
Streams and Pipes

Along the Stream by Sharon France
Streams and Pipes © 1 April 2024 1 / 103

Streams

As a leaf is carried by a stream, whether the stream ends in a lake or
in the sea, so too is the output of your program carried by a stream not
knowing if the stream goes to the screen or to a file.

Washroom Wall (1995)
Quoted by Savitch

Streams and Pipes © 1 April 2024 2 / 103

Input/Output

Read S&W Section 1.5 “Input and Output”

Streams and Pipes © 1 April 2024 3 / 103

Input/Output

People communicate interactively and instinctively.

Hello.

How are you?

Not bad . . .

Gota go!

When people communicate with computers, it is is natural and valuable to mimic
this. (Sometimes!) However, it is more complicated than it seems to program this
interaction.

Streams and Pipes © 1 April 2024 4 / 103

Complicated

1 Synchronizing the actors with respect to the arrow of time may be difficult.

2 The multiple systems involved are difficult to control and anticipate.
3 Specifying, or communicating precisely, the interactivity is difficult.

It is useful to break I/O into simpler pieces and learn simpler patterns of
communication.

Streams and Pipes © 1 April 2024 5 / 103

Streams

Programming I/O is kind of tedious and we might be tempted to give up and move
on to more “pure” computational challenges. But programs need input and output.

• A program without input would always give the same result.
• A program without output would not be worth running as the user would get

no answer.

Streams were invented with Unix operating system in the 1960s are universally
used today as an organizing I/O principle.

Perhaps because people don’t think much about I/O and are accustomed to
complex GUIs, some minor points (like end-of-file) cause more trouble than they
should. So we are careful here to explain the whole concept and hope to
demonstrate why something so simple is actually quite profound.

Streams and Pipes © 1 April 2024 6 / 103

OS

computer

program

files

OS

monitor

mouse

keyboard

The program controls the computer, but needs the assistance of the operating
system to communicate with the outside environment. A programming language is
incapable of doing I/O except through the operating system.

Streams and Pipes © 1 April 2024 7 / 103

Streams

A stream is a convenient abstraction provided to a program by the operating
system to make I/O easier and more uniform.

A stream is a conduit of data to or from a program. If the flow is into the program,
the stream is called an input stream. If the flow is out of the program, the stream
is called an output stream.

Streams and Pipes © 1 April 2024 8 / 103

Input and Output Streams

e
c

b
h
j
f

g
d

a
j

J
I

H
G

F
E
D
C

B
A

Streams and Pipes © 1 April 2024 9 / 103

Input Streams

A
B

C
D
E
F

files

Streams and Pipes © 1 April 2024 10 / 103

Input Streams

A
B

C
D
E
F

The data on an input stream can come from a person typing on the keyboard or
from a file stored on the computer.

Streams and Pipes © 1 April 2024 11 / 103

It is more flexible for the user to decide where the data comes from when the
program is executed.

It is less flexible for the programmer to decide where the data comes from when
the program is written.

Streams and Pipes © 1 April 2024 12 / 103

Output Streams

F
E

D
C

B
A

files

Streams and Pipes © 1 April 2024 13 / 103

Output Streams

F
E

D
C

B
A

The data on an output stream can go to a person at the monitor or to a file stored
on the computer.

Streams and Pipes © 1 April 2024 14 / 103

It is more flexible for the user to decide where the data goes to when the program
is executed.

It is less flexible for the programmer to decide where the data goes to when the
program is written.

Streams and Pipes © 1 April 2024 15 / 103

Streams

Since the byte or octet (8-bits) is the smallest workable unit of (binary) data, the
simplest view is that all data is a sequence of bytes. Files are a sequence of bytes;
streams are a sequence of bytes.
These bytes make up the units of the common data types: characters, integers, etc.

