
Organization of Classes

Java classes can be arranged in a large program in different ways. Classes can be in
packages, local to methods, or members of other classes. This type of program and
class organization is an important part of developing a large program.
There is another important, but completely different, way of organizing classes. It
is possible to organize classes by the behavior of their instances and to take
advantage of common behavior in objects in a program. By organizing classes in
the class hierarchy one can increase flexibility and code reuse.

Organization of Classes Kinds of Organization © 3 April 2024 1 / 109

Kinds of Organization

Classes can be organized by their placement in files.
1 Classes are found inside other classes:

• As members (inside the {} of another class), usually static, and
• Inside a method (of a class), sometimes anonymously.

2 Classes can be grouped (organized) in directories called packages.
3 Java modules (introduced in Java 9) provides a level of aggregation of classes

above packages. Modules support stronger encapsulation.

Organization of Classes Kinds of Organization © 3 April 2024 2 / 109

Package

Definition
A package in Java is an ad hoc collection of classes in a directory/folder of the
operating system allowing certain, not quite public, access to members.

A class is identified as belonging to a package, by a package declaration at the
beginning of the class source file:
package dir1.dir2;

Also the source file must be located in the directory.

dir1/dir2 # Unix
dir1\dir2 # Windows

Organization of Classes Kinds of Organization © 3 April 2024 3 / 109

Module

A Java module can specify which of the Java packages it contains that should be
visible to other Java modules which uses this module. A Java module must also
specify which other Java modules is requires to do its job.
Large libraries, like the entire Java platform APIs, can be separated into pieces and
only the required pieces needed to be deployed. Missing modules can be reported
at application start-up time and not, like classes, until the application actually tried
to use it.

Organization of Classes Kinds of Organization © 3 April 2024 4 / 109

Some Modules

$ java –list-modules
java.base@16.0.1
java.compiler@16.0.1
java.instrument@16.0.1
java.management@16.0.1
java.naming@16.0.1
java.net.http@16.0.1
java.rmi@16.0.1
java.scripting@16.0.1
java.se@16.0.1
java.security.jgss@16.0.1
java.smartcardio@16.0.1
java.sql@16.0.1

Organization of Classes Kinds of Organization © 3 April 2024 5 / 109

Subclass Hierarchy

Our main topic here is the organization of classes in the Java subclass hierarchy.

Organization of Classes Kinds of Organization © 3 April 2024 6 / 109

Organization of Classes

All Java classes are organized by their structure in a hierarchy or tree with the class
Object (cf the API) as the ancestor or root of all classes

class A

class B

more general

more specialized

is a

Organization of Classes Subclass Hierarchy © 3 April 2024 7 / 109

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Organization of Classes

The relationship between two classes is thought of as being

“is a”
— as in a pencil is a kind of writing instrument.
The wider more general concept (writing instrument) contains all of the more
specialized items (all pencils) plus potentially a lot more (fountain pens, chalk, and
so on).

Organization of Classes Subclass Hierarchy © 3 April 2024 8 / 109

Organization of Classes

class A

class B

class C

more general

more specialized

is a

is a

Any number of levels in the hierarchy. And no cycles.

Organization of Classes Subclass Hierarchy © 3 April 2024 9 / 109

Organization of Classes

class A

class B class C

class D class E

more general

more specialized

Each class has one superclass; but any number of subclasses can have the same
superclass.

Organization of Classes Subclass Hierarchy © 3 April 2024 10 / 109

Example: Biological Classification

Animalia

Insecta Mammalia

Rodentia Primates

Lemuridae Hominidae

Lepidoptera

Kingdom

Class

Order

Family

Organization of Classes Subclass Hierarchy © 3 April 2024 11 / 109

Hierarchical Organization

person

staff student

undergrad graduate

faculty

Organization of Classes Subclass Hierarchy © 3 April 2024 12 / 109

Hierarchical Organization

Indo-European

Indo-Iranian

Indic

Hindi Bengali

Iranian

Persian Pasto

Italic

Spanish French

Balto-Slavic

Slavic

Russian

Organization of Classes Subclass Hierarchy © 3 April 2024 13 / 109

Example: Hierarchical Organization from Java API

JComponent

AbstractButton

JButton

JLabel JTextComponent

JTextArea JTextField

Organization of Classes Subclass Hierarchy © 3 April 2024 14 / 109

Example: Hierarchical Organization

Object

Number

BigDecimal Integer Float

Faculty

Organization of Classes Subclass Hierarchy © 3 April 2024 15 / 109

Hierarchical Organization

Point

Rectangle Circle

Organization of Classes Subclass Hierarchy © 3 April 2024 16 / 109

Class Hierarchy

The Java class hierarchy is a tree. A tree is a kind of structure with a root and the
other elements are organized so that each element has one branch connecting it to
the root.

1 Every class descends from the class Object (the root of the tree).
2 Every class has exactly one superclass (except the class Object).
3 No class can descend directly or indirectly from itself.

