
Primitive Data and Objects

The programmer computes on data. Data in Java is divided
into primitive data and non-primitive data.
int is primitive, String is not. double is primitive, arrays are
not.

(Wrapper classes allow primitive data to be treated like objects.
The advantage of using wrapper classes is that all data can be
treated uniformly. The disadvantage is some extra overhead.)

CSE1002 (Objects) © 1 April 2024 1 / 95

Definition
A primitive data type in Java is one of the eight: boolean,
char, byte , short , int , long , float and double.

These types are predefined, available everywhere in the
program, unstructured, and have values with simple, short
machine representations.

Definition
An object in Java is a value of that is not primitive, including
arrays and strings.

CSE1002 (Objects) © 1 April 2024 2 / 95

Primitive Data and Reference Data

The main characteristics of primitive types:
• available everywhere in any program
• uncomplicated (no substructure)
• all values fit in the machine’s word size
• operations on the data are supported in the hardware

Instances of classes are allocated in a managed storage area
called the heap and variables in the program refer indirectly to
the instances. We call these instances objects, but referenced
data might be a less overused term.

CSE1002 (Objects) © 1 April 2024 3 / 95

Primitive Data and Reference Data

The majority of data the programmer wants is not primitive.
Java supports this vast, endless variety of data by allowing
programmer to define new data types and by implementing
some in the libraries. A large collection of data types is found
in the extensive, standard Java libraries. User-defined data
types are created using records and classes.

CSE1002 (Objects) © 1 April 2024 4 / 95

Data Abstraction

Good design enables easy handling and high volume

CSE1002 (Objects) © 1 April 2024 5 / 95

Data Abstraction

Programmer not only designs the flow of control (loops, etc),
but also designs the value to compute with.
This may be the most important design task the programmer
has, since the control flow could spring naturally from that
data if the design is good

CSE1002 (Objects) © 1 April 2024 6 / 95

Storage–Finite Collection of Machine Words

0100 11010x00
1100 00010x01
0111 11110x02
1101 10110x03

...

1101 10110xFC
1101 10100xFD
0000 11000xFE
0100 10100xFF

CSE1002 (Objects) © 1 April 2024 7 / 95

Storage–Finite Collection of Cells With Infinite Values

370x00
1210x01
00x02

237863410x03

...

15740xFC
35893180xFD
1237430xFE
82760xFF

We sometimes pretend the cells hold arbitrarily large integers,
but, of course, they can’t.

CSE1002 (Objects) Memory Model © 1 April 2024 8 / 95

Storage

37a
121b
0c

23786341d

...

1574w
3589318x
123743y

8276z Naming and labeling is necessary
psychologically for using and organizing information. A key

feature of a high-level programming language is power to label
data (and other things).

CSE1002 (Objects) Memory Model © 1 April 2024 9 / 95

Storage

37a
-121b

0c
23786341d

5741e
-3893158f
837431g

2786h

...

We sometimes pretend there are no end to the number of cells
in the computer, but, of course, they aren’t.

CSE1002 (Objects) Memory Model © 1 April 2024 10 / 95

Storage
During execution the entire program is laid out in (virtual)
storage, which we can envisioned as a gigantic array of words
indexed by a (virtual) address. All the data appears somewhere
in storage.

...

0x402A

0x4029

0x4028

...

CSE1002 (Objects) Memory Model © 1 April 2024 11 / 95

With Labels

...

size

i

count

...

CSE1002 (Objects) Memory Model © 1 April 2024 12 / 95

Layout of Program in Memory

0x403A

00 00 2F 870x4029 String s

0x4028

...

00 00 00 050x2F87 (length)

48 65 6C 6C0x2F86 'H' 'e' 'l' 'l'

6F 00 00 000x2F85 'o'

0x2F84

CSE1002 (Objects) Memory Model © 1 April 2024 13 / 95

Primitive Data and Objects
Primitive data values are stored directly (“unboxed”) and
objects are stored indirectly (“boxed”). For example,
int i = 123; String s = "Hello";

00 00 2F 870x4029 String s

...