1f 8b 08 40 d3
ad 3e f2 7d cd
55 27 65 87 43
c4

1f 8b
08 40

d3
ad 3e f2 7d cd 55 27 65 87 43 c4

Streams and Pipes © 1 April 2024 16 / 103

Medium/Ether

A medium is an agency or means of doing something. Writing is a medium of
communication.
Un medio es una agencia de hacer algo. La escritura es un medio de comunicación.
Ein Medium ist eine Agentur oder ein Mittel, etwas zu tun. Schreiben ist ein
Medium der Kommunikation.
Google Translate Chinese
Google Translate Arabic

Streams and Pipes © 1 April 2024 17 / 103

https://translate.google.com/#auto/zh-CN/A%20medium%20is%20an%20agency%20or%20means%20of%20doing%20something.%20Writing%20is%20a%20medium%20of%20communication.
https://translate.google.com/#auto/ar/A%20medium%20is%20an%20agency%20or%20means%20of%20doing%20something.%20Writing%20is%20a%20medium%20of%20communication.

In the process of communication, the medium is a channel or the means by which
information (the message) is transmitted between a speaker or writer (the sender)
and an audience (the receiver). In our case computation is expressed by the
programmer to the computer by means of programming languages based on text.

Streams and Pipes © 1 April 2024 18 / 103

Streams

A stream as realized in a programming language can hide many of the complicated
facets of data in addition to the mere hardware. I/O details like
buffering, echoing, byte-order, character encoding, compression, and encryption
might easily be hidden from the programmer by a stream interface. The
programmer may have access to these details via negociation with the OS, but
each programming language differs in how these facilities are exposed, if at all.

Streams and Pipes © 1 April 2024 19 / 103

Streams

Input and output is not always written and read by people. But for our purposes in
this class it is convenient to focus on streams of text as opposed to other kinds of
binary I/O data. Java makes I/O easy for text streams.

A text stream is a sequence of characters.

S t r e a m s ␣ a
r e ␣ s e q u e n
c e s

S t r
e a m

s
␣ a r e ␣ s e q u e n c e s

Streams and Pipes © 1 April 2024 20 / 103

Do not assume that one byte encodes one character, although this is true for
popular encodings like Latin-1, Mac-Roman, and others.

Streams and Pipes © 1 April 2024 21 / 103

Standard I/O

A programming language these days normally assumes that the operating system
provides three streams as a matter of course (and others streams upon request).
This so-called standard I/O is divided into the standard input stream (associated
with the keyboard by default), the standard output stream (associated with the
display screen by default), and the standard error stream (also associated with the
display screen by default).
One can completely ignore the existence of the standard error stream, if the
program has no use for it.
Additional streams (both input and output) can be created by the programmer.

Streams and Pipes © 1 April 2024 22 / 103

Standard I/O

program

standard in-
put stream

standard out-
put stream

standard er-
ror stream

Streams and Pipes © 1 April 2024 23 / 103

Standard I/O in Languages

In any language there is a certain amount of mysterious boilerplate code required
for taking advantage of the built-in standard I/O facilities. At first, one must find
the right template and use it. All programs need I/O, even though the language
mechanisms to enable the use of the I/O facilities are often less commonly used
and may not be introduced to beginners.

Streams and Pipes © 1 April 2024 24 / 103

The C Programming Language

include <stdio.h>

int main (void) {
int c;
for (;;) {

c=fgetc(stdin);
if (c==EOF) break;

}
fputc(’A’, stdout);
fputc(’X’, stderr);

}

Streams and Pipes © 1 April 2024 25 / 103

The C++ Programming Language

include <iostream >

using std::cout;
using std::cin;
using std::cerr;

int main (void) {
char c;
while (cin.eof()) {

cin >>c;
}
cout << ’A’;
cerr << ’X’;

}

Streams and Pipes © 1 April 2024 26 / 103

The Python Programming Language

from sys import stdin , stdout , stderr
while True:

ch = stdin.read (1)
if not ch: break # empty string = False

stdout.write ("A")
stderr.write ("X")

Streams and Pipes © 1 April 2024 27 / 103

The Python Programming Language

from sys import stdin , stdout

for line in stdin:
stdout.write (line) # write the line (with nl)
tk1 , tk2 = line.split()
n, k, l = [int(i) for i in line.split ()]