Organization of Classes Subclass Hierarchy © 3 April 2024 17 / 109

Nominal Subtyping

In Java, the relation or organization of classes is created explicitly by the
programmer.

class X extends Y {
}

The class X is declared a subclass of the class Y using the extends keyword. The
extends clause is optional and if omitted then a class is declared to be a direct
subclass of Object.

It is calld nominal subtyping when the position in the class hierarchy is determined
explicitly by the programmer using the names, like the edges of a graph.

Organization of Classes Subclass Hierarchy © 3 April 2024 18 / 109

Hierarchical Organization

class IndoEuropean { // ...
class IndoIranian extends IndoEuropean { // ...
class Indic extends IndoIranian { // ...
class Hindi extends Indic { // ...
class Bengali extends Indic { // ...
class Iranian extends IndoIranian { // ...
class Persian extends Iranian { // ...
class Pasto extends Iranian { // ...
class Italic extends IndoEuropean { // ...
class Spanish extends Italic { // ...
class French extends Italic { // ...
class BaltoSlavic extends IndoEuropean { // ...
class Slavic extends BaltoSlavic { // ...
class Russian extends Slavic { // ...

Organization of Classes Subclass Hierarchy © 3 April 2024 19 / 109

No Multiple Superclasses

// Not syntactically correct !
class X extends Y, Z {
}

This is not allowed because of the conflicts it causes–like having two bosses that
require you to do two different things.

Organization of Classes Subclass Hierarchy © 3 April 2024 20 / 109

No Cyclic Structure

// Not semantically correct !
class X extends Y {
}

class Y extends X {
}

Organization of Classes Subclass Hierarchy © 3 April 2024 21 / 109

Hierarchical Organization

Sometimes the problem domain is naturally organized in a tree-like hierarchy.
Sometimes the problem domain is not naturally organized like that.
Note that each class forms an interface, a suite of facilities or methods.
Interface. In general, an interface is the boundary between distinct systems.
Specifically, the specification or protocol governing their interaction.
Note that Java uses the keyword interface and has a construct called an
interface.

Organization of Classes Subclass Hierarchy © 3 April 2024 22 / 109

Subclass Polymorphism

Any object can be viewed as being a kind of Object. (Since Object is at the top
of the hierarchy.) This means it has the collection of methods or interface as does
any Object.

Organization of Classes Subclass Hierarchy © 3 April 2024 23 / 109

java.lang.Object Is A Special Class
The Top of the Hierarchy

class Object {
public String toString ()
public boolean equals (Object obj)
public int hashCode () // encoding as integer
protected Object clone () // copy
public Class <?> getClass () // meta information
public void notify () // synchronization of threads
public void wait () // synchronization of threads

}

Organization of Classes Subclass Hierarchy © 3 April 2024 24 / 109

java.utils.Objects

class Objects {
static boolean equals (Object a, Object b)
static boolean deepEquals (Object a, Object b)
static in hash (Object ... values)
static boolean isNull (Object)
static boolean nonNull (Object)
static <T> T requireNonNull (T obj)
static <T> T requireNonNullElse (T obj , T default)

}

Organization of Classes Subclass Hierarchy © 3 April 2024 25 / 109

java.lang.Class
Reflection

These are mostly instant methods.
class Class <T> {

Construct <? >[] getDeclaredConstructors ()
Field [] getDeclaredFields ()
Method [] getDeclaredMethods ()

}

Other classes exist for referning to Java’s constructors, field, methods and so on.
Also in class Class the interesting static method:

static Class <?> forName (String className)

Organization of Classes Subclass Hierarchy © 3 April 2024 26 / 109

Polymorphism

What is the advantage of organizing classes in a tree structure?

The answer is flexibility which we call subclass polymorphism. (Polymorphism is a
word meaning many forms.) An object or instance of a class can be viewed as
having more than one type (form).

Organization of Classes Substitution © 3 April 2024 27 / 109

Polymorphism

What is the advantage of organizing classes in a tree structure?

The answer is flexibility which we call subclass polymorphism. (Polymorphism is a
word meaning many forms.) An object or instance of a class can be viewed as
having more than one type (form).

Organization of Classes Substitution © 3 April 2024 28 / 109

For example, assignment

Object obj;
Number num;

obj = new String (); // string "is -a" object
obj = new Integer (4);
obj = new Float (4.0f);
obj = new ArrayList <String >(); // ArrayList "is -a" object
obj = new int [4]; // int array "is -a" object

num = new Integer (4);
num = new Float (4.0f); // Float "is -a" Number
num = new BigDecimal (4.0d);
num = new Double (7.0d); // Double "is -a" Number
num = 4.0d; // double is sorta a Number (auto - boxing)

Organization of Classes Substitution © 3 April 2024 29 / 109

Polymorphism

Number num;

num = new String (); // a string is NOT a Number
num = new ArrayList <String >(); // an ArrayList is NOT a Number
num = new int [4]; // an int array is NOT a Number
num = new Object (); // an object is NOT a Number

Compile-time, semantic error

incompatible types

Organization of Classes Substitution © 3 April 2024 30 / 109

Subclass Polymorphism

Substitution Principle. A variable of a given type may be assigned a value of any
subtype of that type, and a method with a parameter of a given type may be
invoked with an argument of any subtype of that type.