00 00 00 7B0x3D2A int i

"Hello"

CSE1002 (Objects) Memory Model © 1 April 2024 14 / 95

The space for objects is found in the heap. Of course, the heap
must be found somewhere in storage.

0x403A

00 00 2F 870x4029 String s

0x4028

...

00 00 00 050x2F87 (length)

48 65 6C 6C0x2F86 'H' 'e' 'l' 'l'

6F 00 00 000x2F85 'o'

0x2F84

CSE1002 (Objects) Memory Model © 1 April 2024 15 / 95

Other Languages

Other languages, like Haskell and C# do not require the
programmer to distinguish between boxed and unboxed data.
But both languages have boxed and unboxed values, integers,
for instance. But in these languages the programmers only
have one data type for integers. Unboxed is more efficient for
computation and boxed is more uniform. Haskell and C# go
back and forth between the two implementations automatically.
Java too, goes back and forth automatically. But for each
primitive data type there are two distinct types in the language:
for example, int and Integer.

CSE1002 (Objects) Memory Model © 1 April 2024 16 / 95

Comparing Integer Wrapper Class With Primitive int

00 00 00 7B0x3B05 int i

00 00 28 A00x3B04 Integer j

0x3B03

...

00 00 00 7B0x28A0 int value

0x289F

CSE1002 (Objects) Memory Model © 1 April 2024 17 / 95

Comparing Integer Wrapper Class With Primitive int

00 00 00 7B0x3B05 int i

00 00 28 A00x3B04 Integer j

0x3B03
...

0x28A0 “housekeeping”

0x289F

0x289E

00 00 00 7B0x289D int value

CSE1002 (Objects) Memory Model © 1 April 2024 18 / 95

Creating Objects

When you declare a variable for a value of a primitive data
type, an address is assigned which must hold a value of the
primitive type (int, etc.)
When you declare a variable for objects, a box is assigned
which can hold a reference to an instance of that type. No
object/instance is created. An object/instance can only be
created by new.
All non-primitive data objects are created (directly or
indirectly) by executing new.
The syntax of the new expression:

new <class name> ([arguments])

it creates and returns an object of type class name.

CSE1002 (Objects) Memory Model © 1 April 2024 19 / 95

There is an implicit new in special cases: strings, arrays,
wrapper classes.
String s = new String ("abc"); // redundant
Integer i = new Integer (123);
int [] a = new int [] {1 ,2 ,3};

String s = "abc";
Integer i = 123; // Auto - boxing !
int [] a = {1 ,2 ,3}; // new is optional in decl

CSE1002 (Objects) Memory Model © 1 April 2024 20 / 95

new java.lang. Object ()
new java.lang. StringBuilder (s)
new java.math. BigDecimal (203.99)
new java.awt.Color (r,g,b)
new java.util. Scanner (System .in)
new java.util. Locale (lang , country)
new java.io.File (dir , name)
new java.io.URL (protocol , host , file)
new java.util.ArrayList <String > ()
new javax.swing. JApplet ()

• 0, 1, or more arguments
• package name may be omitted if one uses an import
• generic instantiation
• some classes are never instantiated, i.e, Math
• other ways to get objects: “factory methods,” methods

which create the object for you.

CSE1002 (Objects) Memory Model © 1 April 2024 21 / 95

It is (regrettably) necessary to have a clear picture of boxed
and unboxed values in your mind, in order to program correctly
in Java.
Let me try to illustrate what I think is in my head.