Streams and Pipes © 1 April 2024 28 / 103

The One-And-One-Half Loop (Python)
My recommendation because it has no code duplication. Avoid break, but this has
a single exit.
from sys import stdin , stdout

while True:
line = stdin.readline ()
if (line == "sentinel"): break
stdout.write (line)

from sys import stdin , stdout

line = stdin.readline () # " Priming the Pump"
while line != "sentinel":

stdout.write (line)
line = stdin.readline ()

Streams and Pipes © 1 April 2024 29 / 103

The One-And-One-Half Loop
Alternatives in Python

from sys import stdin , stdout
from itertools import takewhile

The ’takewhile ’ approach is hard to read and not " Pythonic ".
One liners are for "Code Golf" and not "real" code.
[However , expressions are better than statements ; see functional programming .]
for line in takewhile (lambda line: line [: -1]!="sentinel", stdin):

print (line)

from sys import stdin , stdout

An unpleasant idiom found in C code.
Walrus operator from PEP 527, 2018
while ((line:= stdin.readline ()) != "sentinel\n"):

print (line)

Streams and Pipes © 1 April 2024 30 / 103

Streams in Java

The concept of a stream is realized in Java with two classes

java.io.InputStream java.io.OutputStream

The standard I/O streams are defined in the Java class java.lang.System, and
they are:

InputStream in;
PrintStream out;
PrintStream err;

(A PrintStream is a special kind of OutputStream.)

Streams and Pipes © 1 April 2024 31 / 103

Java does not treat the two kinds of streams equally.
The output streams are prepared in advance for simple text output. The input
stream is not prepared in advance for simple text input and so the user usually has
some preparation to do in order to facilitate the use of the standard input stream.

Streams and Pipes © 1 April 2024 32 / 103

Inside a Java program the end-of-stream signal (aka end-of-file signal) from the
operating system can be detected as follows:
// Create a reader for the standard input stream
final InputStreamReader reader =

new InputStreamReader (System.in , "LATIN -1");

for (;;) {
// read one character
final int c = reader.read ();
// Exit loop on end -of -file
if (c == -1) break;

}

System.out.print (’A’);
System.err.print (’X’);

Java uses a particular kind of input stream called “readers” especially for text.
Java uses Unicode internally for all characters and will translate from any character
set, e.g, Latin-1, for you.
The Java method read() will return the integer -1 when the end of the input
stream is reached.

Streams and Pipes © 1 April 2024 33 / 103

For various reasons: convenience, efficiency, exception handling, etc; there is a
better approach to text I/O that should used. It is illustrated in the next program.

Streams and Pipes © 1 April 2024 34 / 103

Scanner Class
import java.util.Scanner;

public final class Scan {

public static void main (final String [] args) {

// System is in the package java.lang
// System .in is a java.io. InputStream

final Scanner stdin =
new Scanner (System.in);

}
}

This program interprets the standard input stream as text, i.e., of stream of
characters. Java uses the Unicode character encoding internally, but what
character encoding does it use to interpret the input stream? Greek characters,
Japanese characters?

Streams and Pipes © 1 April 2024 35 / 103

Scanner Class

Java interprets the characters in the default character set derived from the
underlying operating system. So the same program on the same input may behave
differently on different operating systems. Although unlikely, this is not the best
programming practice.
We promise in this class that all input will be encoded in the US ASCII character
set. (This is less likely to cause a problem if you are developing test cases on a
platform with a different character set.)
In Java it is easy to make a program assume the input is encoded in US ASCII, and
then the program will behave the same regardless of what platform it is executed
on.

Streams and Pipes © 1 April 2024 36 / 103

Scanner Class
To construct a scanner class which assumes the input is encoded n US ASCII,
provide the name of the character encoding as the second argument.
import java.util.Scanner;

public final class Scan {

public static void main (final String [] args) {

// System is in the package java.lang
// System .in is a java.io. InputStream

final Scanner stdin =
new Scanner (System.in , "US -ASCII");

}
}

Streams and Pipes © 1 April 2024 37 / 103

Scanner Class
import java.util.Scanner;
import static java.nio.charset.StandardCharsets.US_ASCII;

public final class Scan {

public static void main (final String [] args) {

// System is in the package java.lang
// System .in is a java.io. InputStream

final Scanner stdin =
new Scanner (System.in , US_ASCII);

}
}

Slightly better as we get static checking of the name of the character set. Though
we wish to avoid import static.