Also called Liskov’s substitution principle after 2008 Turing Award winner Barbara
Liskov.

Organization of Classes Substitution © 3 April 2024 31 / 109

Organization of Classes Substitution © 3 April 2024 32 / 109

Barbara Liskov (–)

When she was still a young professor at the Massachusetts Institute of Technology,
she led the team that created the first programming language that did not rely on
goto statements. The language, CLU (short for “cluster”), relied on an approach
she invented — data abstraction — that organized code into modules. Every
important programming language used today, including Java, C++ and C#, is a
descendant of CLU.
In 2008, Liskov won the Turing Award.

Organization of Classes Substitution © 3 April 2024 33 / 109

Subclass Polymorphism

The flexibility only works one way.
Object o=new Integer (4); // OK
Integer i=new Object (); // semantic error: incompatible types

And remember, primitive types are not technically classes. Yet:
Object o = 4; // autoboxing
Integer i = 4; // autoboxing
Number n = 4; // autoboxing
int i = new Integer (4); // auto - unboxing
int i = new Object (); // compilation error

Organization of Classes Substitution © 3 April 2024 34 / 109

Another Example

An instance of a subclass “is-a” instance of the superclass.
class Main {

public static void Main (String [] args) {
IndoEuropean [] languages = new IndoEuropean [100];
languages [0] = new Hindi ();
languages [1] = new Persian ();
languages [2] = new Spanish ();
languages [3] = new French ();
languages [4] = new Russian ();

}
}

Organization of Classes Substitution © 3 April 2024 35 / 109

Another Example

import java.math. BigDecimal ;

public class NumberMain {

public static long add (Number n1 , Number n2) {
return n1. longValue () + n2. longValue ();

}

public static void main (String [] args) {
// BigDecimal and Long are each a Number .
System .out. println (add (

new BigDecimal ("32.1"), 34L));
}

}

Organization of Classes Substitution © 3 April 2024 36 / 109

Vocabulary

extend. To make a new class that inherits the members of an existing class.

superclass. The parent or base class. “Super” in the sense of “above” not “more.”

subclass. The child or derived class that inherits or extends a superclass. It
represents a sub-part of the universe of things that make up the superclass.

inheritance. A subclass implicitly has the member fields and methods of a class by
virtue of extending that class.

Important terms coming up: overriding, and dynamic dispatch.

Organization of Classes Substitution © 3 April 2024 37 / 109

Extending

How do you extend another class in Java?
class SubClass extends SuperClass {

// additional fields ...
// constructors ...
// additional methods ...

}

If the extends clause is omitted from a class, then it is as if you have extended the
class Object.

Organization of Classes Substitution © 3 April 2024 38 / 109

Polymorphism

Conundrum: how can one class also be another class at the same time?
Answer: the interface of the superclass must also be included in the interface of
the subclass. Every thing the superclass can do, the subclass can do as well. If the
superclass has a member field x, then the subclass must also have member field x.
If the superclass has a method int getX(), then the subclass must also have
method int getX().
Therefore: the subclass inherits all the member methods and fields of the
superclass.
Constructors are not inherited.

Organization of Classes Substitution © 3 April 2024 39 / 109

Inheriting Member Fields

An instance of a subclass “is-a” instance of the superclass.
class SuperClass { int x; }
class SubClass extends SuperClass { }

class Main {
public static void main (String [] args) {

SuperClass [] a = new SuperClass [2];
a[0] = new SuperClass ();
a[1] = new SubClass ();
for (SuperClass c: a) {

System .out. println (c.x);
}

}
}

Organization of Classes Substitution © 3 April 2024 40 / 109

Inheriting Member Methods

An instance of a subclass “is-a” instance of the superclass.
class Dog { void bark () { System .out. println ("bark"); }
class Poodle extends Dog { }

class Main {
public static void main (String [] args) {

Dog [] dogs = new Dog [2];
dogs [0] = new Dog ();
dogs [1] = new Poodle ();
for (Dog d: dogs) {

d.bark ();
}

}
}

Organization of Classes Substitution © 3 April 2024 41 / 109

Extending
Since,
class SubClass {

// ...
}

is the same as:
class SubClass extends Object {

// ...
}

It follows, that every class has:
public String toString ();
public boolean equals (Object obj);
protected Object clone (); // copy
public Class <?> getClass (); // meta information
public void notify (); // synchronization
public void wait (); // synchronization

Organization of Classes Substitution © 3 April 2024 42 / 109

Inheriting the toString() method

Every object has a toString() method!
class SuperC { int x; }
class SubClass extends SuperC { }
class Main {

public static void main (String [] args) {
Object []a={ new Object (), new SuperC (), new SubClass ()};
for (int i=0;i<a. length ;i++) {

// Unnecessary call to ’toString ()’
System .out. println (a[i]. toString ());

}
}

}

Organization of Classes Substitution © 3 April 2024 43 / 109

Overloaded print()

The definition of print and println make an explicit call to toString()
unnecessary. The call to toString() and the conversion from the primitive data
types is by overloading the definition of print() and println().

