2024 87 / 123

Scripts Area in Unicode

Scripts supported http://unicode.org/standard/supported.html
Road map: http://www.unicode.org/roadmaps/bmp/
Greek and Coptic U0370 U03FF
https://en.wikipedia.org/wiki/Greek_alphabet; Greek Extended U1F00
U1FFF
Buginese/Lontara U1A00 U1A1F
https://en.wikipedia.org/wiki/Lontara_alphabet Ogham U1680 U169F
https://en.wikipedia.org/wiki/Ogham

space modifiers U02B0 U02FF
diacritical marks U0300 U036F

Tai Le/Dehong Dai U1950 U197F

Unicode Code Point Space © 1 April 2024 88 / 123

http://unicode.org/standard/supported.html
http://www.unicode.org/roadmaps/bmp/
https://en.wikipedia.org/wiki/Greek_alphabet
https://en.wikipedia.org/wiki/Lontara_alphabet
https://en.wikipedia.org/wiki/Ogham
http://www.unicode.org/charts/PDF/U02B0.pdf
http://www.unicode.org/charts/PDF/U0300.pdf
https://en.wikipedia.org/wiki/Tai_Le_alphabet
http://www.unicode.org/charts/PDF/U1950.pdf

ASCII Latin-1 Latin extensions
IPA modifiers diacritics Greek

Cyrillic Armenian Hebrew
Arabic Syriac Thaana

Devanagari Bengali
Gurmukhi Gujarati Oriya Tamil

Telugu Kannada Malayalam Sinhala
Thai Lao Tibetan

Myanmar Georgian Hangul Jamo
Ethiopic Cherokee

Unified Canadian Aboriginal Syllabics
RunicOgham Philippine Khmer

Mongolian Limbu Tai Le
Buginese Balinese

Phonetic extensions
Latin extended Greek extended

0 2 4 6 8 A C E 0 2 4 6 8 A C E

1E
1C
1A
18
16
14
12
10
0E
0C
0A
08
06
04
02
00

Unicode Code Point Space © 1 April 2024 89 / 123

String versus Text

Because much of computing is processing written text. We need the best possible
primitive data structures.
We can accept the hard work of the Unicode Consortium to provide an inventory of
symbols. But even the smallest of steps with natural language are fraught. What is
a word? How are words organized?
The Unicode Standard and Java provide support for text processing. It is
important to understand this as different than string processing which not aware of
the cultural differences that impact written text processing.

Unicode Text Processing © 1 April 2024 90 / 123

Collating Sequence

It is natural to use the code point of a character as the order of the characters.
That is, the code point (a number) is taken as the position in the collating
sequence of the characters. This extends naturally (via lexicographic ordering) to
strings of characters.

Unicode Text Processing © 1 April 2024 91 / 123

Dictionary Order

However, lexicographic ordering on strings of character code points, does not meet
cultural expectations. String of characters are not quite the same a words of
natural language text.

péche
pêchi
péché
pécher
pêcher

In French péché should follow pêche in a sorted list which it would not by rules of
the English language.

Unicode Text Processing © 1 April 2024 92 / 123

Searching and Sorting

Unicode Text Processing © 1 April 2024 93 / 123

Quest For The Symbol to Represent Powerset

In text there are many italic, slanted, and cursive glyphs for letters. These
numerous variations are not really character distinctions, and so are not usually
given separate Unicode code points.

Unicode has nearly 40 code points for characters which resemble the Latin letter ‘p’.

Even uppercase (capital) ‘P’ and lowercase (small) ‘p’ are similar.

One ’P’ like character is used in mathematics for the power set.

Unicode Symbol for Powerset © 1 April 2024 94 / 123

HTML5 Entity char Unicode
℘ or ℘ 1 ℘ U+2118 script capital p 2

𝑃 3 P U+1D443 mathematical italic capital p
𝔓 P 4 U+1D513 mathematical fraktur capital p
𝒫 P 5 U+1D4AB mathematical script capital p
𝓅 6 U+1D4C5 mathematical script small p

1 Certain, simple elliptic functions are named after the mathematician Karl
Weierstrass and denoted ℘. This notation dates back at least to the first
edition of A Course of Modern Analysis by E. T. Whittaker in 1902.