Streams and Pipes © 1 April 2024 38 / 103

Scanner Class
import java.util.Scanner;
import static java.nio.charset.StandardCharsets.US_ASCII;

public final class Scan {

public static void main (final String [] args) {
try (final Scanner stdin =

new Scanner (System.in , US_ASCII)) {
// Use the scanner here; when we reach the end
// of the statement , the resources are returned .

}
}

}

It is good practice to release all resources (like the input stream) after you are done
with it. But in this course, the programs will end soon anyway, so there is not
much point to it.

Streams and Pipes © 1 April 2024 39 / 103

import java.util.Scanner;

public final class CopyText {

public static void main (final String [] args) {

// System .in is a java.io. InputStream
// System .out is a java.io. PrintStream

final Scanner stdin =
new Scanner(System.in , "US -ASCII");

// Read standard input stream line by line
while (stdin.hasNextLine ()) {

final String line = stdin.nextLine ();
System.out.println (line);

}
}

}

Streams and Pipes © 1 April 2024 40 / 103

(This program does not buffer the standard input; for large input data,
performance improvement can be obtained by buffering, i.e., using the Java class
BufferedInputStream).

Avoid the method String.split() and the class StringTokenizer, when using
the class Scanner, as Scanner does more and it is easier.

Streams and Pipes © 1 April 2024 41 / 103

By default the scanner class breaks the input into tokens separated by white space.

Streams and Pipes © 1 April 2024 42 / 103

Occasionally, one needs something else like entries separated by commas (and new
lines).
import java.util.Scanner;

public class CommaDelimited {
// Comma , or Unix line or DOS line terminator
private final static String DELIM =

" ,|\\n|\\n\\r";
public static void main (String [] args) {

final Scanner stdin =
new Scanner(System.in , "US -ASCII").

useDelimiter(DELIM);

// Read comma separated tokens in stdin
while (stdin.hasNext ()) {

final String entry = stdin.next ();
System.out.println (entry);

}
}

}
Streams and Pipes © 1 April 2024 43 / 103

Never mislead the reader or yourself with your choice of names for variables. For
example, keyboard is a particularly bad choice to name a scanner associated with
the standard input stream. The program has no control on where the input on the
standard input stream comes from. Just calling the scanner keyboard does make
the input come the keyboard.
final Scanner stdin =

new Scanner(System.in ,"US -ASCII").
useDelimiter(DELIM);

NB. Chaining methods in this way is called method cascading in object-oriented
languages. The method useDelimiter() returns this rather than be a less
flexible void method.

Streams and Pipes © 1 April 2024 44 / 103

File Redirection

You can control where the operating system gets the characters it puts in the input
stream and where it puts the characters from the output stream. This is called file
redirection. For example, on the Unix and Windows command line you can request
that the standard input come from a file.

java ClassName < data

Now the characters found in the standard input come from the file named data.
(The first version of Unix in 1970 already had file redirection for two I/O streams.)

Streams and Pipes © 1 April 2024 45 / 103

File Redirection

The standard output is associated with the computer display by default, but can be
associated with the file as in

java ClassName > output

Now the output is collected in the file named output. Since keystrokes are echoed
on the display, it is sometimes hard for the user to distinguish which characters on
the display correspond to the standard input and which characters to the standard
output. From the point of view of the program no such confusion exists.

Streams and Pipes © 1 April 2024 46 / 103

File Redirection

Or, both.

java ClassName < input > output

Test this way if you really want to see what is going on.

Streams and Pipes © 1 April 2024 47 / 103

Eclipse

In additions to taking over the development of Java programs, Eclipse takes over
the responsibility of the command shell in communicating to the operating system
the command to execute, the arguments to the program, the environment of the
process, the redirection of standard I/O.
Regrettable, Eclipse allows for the redirection of only the standard output, not the
standard error nor the standard input. (Cutting and pasting in the console is a
crude work-around.)