Organization of Classes Substitution © 3 April 2024 44 / 109

Overloaded print()

The implementation of the java.io.PrintStream class:
void print (Object o) {print(o. toString ());}
void print (boolean b){ print(String . valueOf (b));}
void print (char c) {print(String . valueOf (c));}
void print (int i) {print(String . valueOf (i));}
void print (long l) {print(String . valueOf (l));}
void print (float f) {print(String . valueOf (f));}
void print (double d) {print(String . valueOf (d));}

void print (String s) {
// Do the real print work

}

Organization of Classes Substitution © 3 April 2024 45 / 109

Overloaded print()

Ironically, printing null results in a compile-time error, because there are two
choices.
System .out.print (null); // ambiguous

Each prints the same thing: null.
System .out.print ((Object)null);
System .out.print ((String)null);

Organization of Classes Substitution © 3 April 2024 46 / 109

Inheriting the toString() method
Every object has a toString() method!
class SuperC { int x; }
class SubClass extends SuperC { }
class Main {

public static void main (String [] args) {
Object []a={ new Object (), new SuperC (), new SubClass ()};
for (int i=0;i<a. length ;i++) {

System .out. println (a[i]);
}

}
}

By the way, the output is not very specific:

java.lang.Object@16930e2
SuperC@108786b
SubClass@119c082

More on that later.
Organization of Classes Substitution © 3 April 2024 47 / 109

Shapes Example

Suppose we want write a program to compute with points, circles, and rectangles.
There are different ways to define the data structure of each of the shapes. One
possible framework of definitions which may prove useful is to think of shapes as
having a reference point.

Organization of Classes Substitution © 3 April 2024 48 / 109

Fields are Inherited

class Point {
int x,y;

}

class Circle extends Point {
int radius ;

}

class Main {
public static void Main (String [] args) {

Circle c = new Circle ();
System .out. printf ("%d,%d,%d%n",

c.x, c.y, c. radius);
}

}

Organization of Classes Substitution © 3 April 2024 49 / 109

Methods are Inherited

class Point {
int x, y;
void move (int dx , int dy) { x += dx; y += dy; }

}
class Circle extends Point {

int radius ;
}
class Main {

public static void Main (String [] args) {
Circle c = new Circle ();
c.move (2 ,3); // Circle inherited ’move ()’
System .out. printf ("%d,%d,%d%n", c.x, c.y, c. radius);

}
}

Organization of Classes Substitution © 3 April 2024 50 / 109

Fields Can Be Hidden

class SuperClass {
int x, y;

}

class SubClass extends SuperClass {
int x, y;

}

The class SubClass has two fields named x and two fields named y.
This is allowed because the author of the subclass should not have to know what
names the author of the superclass might have picked. Forbidding this would
enable the subclass author to “peek” inside the superclass.

Organization of Classes Substitution © 3 April 2024 51 / 109

class SuperClass {
int x=2;

}

class SubClass extends SuperClass {
int x=super .x+1;

}

class SubSubClass extends SubClass {
// Can access beyond super class
int x=((SuperClass)this).x+3;

}

If the integer x in the class SuperClass is declared private, then access to it
from a subclass causes a compile-time, semantic error.

Organization of Classes Substitution © 3 April 2024 52 / 109

Static Methods
You can use the name of the subclass to access static methods of the superclass.
(Not so terribly important.)
class IndoEuropean {

static void info () {
System .out. println ("To find out more ...");

}
}
class German extends IndoEuropean {}
class Main {

public static void main (final String [] args) {
IndoEuropean .info ();
German .info ();
new German (). info (); // Warning

}
}

It is better to use the class name IndoEuropean when accessing the method
info(), to show where to actually find the code.
Using an instance for a static method is legal and has no advanatages at all.

Organization of Classes Substitution © 3 April 2024 53 / 109

Not a javac warning, but “lint.”

$ javac -Xlint Info.java
Info.java:12: warning: [static] static method should be qualified by type name, IndoEuropean, instead of by an expression

new German().info(); // Warning
^

1 warning

Not caught by CSE1002 checkstyle. Indeed, no such checkin checkstyle at all. Use
-Xlint!

Organization of Classes Substitution © 3 April 2024 54 / 109

Constructors and super
Default constructor .
“If a class contains no constructor declarations, then a default constructor is
implicitly declared.”
class Point {

int x, y;
}

is equivalent to the declaration
class Point {

int x, y;
Point () { super (); }

}

“It is a compile-time error if a default constructor is implicitly declared but the
superclass does not have an accessible constructor that takes no arguments and
has no throws clause.”

Organization of Classes Substitution © 3 April 2024 55 / 109

https://docs.oracle.com/javase/specs/jls/se16/html/jls-8.html#jls-8.8.9

Pitfall: Constructors and Subclasses

class Super {
final int i;
Super (int i) { this.i = i; }

}

class Sub extends Super { } // Illegal !