Unicode Symbol for Powerset © 1 April 2024 95 / 123

https://www.w3schools.com/charsets/tryit.asp?ent=wp
https://www.w3schools.com/charsets/tryit.asp?ent=weierp
https://codepoints.net/U+2118
https://www.w3schools.com/charsets/tryit.asp?dec=119875
https://codepoints.net/U+1D443
https://www.w3schools.com/charsets/tryit.asp?ent=Pfr
https://codepoints.net/U+1D513
https://www.w3schools.com/charsets/tryit.asp?ent=Pscr
https://codepoints.net/U+1D4AB
https://www.w3schools.com/charsets/tryit.asp?ent=pscr
https://codepoints.net/U+1D4C5

HTML5 Entity char Unicode
℘ or ℘ 1 ℘ U+2118 script capital p 2

𝑃 3 P U+1D443 mathematical italic capital p
𝔓 P 4 U+1D513 mathematical fraktur capital p
𝒫 P 5 U+1D4AB mathematical script capital p
𝓅 6 U+1D4C5 mathematical script small p

2 The official Unicode name is a mistake. The Unicode documentation says that
U+2118 should have been named “calligraphic small p or perhaps even
weierstrass elliptic function symbol”

Unicode Symbol for Powerset © 1 April 2024 96 / 123

https://www.w3schools.com/charsets/tryit.asp?ent=wp
https://www.w3schools.com/charsets/tryit.asp?ent=weierp
https://codepoints.net/U+2118
https://www.w3schools.com/charsets/tryit.asp?dec=119875
https://codepoints.net/U+1D443
https://www.w3schools.com/charsets/tryit.asp?ent=Pfr
https://codepoints.net/U+1D513
https://www.w3schools.com/charsets/tryit.asp?ent=Pscr
https://codepoints.net/U+1D4AB
https://www.w3schools.com/charsets/tryit.asp?ent=pscr
https://codepoints.net/U+1D4C5
https://codepoints.net/U+2118

HTML5 Entity char Unicode
℘ or ℘ 1 ℘ U+2118 script capital p 2

𝑃 3 P U+1D443 mathematical italic capital p
𝔓 P 4 U+1D513 mathematical fraktur capital p
𝒫 P 5 U+1D4AB mathematical script capital p
𝓅 6 U+1D4C5 mathematical script small p

3 HTML5 does not have a named entity for this ‘p‘. Italic or slanted fonts are
the primary way mathematicians can visually distinguish words of text from
formulas of mathematics. Modern technology eases the use of more symbols
in mathematical writing.

Unicode Symbol for Powerset © 1 April 2024 97 / 123

https://www.w3schools.com/charsets/tryit.asp?ent=wp
https://www.w3schools.com/charsets/tryit.asp?ent=weierp
https://codepoints.net/U+2118
https://www.w3schools.com/charsets/tryit.asp?dec=119875
https://codepoints.net/U+1D443
https://www.w3schools.com/charsets/tryit.asp?ent=Pfr
https://codepoints.net/U+1D513
https://www.w3schools.com/charsets/tryit.asp?ent=Pscr
https://codepoints.net/U+1D4AB
https://www.w3schools.com/charsets/tryit.asp?ent=pscr
https://codepoints.net/U+1D4C5

HTML5 Entity char Unicode
℘ or ℘ 1 ℘ U+2118 script capital p 2

𝑃 3 P U+1D443 mathematical italic capital p
𝔓 P 4 U+1D513 mathematical fraktur capital p
𝒫 P 5 U+1D4AB mathematical script capital p
𝓅 6 U+1D4C5 mathematical script small p

4 The German “fraktur” script, no longer in use with ordinary text, yields an
entirely new set of Latin letter forms from which mathematicians have gleaned
symbols.