Streams and Pipes © 1 April 2024 49 / 103

Command Line/Shell

The user asks the operating system to run a program. There are numerous
variations possible when a user runs a program. Often the operating system
provides a command line interpreter (a program!) which the user can use to direct
the execution by the operating system of applications on a computer.

Streams and Pipes © 1 April 2024 51 / 103

Redirection in Bash

Your command line shell may have lots of features.

< filename # redirect stdin from file
1> filename # redirect stdout to file
1>> filename # redirect and append stdout to file
2> filename
2>> filename
&> filename # redirect stdout and stderr to file
&>> filename

2>&1 # redirect stderr into stdout

Streams and Pipes © 1 April 2024 52 / 103

When the standard input comes from the keyboard a signal of some kind is needed
to indicate from the interactive user when the end-of-file is reached because the
length of the stream cannot be known in advance. This signal is understood by the
operating system which then passes it to the program. Different operating systems
provide different mechanisms for doing this. In Unix the usual signal is typing
control-D (in Windows, control-Z) on a line by itself.

Streams and Pipes © 1 April 2024 53 / 103

In Unix the user can change the keystrokes used to communicate with the
operating system.
broadside> stty -a
speed 38400 baud; rows 38; columns 80;
intr = ^C; quit = ^\; erase = ^H; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; start = ^Q; stop = ^S; susp = ^Z; dsusp = ^Y; rprnt = ^R;
werase = ^W; lnext = ^V; flush = ^O; status = ^T; min = 1; time = 0;
parenb -parodd cs8 hupcl -cstopb cread -clocal -crtscts
-ignbrk brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-ixany -imaxbel
opost -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -tostop -echoprt echoctl
echoke

Inter-process communication in Unix is done through signals. And the shell (a
process) can communicate to the terminal driver (a process) which can modify a
data structure indicating the stream has run dry. In operating systems class one
learns more about signals.

Streams and Pipes © 1 April 2024 54 / 103

Thou shalt not kill
your program.

Streams and Pipes © 1 April 2024 55 / 103

Console

Looking at the console (display screen) can be confusing

maelstrom> java Confusing
Characters printed b

Echoed in

y println() are seen

put characters

Output sent to the

on the console.

also appear

on the console.

standard error stream appears

on the console as well.

Three parallel processes may simultaneously be writing on the console.

Streams and Pipes © 1 April 2024 59 / 103

Console

Looking at the console (display screen) can be confusing

maelstrom> java Confusing
Characters printed b Echoed in

y println() are seen

put characters

Output sent to the

on the console.

also appear

on the console.

standard error stream appears

on the console as well.

Three parallel processes may simultaneously be writing on the console.

Streams and Pipes © 1 April 2024 60 / 103

Console

Looking at the console (display screen) can be confusing

maelstrom> java Confusing
Characters printed b Echoed in y println() are seen

put characters

Output sent to the

on the console.

also appear

on the console.

standard error stream appears

on the console as well.

Three parallel processes may simultaneously be writing on the console.

Streams and Pipes © 1 April 2024 61 / 103

Console

Looking at the console (display screen) can be confusing

maelstrom> java Confusing
Characters printed b Echoed in y println() are seen

put characters

Output sent to the

on the console.

also appear

on the console.

standard error stream appears

on the console as well.

Three parallel processes may simultaneously be writing on the console.

Streams and Pipes © 1 April 2024 62 / 103

Console

Looking at the console (display screen) can be confusing

maelstrom> java Confusing
Characters printed b Echoed in y println() are seen

put characters Output sent to the

on the console.

also appear

on the console.

standard error stream appears

on the console as well.

Three parallel processes may simultaneously be writing on the console.

Streams and Pipes © 1 April 2024 63 / 103

Console

Looking at the console (display screen) can be confusing

maelstrom> java Confusing
Characters printed b Echoed in y println() are seen

put characters Output sent to the

on the console.

also appear

on the console.

standard error stream appears

on the console as well.

Three parallel processes may simultaneously be writing on the console.