CSE1002 (Objects) Memory Model © 1 April 2024 22 / 95

CSE1002 (Objects) Memory Model © 1 April 2024 23 / 95

CSE1002 (Objects) Memory Model © 1 April 2024 24 / 95

CSE1002 (Objects) Memory Model © 1 April 2024 25 / 95

Joan Miró i Ferrà (1893–1983), Frustrated Cat
CSE1002 (Objects) Memory Model © 1 April 2024 26 / 95

int i = 123;
short b = 8;
long a = 876L
float g = 1000.25 f;
double s = 6.6d
float f = -1.5f;

i : 123
b : 8
a : 876L
g : 1000.25 f
s : 6.6d
f : -1.5f

CSE1002 (Objects) Memory Model © 1 April 2024 27 / 95

int i = 123;
short b = 8;
long a = 876L;
float g = 1000.25 f;
double s = 6.6d
float f = -1.5f;
a = 564L;
b = 1;
a = 488L;

i : 123
b : 8 / 1
a : 876L / 564L / 488L
g : 1000.25 f
s : 6.6d
f : -1.5f;

CSE1002 (Objects) Memory Model © 1 April 2024 28 / 95

int i = 123;
BigDecimal b = new BigDecimal (212.99);
long [] a = new long [] {1 ,2 ,3};
float g = 1000.25 f;
String s = "Hello";
float f = -1.5f;

String s

BigDecimal b

BF C0 00 00float f

long[] a
...

00 00 00 7Bint i

44 7A 10 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 29 / 95

int i;
BigDecimal b;
long [] a;
float g;
String s;
float f;

String s null

BigDecimal b null

00 00 00 00float f

nulllong[] a
...

00 00 00 00int i

00 00 00 00float g

CSE1002 (Objects) Memory Model © 1 April 2024 30 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

...

CSE1002 (Objects) Memory Model © 1 April 2024 31 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

...
00 00 00 00int i

CSE1002 (Objects) Memory Model © 1 April 2024 32 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

...
00 00 00 7Bint i

CSE1002 (Objects) Memory Model © 1 April 2024 33 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

nullBigDecimal b

...
00 00 00 7Bint i

CSE1002 (Objects) Memory Model © 1 April 2024 34 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

BigDecimal b

...
00 00 00 7Bint i

212.99

CSE1002 (Objects) Memory Model © 1 April 2024 35 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

BigDecimal b

nulllong[] a
...

00 00 00 7Bint i

212.99

CSE1002 (Objects) Memory Model © 1 April 2024 36 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

BigDecimal b

long[] a
...

00 00 00 7Bint i

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 37 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

BigDecimal b

long[] a
...

00 00 00 7Bint i

00 00 00 00float g

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 38 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

BigDecimal b

long[] a
...

00 00 00 7Bint i

44 7a 10 00float g

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 39 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

nullString s

BigDecimal b

long[] a
...

00 00 00 7Bint i

44 7a 10 00float g

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 40 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

String s

BigDecimal b

long[] a
...

00 00 00 7Bint i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 41 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

String s

BigDecimal b

00 00 00 00float f

long[] a
...

00 00 00 7Bint i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 42 / 95

i = 123;
b = new BigDecimal (212.99);
a = new long [] {1 ,2 ,3};
g = 1000.25 f;
s = "Hello";
f = -1.5f;

String s

BigDecimal b

BF C0 00 00float f

long[] a
...

00 00 00 7Bint i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 43 / 95

Null

Non-primitive variable are initialized to the special value null.
Null is a legal value for all non-primitive types.
Unintentionally accessing a null object is a very common
problem which results in a NullPointerException.
String s;
long [] a;
char c = s. charAt (17);
long l = a[39];

Java catches some (but not all) initialization errors.

CSE1002 (Objects) Memory Model © 1 April 2024 44 / 95

public class Main {
public static void main (String [] args) {

String s;
long [] a;
char c = s. charAt (17);
long l = a[39];

}
}

> javac Main.java
Main.java:5: variable s might not have been initialized

char c = s.charAt(17);
^

Main.java:6: variable a might not have been initialized
long l = a[39];

^
2 errors

CSE1002 (Objects) Memory Model © 1 April 2024 45 / 95

public class Fields {
static String s;
static long [] a;
public static void main (String [] args) {

char c = s. charAt (17);
long l = a[39];

}
}

> java Fields
Exception in thread "main" java.lang.NullPointerException

at Fields.main(Fields.java:5)

CSE1002 (Objects) Memory Model © 1 April 2024 46 / 95

I call it my billion-dollar mistake. It was the in-
vention of the null reference in 1965. At that time,
I was designing the first comprehensive type system
for references in an object oriented language (ALGOL
W). My goal was to ensure that all use of references
should be absolutely safe, with checking performed au-
tomatically by the compiler. But I couldn’t resist the
temptation to put in a null reference, simply because it
was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage
in the last forty years.