Organization of Classes Substitution © 3 April 2024 56 / 109

Java Language Rule: Each subclass constructor must implicitly or explicitly call one
of its superclass’s constructors. This is used to properly initialize the superclass
including its instance fields. This is important to the subclass which inherits and
may depend on the superclass’s instance fields.

class Super {
final int x;
Super (int x) { this.x = x; }
int sum () { return x; }

}
class Sub extends Super {

final int y;
Sub (int x, int y){ super (x); this.y=y;}
@java.lang. Override
int sum () { return x+y; }

}

Organization of Classes Substitution © 3 April 2024 57 / 109

class Super {
final int x;
Super (int x) { this.x = x; }
int sum () { return x; }

}
class Sub extends Super {

final int y;
Sub (int x, int y) {this.y=y;}// Error
@java.lang. Override
int sum () { return x+y; }

}

Organization of Classes Substitution © 3 April 2024 58 / 109

Do not call instance (non-static) methods from constructors. Call either private or
final methods from inside constructors. The reason is that Java uses dynamic
dispatch and this could result in a call a method on a half-initialized object.

Anyway, constructors should focus on basic creation and initilization and not on
complex computation.

Organization of Classes Substitution © 3 April 2024 59 / 109

Constructors Not Inherited

Constructors are not class members; they are not inherited.

Organization of Classes Substitution © 3 April 2024 60 / 109

Final

Methods marked final are inherited but cannot be overridden. Classes marked
final cannot be extended.

See Finality.java

Organization of Classes Substitution © 3 April 2024 61 / 109

http://www.cs.fit.edu/~ryan/java/programs/class/Finality.java

Bad Inheritance

Inheriting the interface is necessary for substitution to work. Inheriting the behavior
or code of the methods can occasionally save keystrokes, but leads to subtle
problems.
A problem with inheriting behavior is that the behavior of a method must often be
specialized to fit with the subclass. It is naturally expected that the specialize
behavior be used for all speciized objects. The consequences can be tricky to
understand.

Organization of Classes Overriding © 3 April 2024 62 / 109

Methods Can Be Overridden

Sometimes the behavior of inherited methods is close, but not right for the
subclass. In these cases it is appropriate to override the method.
A subclass overrides a method by defining a method of the same name and
signature. For example,

public String toString()

“A class type may contain a declaration for a method with the same name and the
same signature as a method that would otherwise be inherited from a superclass.
In this case, the method of the superclass is not inherited. The new declaration is
said to override it.”

Organization of Classes Overriding © 3 April 2024 63 / 109

toString

Providing a good toString implementation makes your class much
more pleasant to use and makes systems using the class easier to debug.

Block, Effective Java, third edition, “Item 12: Always override toString,” 2017,
page 55

Organization of Classes Overriding © 3 April 2024 64 / 109

Overriding Example

Point2D.java

Organization of Classes Overriding © 3 April 2024 65 / 109

http://www.cs.fit.edu/~ryan/java/programs/class/Point2D.java

Overriding Example

Advice.java
Animals.java

Organization of Classes Overriding © 3 April 2024 66 / 109

http://www.cs.fit.edu/~ryan/java/programs/override/Advice.java
http://www.cs.fit.edu/~ryan/java/programs/override/Animals.java

Overriding and Covariance

[Covariance is an advanced topic.]
class SuperA {

public int getVal () { return 0; }
}

class SubA extends SuperA {
// No covariance in the return type
@java.lang. Override
public int getVal () { return 1; }

}

Organization of Classes Overriding © 3 April 2024 67 / 109

Overriding and Covariance

[Covariance is an advanced topic.]
class B {

public SuperA foo () { return new SuperA (); }
}

class C extends B {
// Demonstrates covariance
@java.lang. Override
public SubA foo () { return new SubA (); }

}

Organization of Classes Overriding © 3 April 2024 68 / 109

Dynamic Dispatch

Dynamic dispatch (aka single dispatch, aka virtual function call)
In most OO systems, the concrete function that is called from a function call in the
code depends on the type of a single object at runtime.

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 69 / 109

Calling Procedure

• call P(a) – compiler looks up address of P and jumps to instruction
• call P(a) – (overloading) compiler chooses from among several procedures

based on the static types of arguments
• o.P(a) – (dynamic dispatch) the runtime system chooses from among several

procedures based on the subtype of object o

Note that static type checking is possible in all cases. No “method not found”
errors because subtypes have the same interface as the supertypes.

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 70 / 109

Unique Names

class A{
static void p (int x) {

B.q(2 ,3);
}
static void t () {} class B {

} static q (int a, int b) {
C c = new C ();

ckass C { c.r (’z’); // instance
void r (char c) { }

D.s(5); }
} class D {

} static s (int) {
A.t();

}
}

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 71 / 109

Overloading
class A{

static void p (int x) {
B.q(2 ,3);

}
static void t () {} class B {
static int t (int i) { static C c = new C();

B.q(4); static q (int a, int b) {
} c.r (’z’);

} }
class C { static q (int c) {

void r (int t) { c.r (5);
D.s (3.14); }

} }
void r (char c) {

D.s(5); class D {
} static s (int i) { A.t(5); }

} static s (float f) { A.t(); }
}

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 72 / 109

Overriding Member Methods

class Dog { void bark () { System .out. println ("bark"); } }
class Poodle extends Dog { }
class Shih_tzu extends Dog {

void bark (){ System .out. println ();}
}

class Main {
public static void main (String [] args) {

Dog [] dogs = {new Dog (), new Poodle (), new Shi_tzu ()};
for (Dog d: dogs) {

d.bark ();
}

}
}

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 73 / 109

Dynamic Dispatch

A simple example: Dispatch.java
A simple example: Animals.java
An example: Test.java (LineBuffer subclass).