Streams and Pipes © 1 April 2024 64 / 103

Console

Looking at the console (display screen) can be confusing

maelstrom> java Confusing
Characters printed b Echoed in y println() are seen

put characters Output sent to the

on the console. also appear

on the console.

standard error stream appears

on the console as well.

Three parallel processes may simultaneously be writing on the console.

Streams and Pipes © 1 April 2024 65 / 103

Console

Looking at the console (display screen) can be confusing

maelstrom> java Confusing
Characters printed b Echoed in y println() are seen

put characters Output sent to the

on the console. also appear

on the console.

standard error stream appears

on the console as well.

Three parallel processes may simultaneously be writing on the console.

Streams and Pipes © 1 April 2024 66 / 103

Console

Looking at the console (display screen) can be confusing

maelstrom> java Confusing
Characters printed b Echoed in y println() are seen

put characters Output sent to the

on the console. also appear

on the console. standard error stream appears

on the console as well.

Three parallel processes may simultaneously be writing on the console.

Streams and Pipes © 1 April 2024 67 / 103

Programs that don’t care what the user console looks like are simpler to write. It is
easier to specify the contents of streams without reference to the other streams.

standard output standard input standard error
Characters printed b Echoed in Output sent to the

y println() are seen put characters standard error

on the console. also appear stream appears on

on the console. the console as well.

Streams and Pipes © 1 April 2024 68 / 103

An interactive program may be hard to write and requires understanding exactly
how the OS implements echoing, buffering, and flushing in order to achieve a
specific temporal order.

Streams and Pipes © 1 April 2024 69 / 103

For this reason I personally favor project descriptions that specify the contents of
the input stream and specify the contents of the output stream independently. The
programmer can choose to read and to write when it is most convenient or efficient.
I avoid assigning interactive programs and programs that prompt for input because
these programs tend to require tedious detail and specification of time-dependent
behavior. However, sometimes such programs are more convenient for applications
used by people. Many programs do not require an interface for humans.
Writing programs that are easy to use is important. This is a topic studied in more
detail in the field of human-computer interaction and in classes on building
graphical user-interfaces. Here we focus on basic programming and keep things
simple.

Streams and Pipes © 1 April 2024 70 / 103

Thou shalt not prompt the user.

Because this messes up the output stream. (There is no third output stream for
messages to the user, unless that is considered an error.) Labeling the output is
polite for human readers. But, spontaneous deviation from the requirements makes
a program fail all test cases!

Streams and Pipes © 1 April 2024 71 / 103

This is really a corollary of . . .

Thou shalt care about
every output Ěaracter.

Streams and Pipes © 1 April 2024 72 / 103

Creating Additional Streams

It is easy for the Java program to create input and output streams associated with
files in the computer’s file system or with a network connection to another
program. (There is practically no use for creating additional streams associated
with the keyboard or display device.)

The necessary classes from the Java package java.io and are:
FileReader (String file_name)
FileWriter (String file_name , boolean append)

Streams and Pipes © 1 April 2024 73 / 103

String file_name1 , file_name2;

try (
final BufferedReader reader = new BufferedReader (

new FileReader(file_name1));
final PrintWriter writer = new PrintWriter (

new BufferedWriter (
new FileWriter(file_name2 , false)));

) {
while (true) {

final String line = reader.readLine ();
if (line==null) break;
writer.println (line);

}
}

Streams and Pipes © 1 April 2024 74 / 103

try {
String file_name1 , file_name2;
BufferedReader reader = new BufferedReader (

new FileReader(file_name1));
PrintWriter writer = new PrintWriter (

new BufferedWriter (
new FileWriter(file_name2 , false)));

while (true) {
final String line = reader.readLine ();
if (line==null) break;
writer.println (line);

}
reader.close ();
writer.close ();

} catch (IOException ex) {
System.err.println(ex);

}

Streams and Pipes © 1 April 2024 75 / 103

Thou shalt not kill
your program.

Thou shalt not prompt the user.

Streams and Pipes © 1 April 2024 76 / 103

Also, no input validation is required (unless specified).

In Java (and in other modern languages):
• no buffer overflows, stack smashing;
• no dangling pointers;
• no information or memory disclosure;
• no crashes or core dumps.