Sir Charles Anthony Hoare

CSE1002 (Objects) Memory Model © 1 April 2024 47 / 95

Optional

CSE1002 (Objects) Memory Model © 1 April 2024 48 / 95

Objects.requireNonNullElse

CSE1002 (Objects) Memory Model © 1 April 2024 49 / 95

https://download.java.net/java/early_access/jdk22/docs/api/java.base/java/util/Objects.html#requireNonNullElse(T,T)

Garbage
i = 0;
b = null;
a = null;
g = 0.0f;
s = null;

f = 0.0f;

String s

BigDecimal b

BF C0 00 00float f

long[] a
...

00 00 00 7Bint i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 50 / 95

Garbage
i = 0;
b = null;
a = null;
g = 0.0f;
s = null;

f = 0.0f;

String s

BigDecimal b

BF C0 00 00float f

long[] a
...

00 00 00 00int i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 51 / 95

Garbage
i = 0;
b = null;
a = null;
g = 0.0f;
s = null;

f = 0.0f;

String s

nullBigDecimal b

BF C0 00 00float f

long[] a
...

00 00 00 00int i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 52 / 95

Garbage
i = 0;
b = null;
a = null;
g = 0.0f;
s = null;

f = 0.0f;

String s

nullBigDecimal b

BF C0 00 00float f

nulllong[] a
...

00 00 00 00int i

44 7a 10 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 53 / 95

Garbage
i = 0;
b = null;
a = null;
g = 0.0f;
s = null;

f = 0.0f;

String s

nullBigDecimal b

BF C0 00 00float f

nulllong[] a
...

00 00 00 00int i

00 00 00 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 54 / 95

Garbage
i = 0;
b = null;
a = null;
g = 0.0f;
s = null;

f = 0.0f;

nullString s

nullBigDecimal b

BF C0 00 00float f

nulllong[] a
...

00 00 00 00int i

00 00 00 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 55 / 95

Garbage
i = 0;
b = null;
a = null;
g = 0.0f;
s = null;

f = 0.0f;

nullString s

nullBigDecimal b

00 00 00 00float f

nulllong[] a
...

00 00 00 00int i

00 00 00 00float g

"Hello"

212.99

[1,2,3]

CSE1002 (Objects) Memory Model © 1 April 2024 56 / 95

Garbage
i = 0;
b = null;
a = null;
g = 0.0f;
s = null;

f = 0.0f;

nullString s

nullBigDecimal b

00 00 00 00float f

nulllong[] a
...

00 00 00 00int i

00 00 00 00float g

"Hello"

212.99

[1,2,3]

inaccessible

CSE1002 (Objects) Memory Model © 1 April 2024 57 / 95

CSE1002 (Objects) Memory Model © 1 April 2024 58 / 95

Definition
Objects allocated on the heap which cannot accessed by the
program are said to be garbage.

Definition
Garbage collection is an autonomous service during program
execution which returns inaccessible objects in the heap in
order to use the space for allocation of objects in the future.

CSE1002 (Objects) Memory Model © 1 April 2024 59 / 95

Java and Garbage Collection

Java does garbage collection.
One of Java’s most significant features is its ability

to automatically manage memory. The idea is to free
the programmers from the responsibility of managing
memory by keeping track of orphaned objects and re-
turning the memory they use to a pool of free memory.

Sedgwick & Wayne, CS: An Interdisciplinary Approach, page
357

CSE1002 (Objects) Memory Model © 1 April 2024 60 / 95

Immutability

In Effective Java, Joshua Bloch makes this important
recommendation:

Classes should be immutable unless there’s a very
good reason to make them mutable. If a class cannot
be made immutable, limit its mutability as much as
possible.