Unicode Symbol for Powerset © 1 April 2024 98 / 123

https://www.w3schools.com/charsets/tryit.asp?ent=wp
https://www.w3schools.com/charsets/tryit.asp?ent=weierp
https://codepoints.net/U+2118
https://www.w3schools.com/charsets/tryit.asp?dec=119875
https://codepoints.net/U+1D443
https://www.w3schools.com/charsets/tryit.asp?ent=Pfr
https://codepoints.net/U+1D513
https://www.w3schools.com/charsets/tryit.asp?ent=Pscr
https://codepoints.net/U+1D4AB
https://www.w3schools.com/charsets/tryit.asp?ent=pscr
https://codepoints.net/U+1D4C5

HTML5 Entity char Unicode
℘ or ℘ 1 ℘ U+2118 script capital p 2

𝑃 3 P U+1D443 mathematical italic capital p
𝔓 P 4 U+1D513 mathematical fraktur capital p
𝒫 P 5 U+1D4AB mathematical script capital p
𝓅 6 U+1D4C5 mathematical script small p

5 There are various mathematical script fonts in LATEX. The Euler Script
symbols were designed by Hermann Zapf and they are included with the
standard LATEX distribution. But they have no lowercase letters.

Unicode Symbol for Powerset © 1 April 2024 99 / 123

https://www.w3schools.com/charsets/tryit.asp?ent=wp
https://www.w3schools.com/charsets/tryit.asp?ent=weierp
https://codepoints.net/U+2118
https://www.w3schools.com/charsets/tryit.asp?dec=119875
https://codepoints.net/U+1D443
https://www.w3schools.com/charsets/tryit.asp?ent=Pfr
https://codepoints.net/U+1D513
https://www.w3schools.com/charsets/tryit.asp?ent=Pscr
https://codepoints.net/U+1D4AB
https://www.w3schools.com/charsets/tryit.asp?ent=pscr
https://codepoints.net/U+1D4C5

HTML5 Entity char Unicode
℘ or ℘ 1 ℘ U+2118 script capital p 2

𝑃 3 P U+1D443 mathematical italic capital p
𝔓 P 4 U+1D513 mathematical fraktur capital p
𝒫 P 5 U+1D4AB mathematical script capital p
𝓅 6 U+1D4C5 mathematical script small p

6 Many LATEX mathematical, script fonts do not have lowercase letters. Here is
glyph from the Zapf Chancery calligraphic font in LATEX: p. The free Google
Noto Sans Math TTF is possibililty here. The glyph shown above comes
from FileFormat.Info .

Unicode Symbol for Powerset © 1 April 2024 100 / 123

https://www.w3schools.com/charsets/tryit.asp?ent=wp
https://www.w3schools.com/charsets/tryit.asp?ent=weierp
https://codepoints.net/U+2118
https://www.w3schools.com/charsets/tryit.asp?dec=119875
https://codepoints.net/U+1D443
https://www.w3schools.com/charsets/tryit.asp?ent=Pfr
https://codepoints.net/U+1D513
https://www.w3schools.com/charsets/tryit.asp?ent=Pscr
https://codepoints.net/U+1D4AB
https://www.w3schools.com/charsets/tryit.asp?ent=pscr
https://codepoints.net/U+1D4C5
https://fonts.google.com/noto/specimen/Noto+Sans+Math/glyphs
https://fonts.google.com/noto/specimen/Noto+Sans+Math/glyphs
https://www.fileformat.info/info/unicode/index.htm

Wikipedia claims: “Starting with Unicode 3.0.1, a separate, capital symbol is
available for power set, namely U+1D4AB mathematical script capital p
(HTML 𝒫), which is available as 𝒫.” Starting in version 5.0
Unicode gives power set as an alternate name for the character.

Regardless of the codepoint, no widely available LATEX font renders the symbol in
the way that I would like. Here are some various possibilities for the script P
available in LATEX.