Nonetheless, . . .

Streams and Pipes © 1 April 2024 77 / 103

Thou shalt
program defensively.

Strong typing, the assert statement, and clear communication of preconditions
are a good ideas.

Streams and Pipes © 1 April 2024 78 / 103

Pipes

It is not possible to appreciate the value of the stream abstraction without
understanding the notion of a pipe.

Streams and Pipes © 1 April 2024 79 / 103

Pipes

One of the most widely admired contributions of Unix to the culture
of operating systems and command languages is the pipe, as used in a
pipeline of commands.

Dennis M. Ritchie

The operating system can connect the output stream of one program with the input
stream of another program; these connections are called pipes. Small, well-designed
programs can be fit together in many different ways to accomplish complex tasks.

Streams and Pipes © 1 April 2024 80 / 103

Streams and Pipes © 1 April 2024 81 / 103

Pipes

program1

standard
input stream

standard
output stream

Streams and Pipes © 1 April 2024 82 / 103

Pipes

program2
standard

input stream

standard
output stream

Streams and Pipes © 1 April 2024 83 / 103

Pipes

program1 program2

standard
input stream

standard
output stream

Streams and Pipes © 1 April 2024 84 / 103

System Design

Composing programming blocks to get new programming blocks is important
to building large systems.

Don’t write one monolithic program to solve one problem. Well-designed programs
can work together to solve many problems without constantly writing and
re-writing programs.

Monolithic programs are sometimes complex, unmodifiable, unmaintainable, and
buggy.

Success in programming can be measured by all the programs one does not have to
write.

Streams and Pipes © 1 April 2024 85 / 103

This design lesson is just as important in programming-in-the-small as in
programming-in-the-large.

This design lesson is important in all programming millieu: one-off scripting,
system architecture, and so on.

Streams and Pipes © 1 April 2024 86 / 103

Big problems are solved by breaking them down into small problems. Compiler:
preprocess, translate, code generation, assembly, link.

Graphics pipeline or rendering pipeline: transformation, clipping, texturing.
Moreover, multiple big problems can be solved by combining well-design
subproblems. Good design demands finding the best subproblems.

Streams and Pipes © 1 April 2024 87 / 103

Example

find . -name ’*.tex’ | xargs grep -w -e ’title’

Find the lines containing the word title in all the TEX files.

Streams and Pipes © 1 April 2024 88 / 103

Pipes

One of the most valuable tools every written: grep release in 1974 (49 years
ago).

Streams and Pipes © 1 April 2024 89 / 103

https://en.wikipedia.org/wiki/Grep

Pipes

sed -e ’s#//.*$##’ < Program.java | \
indent --tab=3 | nl > Listing.txt

Take a Java program, strip the comments, indent, and number the lines.

Streams and Pipes © 1 April 2024 90 / 103

Unix Core Utilities

Very common programs used as building blocks: cat, awk, sed, grep, sort, tr,
etc.
Other useful programs: wget, od, nl, cut, paste, find, xargs, tee, etc.

A Unix programmer is one that accomplishes thousands of tasks without writing a
single line of code.

Streams and Pipes © 1 April 2024 91 / 103

find is useful and has many options:

find . -name ’*.tex’

find . -name ’project* -type f -ls

find / -name ’file’ -type f

find local /tmp -name ’dir’ -type d -print

find / -name ’file’ \& grep -v "Permission denied"

find . \(-name ’*.jsp’ -o -name ’*.java’ \) -type f -ls

find /var/ftp/mp2 -name ’*.pm3’ -type f -exec chmod 644 {} \;

Streams and Pipes © 1 April 2024 92 / 103

xargs

find and xargs are useful and have many options:

find . -name ’*foo*’ | xargs grep bar

grep bar ‘find . -name ’*foo*’‘

find . -name ’*~’ -print0 | xargs -0 rm

find . -name ’*foo*’ -print0 | xargs -O -I files mv files /tmp/trash

Streams and Pipes © 1 April 2024 93 / 103

A Task: Histogram

1 identify words
1 delete non-letters
2 ignore case
3 put each word on one line.