CSE1002 (Objects) Immutability © 1 April 2024 61 / 95

Immutability

CSE1002 (Objects) Immutability © 1 April 2024 62 / 95

Mutability

CSE1002 (Objects) Immutability © 1 April 2024 63 / 95

Mutability Leads To Disaster

http://www.nytimes.com/2016/11/26/science/
boston-molasses-flood-science.html

CSE1002 (Objects) Immutability © 1 April 2024 64 / 95

http://www.nytimes.com/2016/11/26/science/boston-molasses-flood-science.html
http://www.nytimes.com/2016/11/26/science/boston-molasses-flood-science.html

Mutability

Definition
A mutable object is an object whose state can be modified
after it is created.

CSE1002 (Objects) Immutability © 1 April 2024 65 / 95

Mutability

• There is no direct support of immutability in the Java
programming language. (Records are a help, but they are
immutable only in the first level—“shallow.”)

• Therefore, one must learn the mental discipline of
immutable data structures and take advantage as best one
can of the features of the Java programming language.

CSE1002 (Objects) Immutability © 1 April 2024 66 / 95

Mutable Objects

Objects in Java, like all data, can be divided into two types:
mutable and immutable.
An immutable object is one that no operation can change. For
example, an object of type String. A good example of a
mutable object is an array (of any type). Changing an element
of an array, changes the state of the array. Thus an array is a
mutable object, it has a state which may be modified without
changing the identity of the object.
Do not confuse immutable with the term constant. An
identifier is said to be constant if it always refers to the same
object (immutable or not). An object is said to be immutable if
no operations can change it.
All primitive types are immutable. Not all objects are mutable.

CSE1002 (Objects) Immutability © 1 April 2024 67 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

...

CSE1002 (Objects) Immutability © 1 April 2024 68 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

00 00 00 00int i

...

CSE1002 (Objects) Immutability © 1 April 2024 69 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

00 00 00 7Bint i

...

CSE1002 (Objects) Immutability © 1 April 2024 70 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

nullStringBuilder b

00 00 00 7Bint i

...

CSE1002 (Objects) Immutability © 1 April 2024 71 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

...

w,o,r,l,d

CSE1002 (Objects) Immutability © 1 April 2024 72 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

nullStringBuilder f

...

w,o,r,l,d

CSE1002 (Objects) Immutability © 1 April 2024 73 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

...

w,o,r,l,d

CSE1002 (Objects) Immutability © 1 April 2024 74 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

...

00 00 00 00int j

w,o,r,l,d

CSE1002 (Objects) Immutability © 1 April 2024 75 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

...

00 00 00 7Bint j

w,o,r,l,d

CSE1002 (Objects) Immutability © 1 April 2024 76 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

...
nullString s

00 00 00 7Bint j

w,o,r,l,d

CSE1002 (Objects) Immutability © 1 April 2024 77 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

...
String s

00 00 00 7Bint j
"Hello"

w,o,r,l,d

CSE1002 (Objects) Immutability © 1 April 2024 78 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

nullString t
...

String s

00 00 00 7Bint j
"Hello"

w,o,r,l,d

CSE1002 (Objects) Immutability © 1 April 2024 79 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

String t
...

String s

00 00 00 7Bint j
"Hello"

w,o,r,l,d

CSE1002 (Objects) Immutability © 1 April 2024 80 / 95

int i = 123;
StringBuilder b = new StringBuilder ("world");
StringBuilder f = b
int j = i;
String s = "Hello";
String t = s;
f. deleteCharAt (3);

StringBuilder b

00 00 00 7Bint i

StringBuilder f

String t
...

String s

00 00 00 7Bint j
"Hello"

w,o,r,l,dw,o,r,d

CSE1002 (Objects) Immutability © 1 April 2024 81 / 95

Where does sharing come from? Obviously it comes from
assignment. But what causes some of the biggest problems is
sharing come from method calls. Parameter passing in Java is
like an assignment to a local variable and it causes sharing for
all non-primitive types.
The programmer has no choice in parameter passing and so
must always be on the defensive when using mutable objects.