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 74 / 109

http://www.cs.fit.edu/~ryan/java/programs/class/Dispatch.java
http://www.cs.fit.edu/~ryan/java/programs/override/Animals.java
http://www.cs.fit.edu/~ryan/java/programs/class/Test.java

Override Annotation

@java.lang. Override

An example: Simple.java

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 75 / 109

http://www.cs.fit.edu/~ryan/java/programs/class/Simple.java

Overloading and Overriding

public static class A {
public void f(A a) { System .out. println ("A1"); }
public void f(B b) { System .out. println ("A2"); }
public void g(A a) { System .out. println ("A3"); }
public static void h(A a) { System .out. println ("A4"); }

};
public static class B extends A {

public void f(A a) { System .out. println ("B1"); }
public void f(B b) { System .out. println ("B2"); }
public void g(B b) { System .out. println ("B3"); }
public static void h(A a) { System .out. println ("B4"); }

}

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 76 / 109

Overriding

The following is not so very important, but everyone asks. [Don’t ask because if
you do, either:

• your OO design is bad,
• you don’t understand the subclass contract, or
• you have been looking at C++.]

What if you want some particular method to be called. You don’t want the method
in the subclass called, but the method somewhere up in the subclass hierarchy.
Casting does not help for methods

• AccessField.java – casts make a difference for fields
• AccessMethod.java – casts make no difference for methods

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 77 / 109

http://www.cs.fit.edu/~ryan/java/programs/class/AccessField.java
http://www.cs.fit.edu/~ryan/java/programs/class/AccessMethod.java

Casting Classes Summary

class Mammal {}
class Dog extends Mammal {}
class Cat extends Mammal {}
Mammal m = (Math. random () <0.5)? new Mammal (): new Dog ();
Dog spot = new Dog ();
Cat felix = new Cat ();

m = spot; m = felix; // Valid (no cast needed)
spot = m; // Compile -time error
spot = (Dog) m; // Valid at compile time; runtime check
felix = (Cat) m; // Valid at compile time; runtime check
felix = spot; // Compile -time error
felix = (Cat) spot; // Compile -time error

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 78 / 109

Wary programmer:
if (m instanceof Cat) {

felix = (Cat) m;
}

Runtime system:
if (m instanceof Cat) {

felix = (Cat) m;
} else {

throw new ClassCastException ();
}

But the use of intanceof and casts is a sign of poor design.

Organization of Classes Calling With Dynamic Dispatch © 3 April 2024 79 / 109

Abstract Classes

An abstract class is a class that has some abstract methods. Abstract methods
have a specification, but lack code/instructions/behavior. An abstract class cannot
be created/instantiated (but can have constructors), It is used as superclass to
define a subclass with the responsibility of implementing the missing behavior.

Organization of Classes Abstract Classes © 3 April 2024 80 / 109

abstract

In a class hierarchy, If a method’s behavior depends the class, it is natural to
override it. But if some class has no special behavior for the method, then there
are two choices.

1 Define a meaningless or generic default behavior and let subclass override it.
(Think of toString() for Object.)

2 Declare the method abstract.
If you declare a method abstract in a class, then the class is abstract. Meaning
that the class is not used for instantiation, but only for defining other classes.
Subclass responsibility. All (non-abstract) subclasses are given the requirement
(not just the opportunity) that the method be overridden.

Organization of Classes Abstract Classes © 3 April 2024 81 / 109

May override versus must override
First, may override:
class Object {

public String toString () { return " Object "; }
}
class SubClass extends Object {

int x;
@Override
public String toString () { return Integer . toString (x); }

}

Organization of Classes Abstract Classes © 3 April 2024 82 / 109

Second, must override:
abstract class Object {

abstract public String toString ();
}
class SubClass extends Object {

int x;
@Override
public String toString () { return Integer . toString (x); }

}

In both cases the override annotation can and ought to be used.

Organization of Classes Abstract Classes © 3 April 2024 83 / 109

Abstract List

abstract class AbstractList implements List {
// 1. Operations that are in common to all lists
// 2. Operations that have different behavior ,
// but common interface

}

In Java List is an interface—it describes what a list can do. In Java ArrayList is
a class that implements List—it gives a specific way of implementing the
operations. (LinkedList gives another way.) In Java AbstractList is a class
that provide some functionality common to all lists. (All these Java classes and
interfaces are generic.)

AbstractList also extends the abstract class AbstractCollection which
implements the interface Collection.

Organization of Classes Abstract Classes © 3 April 2024 84 / 109

Typical use of abstract classes to factor out commonality in mututally exclusive
and exhaustive subclasses.