P \mathcal{P} \EuScript{P} \mathscr{P} \mathpzc{P}

P(X) P(X) P(X) P(X) P (X)

In writing by hand, I always mimic the calligraphic letter I saw in books like
Axiomatic Set Theory by Suppes or The Theory of Parsing, Translation, and
Compiling. Volume 1: Parsing by Aho and Ullman. The same symbol was used by
Greibach in the JACM, but for a different purpose.

Unicode Symbol for Powerset © 1 April 2024 101 / 123

Patrick Suppes, Axiomatic Set Theory, D. van Nostrand, 1960, page 47.

Alfred Vaino Aho and Jeffrey David Ullman, The Theory of Parsing, Translation,
and Compiling. Volume 1: Parsing, Prentice-Hall, 1972, page 5.

Sheila A. Greibach, “A New Normal-Form Theorem for Context-Free Phrase
Structure Grammars,” J. ACM, volume 12, number 1, January 1964, pages 42–52.

In LATEX I use a PNG file scanned from the book by Aho and Ullman.

x ∈ (A)

x ∈ (Ø)

This symbol is easily distinguished from other uses of ‘P’ in mathematics.

P(A) probability of event A
P ⇒ Q proposition P implies Q

{P} S {Q} P is the precondition

Unicode Symbol for Powerset © 1 April 2024 105 / 123

Math Notation
HTML char Unicode

ℂ C U+2102 double-struck capital C
= the set of complex numbers

ℇ U+2107 euler constant
ℵ ℵ U+2135 alef symbol

= first transfinite cardinal (countable)
ⅈ U+2148 double-struck small I

• sometimes used for the imaginary unit
𝑖 i U+1D456 mathematical italic small i

The very odd-looking “e” associated with Euler’s constant in Unicode is never used in
mathematics and easily confused with Euler’s number.
Euler’s number e = 2.718 (not to be confused with Euler’s constant γ = 0.577) and the
“i” in imaginary numbers do not generally receive distinguishing font treatment in
mathematical typography.

Unicode Symbol for Powerset © 1 April 2024 106 / 123

https://codepoints.net/U+2148
https://codepoints.net/U+2107
https://codepoints.net/U+2135
https://codepoints.net/U+2148
https://codepoints.net/U+1D456

Logic Symbols

Bocheński char LATEX Unicode
A ∨ \vee U+2228 logical or
K ∧ \wedge U+2227 logical and

J
⊕ \oplus U+2295 circled plus
⊻ \veebar U+22BB xor
⇎ \nLeftrightarrow U+21F9 left right arrow with vertical stroke

D ⊼ \barwedge1 U+22BC nand
↑ \uparrow U+2191 upwards arrow

X ∨̄ \bar\vee U+22BD nor
↓ \downarrow U+2193 downwards arrow

The command ⊼ and ⊻ come from the LATEX amsymb package. The command \land, \lor
and \lnot are synonyms for: \wedge, \vee and \neg.

Unicode Symbol for Powerset © 1 April 2024 107 / 123

https://en.wikipedia.org/wiki/List_of_logic_symbols

Encoding Schemes

The enormous number of symbols in the Unicode inventory cause concern. It is
desirable to avoid the awkwardness of computing with 21-bits worth of symbols,
when that majority of processing using only small subsets of the vast Unicode
inventory.
Information scientists have created strategies to manage this big inventory and this
techniques are in widespread use.

Unicode Encodings © 1 April 2024 108 / 123

Encoding Schemes

Unicode Encodings © 1 April 2024 109 / 123

UTF-8, UTF-16

This makes US-ASCII automatically UTF-8 – all seven bit characters are encoded
in 8 bits. (11 bits in 16 bits; 16 bits in 24 bits; all 21 bits in 32 bits.)