CSE1002 (Objects) Immutability © 1 April 2024 82 / 95

Mutability quietly erodes the protection parameter passing
provides primitive value.
How do you pass mutable data to be used as input to a
subprocedure, but guarantied not be be changed by the caller?

CSE1002 (Objects) Immutability © 1 April 2024 83 / 95

What if sort invoked the clear method on your data?!
ArrayList <Integer > list = Arrays . asList (1 ,2 ,3);
ImpudentClass . veryBadSort (list); -- return list.clear ();
assert list.size ()==3;

List <Integer > list = List.of (1 ,2 ,3); -- immutable
ImpudentClass . veryBadSort (list); -- unsupported operation !
assert list.size ()==3;
list.add (4); -- unsupported operation !

But you cannot sort the elements of an immutable list anyway.
A means of protection:
return Collections . unmodifiableList (list);

CSE1002 (Objects) Immutability © 1 April 2024 84 / 95

Summary

one parameter passing mechanism (assignment)!
yes, two kinds of data (boxed and unboxed)

Caution: boxed data can be shared
Two kinds of data (mutable and immutable)!!

CSE1002 (Objects) Immutability © 1 April 2024 85 / 95

Summary

Sharing is cheap, but buggy; copying (large objects) is
expensive, but safe. Immutable objects can be shared

without problems, Always design for immutability; optimize
later.

premature optimization is the root of all evil

Knuth, 1974 Turing Award lecture

CSE1002 (Objects) Immutability © 1 April 2024 86 / 95

Sharing Mutable

CSE1002 (Objects) Immutability © 1 April 2024 87 / 95

Sharing Immutable

CSE1002 (Objects) Immutability © 1 April 2024 88 / 95

The Stansifer sayings:

It is easier to make a correct program more efficient than to
make a buggy program more correct.

A program that does what you think it does is much better
than a program that might do what you want it do.

CSE1002 (Objects) Immutability © 1 April 2024 89 / 95

Reference Counting

stack heap

CSE1002 (Objects) Immutability © 1 April 2024 90 / 95

class name { members }

Members may be static or instance.
Members may be methods (subprocedures) or fields (data
values).

static instance
methods

fields

CSE1002 (Objects) Immutability © 1 April 2024 91 / 95

Static member are accessed: ClassName.member. Instance
members are accessed:
expressionDenotingAnInstance.member. Very important
to observe the capitalization convention and never to access
static members like this:

expressionDenotingInstanceOfClass.member

(which is legal but bewilders the reader).

Instance members can access both static and instance
members. (But don’t take advantage of this.) Static members
can only access static members.

CSE1002 (Objects) Immutability © 1 April 2024 92 / 95

public class Main {
static int field = 123; // static member
public static void main (String [] a) {

System .out. println (new Main (). field);
}

}

public class Main {
int field = 123; // instance field
public static void main (String [] a) {

System .out. println (Main.field);
}

}

Not caught by any checkstyle check, but is a translation
warning:

javac -Xlint:static Main.java
Main.java:4: warning: [static] static variable should be qualified
by type name, Main, instead of by an expression

CSE1002 (Objects) Immutability © 1 April 2024 93 / 95

Parameter Passing

Call by value is about protection. Information does not flow
back it is not about objects nor ’final’.

• PassByValue.java – Java uses “call by value”
• PassByWrapper.java – Using wrapper class does not

provide means of creating “out” parameters.
• If you want to return something, there are no “out”

parameters; use a function

CSE1002 (Objects) Immutability © 1 April 2024 94 / 95

http://www.cs.fit.edu/~ryan/java/programs/pass/PassByValue.java
http://www.cs.fit.edu/~ryan/java/programs/pass/PassByWrapper.java

Returning information

Use functions to return values. Don’t use secret dead drops.

CSE1002 (Objects) Immutability © 1 April 2024 95 / 95

	Memory Model
	Immutability