Main2.java – abstract class example

Advanced use of abstract classes in mutually recursive subclasses traversed using
the visitor design pattern

InheritV.java – visitor design pattern

Organization of Classes Abstract Classes © 3 April 2024 85 / 109

http://www.cs.fit.edu/~ryan/java/programs/abstract/Main2.java
http://www.cs.fit.edu/~ryan/java/programs/abstract/InheritV.java

Interfaces

Head First Java: “A class defines who you are, and an interface tells what roles you
could play.”

Superpower: implements multiple interfaces.

Organization of Classes Interfaces © 3 April 2024 86 / 109

Definition
An interface defines the communication boundary between two entities, such as a
piece of software, a hardware device, or a user. It generally refers to an abstraction
that an entity provides of itself to the outside.

Definition
A Java interface a construct describing the protcol (not the behavior) of
instances of a class. It is somewhat like a contract beween the objects of the class
and the users.

Organization of Classes Interfaces © 3 April 2024 87 / 109

Interface

ListExample.java simple case
Example.java implement multiple interfaces
PointPack.java like serializatin
Reactive.java reactive programming

Organization of Classes Interfaces © 3 April 2024 88 / 109

http://www.cs.fit.edu/~ryan/java/programs/interface/ListExample.java
http://www.cs.fit.edu/~ryan/java/programs/interface/Example.java
http://www.cs.fit.edu/~ryan/java/programs/interface/PointPack.java
http://www.cs.fit.edu/~ryan/java/programs/misc/Reactive.java

Common Interfaces

• interface Comparable .
• interface Comparator .
• interface Iterable (has an iterator).
• interface Iterator (optional remove).
• interface ListIterator
• interface AutoClosable .

Organization of Classes Interfaces © 3 April 2024 89 / 109

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/ListIterator.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/AutoClosable.html

Important Interfaces

Important interfaces to the Java programming language that we do not wish
discuss.

• interface Runnable .
• marker interface Serializable .
• marker interface Cloneable .

A marker interface has no methods; hence any class can “implement” it. It is used
as a signal to the JVM. A class the implements such an interface is allowed to be
serialized, cloned, etc.

Organization of Classes Interfaces © 3 April 2024 90 / 109

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/io/Serializable.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/Cloneable.html

For Each Loop

public interface Iterable <T> {
Iterator <T> iterator ();

default Spliterator <T> spliterator ();
default void forEach (Consumer <? super T> action);

}

Note the special java syntax that takes advantage of the interface Iterable.
ForMain.java – Example for-each loop

Organization of Classes Interfaces © 3 April 2024 91 / 109

http://www.cs.fit.edu/~ryan/java/programs/interface/ForMain.java

Default

Default methods enable you to add new functionality to the interfaces of your
libraries and ensure binary compatibility with code written for older versions of
those interfaces.
When you implement an interface, you may

• not mention the default method at all, which lets the class inherit the method
and behavior,

• redefine the default method which overrides it.

Organization of Classes Interfaces © 3 April 2024 92 / 109

Comparing Data

Why both Comparable and interface Comparator ?

(Comparing doubles is not a good idea.)

Main.java
MainR.java

ComparingRecords.java

Organization of Classes Interfaces © 3 April 2024 93 / 109

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/Comparator.html
http://www.cs.fit.edu/~ryan/java/programs/interface/Main.java
http://www.cs.fit.edu/~ryan/java/programs/interface/MainR.java
http://www.cs.fit.edu/~ryan/java/programs/equals/ComparingRecords.java

• private—members declared private are only accessible within the class itself.
• “package”—members declared with no access modifier are accessible in

classes in the same package.
• protected—members declared protected are accessible in subclasses (in the

same package or not) and in the class itself.
• public—members declared public are accessible anywhere the class is

accessible.
Access Control in Java language specification.

access from private “package” protected public
same class yes yes yes yes

in subclass, same package no yes yes yes
non-subclass, same package no yes yes yes

in subclass, other package no no yes yes
non-subclass, other package no no no yes

Organization of Classes Interfaces © 3 April 2024 94 / 109

https://docs.oracle.com/javase/specs/jls/se16/html/jls-6.html#jls-6.6

package p;
public class A {

public int v1;
protected int v2;

int v3;
private int v4;

}

package p; public class B { /* v1 , v2 , v3 , xx */}
package p; public class C extends A { /* v1 , v2 , v3 , xx */}

package q; public class D extends A { /* v1 , v2 , xx , xx */}
package q; public class E { /* v1 , xx , xx , xx */}

Organization of Classes Interfaces © 3 April 2024 96 / 109

Restrictiveness
Overriding: same name, different classes, same signature, at least as much access
(cf. §8.4.8.3 JLS 3rd).

private < “package” < protected < public

class Restrictive {
// Semantic error!
// " attempting to assign weaker access privileges "
private boolean equals (Object x) {

return false;
}
// OK. But , overloading not overriding !!
private boolean equals (Restrictive x) {

return true;
}

}

Organization of Classes Interfaces © 3 April 2024 97 / 109

Class design
Attacked from two sides

Organization of Classes Interfaces © 3 April 2024 98 / 109

protected is not really protection.
Design for extension (or don’t use extension).