Unicode Encodings © 1 April 2024 110 / 123

UTF-16, UTF-32

Unicode Encodings © 1 April 2024 111 / 123

Java

Convert an array of int (code points) to UTF-16.
String UTF16 = new String (ints , 0, ints. length);

Unicode Encodings © 1 April 2024 112 / 123

Python
Convert a list of bytes to an internal representation of Unicode which varies in Python
(Latin-1, UTF-16, UTF-32) on a string-by-string basis.
>>> str(bytes ([0 x24]),'utf8 ') == '$'
>>> str(bytes ([0 xE0 ,0xA4 ,0 xB9]),'utf8 ') == '\u0939 '
>>> str(bytes ([0 xED ,0x95 ,0 x9C]),'utf8 ') == '\uD55C '
>>> str(bytes ([0 xF0 ,0x90 ,0x8D ,0 x88]),'utf8 ') == '\ U00010348 '

>>> str(bytes ([0 x00 ,0 x24]),'utf -16-be ') == '$'
>>> str(bytes ([0 x24 ,0 x00]),'utf -16-le ') == '$'
>>> str(bytes ([0 x20 ,0 xAC]),'utf -16-be ') == '\u20ac '
>>> str(bytes ([0 xAC ,0 x20]),'utf -16-le ') == '\u20ac '
>>> str(bytes ([0 xD8 ,0x01 ,0xDC ,0 x37]),'utf -16-be ')== '\ u00010437 '
>>> str(bytes ([0 x01 ,0xD8 ,0x37 ,0 xDC]),'utf -16-le ')== '\ u00010437 '
>>> str(bytes ([0 xD8 ,0x52 ,0xDF ,0 x62]),'utf -16-be ')== '\ u00024B62 '
>>> str(bytes ([0 x52 ,0xD8 ,0x62 ,0 xDF]),'utf -16-le ')== '\ u00024B62 '

Unicode Encodings © 1 April 2024 113 / 123

Unicode Encodings © 1 April 2024 114 / 123

alien euro pound a <tab>

C++/Python \U0001F47D \u20AC \u00A3 \u0061 \u0009

Java \uD83D\uDc7D \u20AC \u00A3 \u0061 \u009
[utf-16]

XML/HTML (hex) 👽 € £ a 	
(decimal) 👽 € £ a 	
(name) € £ 	

Unicode Encodings © 1 April 2024 115 / 123

UTF-8 Security

Latin1 is not the same as UTF-8. All bytes are legal Latin1 if you include control
characters. Not all sequences of bytes are valid UTF-8

• invalid bytes 41 [’A’] FE 5A [’Z’] (the bytes in the range F5-FF cannot occur)
• an unexpected continuation byte 41 [’A’] 80 BF 5A [’Z’] (the byes in the range

80-BF are continuation bytes)
• a string ending too soon (lonely start) 41 [’A’] C0 E0 5A [’Z’]
• on overlong encoding 41 [’A’] F0 82 82 AC 5A [’Z’]
• a sequence that decodes to an invalid code point

Unicode Encodings © 1 April 2024 116 / 123

Python

valid UTF -8 sequence
str(bytes ([0 x41 ,0xE0 ,0xA4 ,0xB9 ,0 x5A]),'utf8 ') == 'A\ u0939Z '
In Latin -1 0xFE "latin small letter thorn"
byte must never appears in utf8 sequence
str(bytes ([0 x41 ,0xFE ,0 x5A]),'utf8 ')
str(bytes ([0 x41 ,0xFF ,0 x5A]),'utf8 ')
Normal '/'
str(bytes ([0 x41 ,0x2F ,0 x5A]),'utf8 ') == 'A/Z'

overlong
str(bytes ([0 x41 ,0xC0 ,0xAF ,0 x5A]),'utf8 ') != 'A/Z'
str(bytes ([0 x41 ,0xE0 ,0x80 ,0xAF ,0 x5A]),'utf8 ') != 'A/Z'
str(bytes ([0 x41 ,0xF0 ,0x80 ,0x80 ,0xAF ,0 x5A]),'utf8 ') != 'A/Z'
str(bytes ([0 x41 ,0xF8 ,0x80 ,0x80 ,0x80 ,0xAF ,0 x5A]),'utf8 ') != 'A/Z'
str(bytes ([0 x41 ,0xFC ,0x80 ,0x80 ,0x80 ,0x80 ,0xAF ,0 x5A]),'utf8 ') != 'A/Z'