1 separate words into lines by white space
2 discard blank lines

2 count unique words
1 group same words together
2 count of each group

3 keep data
1 store histogram in file
2 give a count of unique words

Streams and Pipes © 1 April 2024 94 / 103

Pipe Chain

Nice snake chain, man!

Streams and Pipes © 1 April 2024 95 / 103

Pipes: Another Example

tr -d ’?"\!:,*();><’ < text | \
tr ’A-Z’ ’a-z’ | \

tr ’ \t/.’ ’\n’ | \
sed ’/^$/d’ | \

sort | uniq -c | \
sort -rn | \
tee histogram | wc -l

Take a file and make a histogram of the words.

Streams and Pipes © 1 April 2024 96 / 103

Pipes/Data Preparation
wget -O - http://www.ll.mit.edu/outside.tcpdump.gz | \
gzip -d | \
tcpdump -q -X -r - ’tcp and ip[0]&0x0f<6’ | \
grep -v -e ’^0x..[2-9a-f]’ | \
gawk ’/^..:..:../{T=substr($0,0,15)} ...’ | \
sed -n -e 50000,52000p | \
tr -d " " | tr "-" " " | \
nl -w 3 "-s " | \
bzip -9 > data.bz

1 obtain the data over WWW
2 uncompress the gzip file
3 read tcpdump file
4 exclude some packet data
5 format data on one line
6 select just 2,000 packets
7 modify spacing
8 number the lines
9 compress the results
Streams and Pipes © 1 April 2024 97 / 103

Streams

1 CopyText.java

2 CopyTextFile.java

3 GzipTextFile.java

Try

java CopyText < input.txt | java CopyText > output.txt

Streams and Pipes © 1 April 2024 98 / 103

http://www.cs.fit.edu/~ryan/java/programs/io/CopyText.java
http://www.cs.fit.edu/~ryan/java/programs/io/CopyTextFile.java
http://www.cs.fit.edu/~ryan/java/programs/io/GzipTextFile.java

Example: Page Rank
Start with a graph . . .

Streams and Pipes © 1 April 2024 99 / 103

Example: Page Rank

> cat wiki2.txt
7
1 2 1 3 1 4 1 5 1 7
2 1
3 1 3 2
4 2 4 3 4 5
5 1 5 3 5 4 5 6
6 1 6 5
7 5

Streams and Pipes © 1 April 2024 100 / 103

Example: Page Rank

Add a program to create a probability, transition matrix (Markov matrix) with leap
probability 0.825.

> java Transition 0.825 < wiki2.txt
7 7
0.025 0.190 0.190 0.190 0.190 0.025 0.190
0.850 0.025 0.025 0.025 0.025 0.025 0.025
0.438 0.438 0.025 0.025 0.025 0.025 0.025
0.025 0.300 0.300 0.025 0.300 0.025 0.025
0.231 0.025 0.231 0.231 0.025 0.231 0.025
0.438 0.025 0.025 0.025 0.438 0.025 0.025
0.025 0.025 0.025 0.025 0.850 0.025 0.025

Streams and Pipes © 1 April 2024 101 / 103

Example: Page Rank

Add a program to compute the state-stead vector (the page ranks).

> java Transition 0.825 < wiki1.txt | java Markov 0.277 0.158 0.139
0.109 0.185 0.063 0.071

Streams and Pipes © 1 April 2024 102 / 103

Endian
In Gulliver’s Travels by Jonathan Swift published in 1726,
two factions within Lilliputian society are at war over the
way to break eggs—at the big end, or the little end of
the egg. The Emperor commanded all his subjects to
break the smaller end, but resistance by traditionalists
and subsequent suppression by the government resulted
in civil unrest. Thus, Swift satirizes the suppression of
Catholics in his day.

The Emperor . . . published an Edict, com-
manding all his Subjects, upon great Penaltys,
to break the smaller End of their Eggs. The Peo-
ple so highly resented this Law, that our Historys
tell us there have been six Rebellions raised on
that account; wherein one Emperor lost his Life,
and another his Crown.

Streams and Pipes © 1 April 2024 103 / 103