Organization of Classes Interfaces © 3 April 2024 99 / 109

OO Alternatives

1 Interface inheritance
2 Aspect programming

Organization of Classes Interfaces © 3 April 2024 100 / 109

I once attended a Java user group meeting where James Gosling (Java’s
inventor) was the featured speaker. During the memorable Q&A session,
someone asked him: "If you could do Java over again, what would you
change?" "I’d leave out classes," he replied. After the laughter died down,
he explained that the real problem wasn’t classes per se, but rather im-
plementation inheritance (the extends relationship). Interface inheritance
(the implements relationship) is preferable. You should avoid implementa-
tion inheritance whenever possible.

Allen Holub, JavaWorld, 1 Aug 2003,
https://www.infoworld.com/article/2073649/why-extends-is-evil.html

Organization of Classes Interfaces © 3 April 2024 101 / 109

https://www.infoworld.com/article/2073649/why-extends-is-evil.html

Interface Inheritance

The extends keyword is evil; maybe not at the Charles Manson level,
but bad enough that it should be shunned whenever possible. The Gang of
Four Design Patterns book discusses at length replacing implementation
inheritance (extends) with interface inheritance (implements).

READING: Extends Is Evil

Organization of Classes Interfaces © 3 April 2024 102 / 109

"http://www.javaworld.com/article/2073649/core-java/why-extends-is-evil.html"

Interface Inheritance
// There are many kinds of lists
/*1*/ LinkedList <Integer > list = new LinkedList <> ()
/*2*/ Collection <Integer > list = new LinkedList <> ()

// Works just for linked lists
void g (LinkedList <Integer > list) {

list.add (/* ... */);
for (int i: list) /* use ’i’ */

}

// With the interface ’Collection ’,
// the method works for ’ArrayList ’ as well
void g (Collection <Integer > list) {

list.add (/* ... */);
for (int i: list) /* use ’i’ */

}

Organization of Classes Interfaces © 3 April 2024 103 / 109

Interface Inheritance
// There are many kinds of sets
/*1*/ HashSet <Integer > list = new HashSet <> ()
/*2*/ Set <Integer > list = new TreeSet <> ()
/*3*/ Set <Integer > list = new HashSet <> ()
/*4*/ Collection <Integer > list = new HashSet <> ()

// Works just for hash sets
void g (HashSet <Integer > set) {

list.add (/* ... */);
for (int i: set) /* use ’i’ */

}

// With the interface ’Collection ’,
// the method works for ’TreeSet ’ as well
void g (Collection <Integer > set) {

list.add (/* ... */);
for (int i: set) /* use ’i’ */

}
Organization of Classes Interfaces © 3 April 2024 104 / 109

• Over.java toString overload [skip]
• Abs.java abstract classes [skip]
• Comp.java composition and interfaces

Organization of Classes Interfaces © 3 April 2024 105 / 109

http://www.cs.fit.edu/~ryan/java/programs/polymorphism/Over.java
http://www.cs.fit.edu/~ryan/java/programs/polymorphism/Abs.java
http://www.cs.fit.edu/~ryan/java/programs/polymorphism/Comp.java

Is-a versus Has-a

Design consideration.
Favor composition over (implementation) inheritance. Composition over
inheritance
It is easy to misuse inheritance.
“is-a” or “has-a”.

• Point.java
• SubPoint.java
• Aspect.java Really composition!

Organization of Classes Interfaces © 3 April 2024 106 / 109

https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Composition_over_inheritance
http://www.cs.fit.edu/~ryan/java/programs/aspect/Point.java
http://www.cs.fit.edu/~ryan/java/programs/aspect/SubPoint.java
http://www.cs.fit.edu/~ryan/java/programs/aspect/Aspect.java

Avoid using protect.
Use composition instead of inheritance and without inheritance no need for
protect. It is difficult to protect the base class from misuse by the the subclasses.

Organization of Classes Interfaces © 3 April 2024 107 / 109

Summary

• class hierarchy
• subtype polymorphism
• inheritance
• overriding
• dynamic dispatch
• Java’s abstract classes
• Java’s interfaces

Organization of Classes Interfaces © 3 April 2024 108 / 109

Additional, Odd Topics

• clone see clone.tex
• functional interfaces see inter.tex
• Nested Classes

1 Nest.java
2 Local.java
3 Iter.java
4 Anon.java
5 Searcher.java

Organization of Classes Interfaces © 3 April 2024 109 / 109

http://www.cs.fit.edu/~ryan/java/programs/inner/Nest.java
http://www.cs.fit.edu/~ryan/java/programs/inner/Local.java
http://www.cs.fit.edu/~ryan/java/programs/inner/Iter.java
http://www.cs.fit.edu/~ryan/java/programs/misc/Anon.java
http://www.cs.fit.edu/~ryan/java/programs/inner/Searcher.java

	Kinds of Organization
	Subclass Hierarchy
	Substitution
	Overriding
	Calling With Dynamic Dispatch
	Abstract Classes
	Interfaces