UTF -16 surrogate not a valid code point
str(bytes ([0 xED ,0xA0 ,0 x80]),'utf8 ') != '\uD800 '

Unicode Encodings © 1 April 2024 117 / 123

UTF-16 Security

Since the ranges for the high surrogates (0xD800–0xDBFF), low surrogates
(0XDC00–0XDFFF), and valid BMP characters (0X0000–0xDFFF,
0xE0000–0XFFFF) are disjoint, it is not possible for a surrogate to match a BMP
character, or for two adjacent code units to look like a legal surrogate pair. This
simplifies searches a great deal. It also means that UTF-16 is self-synchronizing on
16-bit words: whether a code unit starts a character can be determined without
examining earlier code units (i.e., the type of code unit can be determined by the
ranges of values in which it falls).

Unicode Encodings © 1 April 2024 118 / 123

As someone who works a lot at the byte <-> Unicode boundary the idea
of having strings with an internal UTF-8 encoding is very interesting. Having
worked with Rust for a while now I am getting more and more convinced that the
approach is a good idea. While it forces you to give up on the idea of being able
to address characters individually, that is actually not a huge loss. For a start
Unicode would pretty much require you to normalize your strings anyways before
you do text processing due to the many ways in which you can format the strings.
For instance umlauts come in combined characters but they can also be manually
created by placing the regular letter followed by the combining diaeresis character.

Blog by Armin Ronacher.

Unicode Encodings © 1 April 2024 119 / 123

https://lucumr.pocoo.org/2014/1/9/ucs-vs-utf8/

Byte Order Mark

Text files do not usually have a magic number or other indication of the intended
character encoding. However, Unicode does define a BOM.

UTF-8 EF BB BF
UTF-16 (BE) FE FF
UTF-16 (LE) FF FE
UTF-32 (BE) 00 00 FE FF
UTF-32 (LE) FF FE 00 00

So, this is useless knowledge. The point is that you can’t tell the character
encoding of a text file by looking at the bytes. See other file formats like HTML5
and MIME.

Unicode Encodings © 1 April 2024 120 / 123

Wikipedia reports that UTF8 overtook ASCII as the most common encoding in
2006 and is by far the most common encoding today.

Some argue that UTF-8 is better than UTF-16 that been used in Java, Python,
and C++.

• Big-endian versus Little-endian: UTF-16BE, UTF-16LE
• UTF-8 and UTF-32 sort the same lexicographically, UTF-16 does not
• UTF-16 is not a fixed width encoding

See UTF8 Everywhere

Unicode Encodings © 1 April 2024 121 / 123

https://en.wikipedia.org/wiki/UTF-8
https://utf8everywhere.org/

Summary

Character encoding standards.
• 7 bits. US-ASCII encoding
• 8 bits. Latin-1, or Latin-0 encoding. UTF-8 multi-byte
• 16 bits. Java char, UTF-16 multi-byte
• 18 bits. Required for Unicode code points
• 21 bits. Unicode defines a code-space of 1,114,112 code points in the range

016 to 10FFFF16.
• 32 bits. UTF-32 or UCS-4 – only fixed-width Unicode encoding

Unicode Encodings © 1 April 2024 122 / 123

Questions

1 Describe something Java does to make working with different character
encodings easier.

2 How might a Java program execute differently on two different computers?

Unicode Encodings © 1 April 2024 123 / 123

	Character Sets
	Unicode
	Scripts
	Emoji
	Nature of Characters
	Arabic
	Cuneiform
	Code Point Space
	Text Processing
	Symbol for Powerset
	Encodings

