
Generics

IRS W-9 Form
Java Generics © 15 April 2024 1 / 80

Generics

• Simplify, don’t repeat yourself (DRY)
• Clarify, express clearly to reader
• Generalize, abstract

Common sense comes from extensive experience,
learning from the masters is a short cut. See also
Effectice Java by Block. Knowing all Java
constructs is important, but good programming is
about effective use of the language.

Java Generics © 15 April 2024 2 / 80

Generics

Generics (parametric polymorphism)
is HUGE!

(but simple and natural)

Computer science is about “bookkeeping.” Some of the bookkeeping has been
captured in standard libraries—all of it generic, ready to be applied to your

application. Much remains to be tweaked or even invented for other problems, so
designing generic data structures is important.

Java Generics © 15 April 2024 3 / 80

In Java, one type is a subtype of antoher if the are related by the extends or
implments clause.

Integer is a subtype of Number
Double is a subtype of Number
ArrayList<E> is a subtype of List<E>
List<E> is a subtype of Collection<E>
Collection<E> is a subtype of Iterable<E>

THe subtypign relation is transitive, meaning that if one type is a subtype of a
second, and the second is a subtype of a third, then the first is a subtype of the
third.

Java Generics © 15 April 2024 4 / 80

Syntax

Non-parameterized class:
<class declaration > ::=

"class" <identifier >
[" extends " <type >]
[" implements " <type list >]
"{" <class body > "}"

Generic class
<class declaration > ::=

"class" <identifier > [<type parameter list >]
[" extends " <type >]
[" implements " <type list >]
"{" <class body > "}"

Java Generics © 15 April 2024 5 / 80

Syntax

Non-parametrized method
<method declaration > ::=

<type > <identifier >
"(" [<formal parameters list >] ")"
[" throws " <qualified identifier list >]
"{" <method body > "}"

Generic method
<method declaration > ::=

[<type parameter list >] <type > <identifier >
"(" [<formal parameters list >] ")"
[" throws " <qualified identifier list >]
"{" <method body > "}"

Java Generics © 15 April 2024 6 / 80

Syntax

Generic type parameters
<type parameter list > ::=

"<" <type parameter > {"," <type parameter >} ">"
<type parameter > ::=

<identifier > [" extends " <bound >]
<bound > ::= <type > { "&" <type > }

<type argument list > ::=
"<" <type argument > {"," <type argument >} ">"

<type argument > ::= <type >
| "?" [" extends " <type >]
| "?" ["super" <type >]

Java Generics © 15 April 2024 7 / 80

Syntax

<type > ::= <identifier > [<type argument list >]
{"." <identifier > [<type argument list >]}
{"[" "]"}

| <primitive type >

Java Generics © 15 April 2024 8 / 80

Already we have used ArrayList and LinkedList.
List <BigDecimal > list1 = new ArrayList < >();
list1.add (new BigDecimal ("123"));
list1.add (new BigDecimal ("4567"));
System .out. println (list1);

List <String > list2 = new LinkedList <String >();
list2.add ("How");
list2.add ("now");
list2.add ("brown");
list2.add ("cow");
System .out. println (list2);

Java Generics © 15 April 2024 9 / 80

Consider building a class to hold two values.
class Pair {

int first , second ;
}

Java Generics © 15 April 2024 10 / 80

Not very flexible. So we try using subtype polymorphism (object-oriented
programming). We take advantage of the fact that every object is a subclass of
Object.
class Pair {

Object first , second ;
void setFirst (Object first) { this.first=first ;}
Object getFirst () { return first; }

}

Pair p = new Pair ();
p. setFirst (new Object ());
p. setFirst ("hello");
p. setFirst (new Integer (5));
System .out. println (p. getFirst ());

Java Generics © 15 April 2024 11 / 80

Not very flexible. So we try using subtype polymorphism (object-oriented
programming). We take advantage of the fact that every object is a subclass of
Object.
class Pair {

Object first , second ;
void setFirst (Object first) { this.first=first ;}
Object getFirst () { return first; }

}

Pair p = new Pair ();
p. setFirst (new Object ());
p. setFirst ("hello ");
p. setFirst (new Integer (5));
System .out. println (p. getFirst ());

Java Generics © 15 April 2024 12 / 80

Why Not Subtype?

Subtype polymorphism here is unsafe. The type of the objects is “laundered.” We
can put it in; but we can’t take it out as the same type of thing we put in.
class Pair {

Object first , second ;
void setFirst (Object first) { this.first=first ;}
Object getFirst () { return first; }

}

Pair p = new Pair ();
p. setFirst ("Hello , World!");
char leadingChar = p. getFirst (). charAt (0); // Error

Java Generics © 15 April 2024 13 / 80

Why Not Subtype?

Subtype polymorphism here is unsafe. The type of the objects is “laundered.” We
can put it in; but we can’t take it out as the same type of thing we put in.
class Pair {

Object first , second ;
void setFirst (Object first) { this.first=first ;}
Object getFirst () { return first; }

}

Pair p = new Pair ();
p. setFirst ("Hello , World!");
char leadingChar = p. getFirst (). charAt (0); // Error

Java Generics © 15 April 2024 14 / 80

Why Not Subtype?

Subtype polymorphism here is unsafe. The type of the objects is “laundered.” We
can thwart the compiler, but this is not wise. The class can be abused and this is
not discovered until runtime.
class Pair {

Object first , second ;
void setFirst (Object first) { this.first=first ;}
Object getFirst () { return first; }

}

Pair p = new Pair ();
p. setFirst (new Integer (5));

// Trust me!
Integer i = (Integer) p. getFirst (); // narrowing

Java Generics © 15 April 2024 15 / 80

Why Generics?

Generic classes (universal polymorphism) is the perfect solution. The compiler
checks that the class is used correctly.
class Pair <T> {

public final T first , second ;
Pair (T first , T second) {

this.first=first; this. second = second ;
}
T getFirst () { return first; }

}

Java Generics © 15 April 2024 16 / 80

Pairs of integers, pairs of strings, pairs of pairs . . . there are possible and natural.
Pair <Integer > p =

new Pair <Integer >(new Integer (5), new Integer (8));
Integer i = p. getFirst ();

Pair <String > q = new Pair <String >("abc","xyz");
String s = q. getFirst ();

Pair <Pair <String >> r = new Pair <Pair <String >> (
new Pair <String >("a","b"), new Pair <String >("c","d"));

Java Generics © 15 April 2024 17 / 80

Why Generics?

Generic classes (universal polymorphism) is the perfect solution. The compiler
checks that the class is used correctly.
record Pair <T> (T first , T second) {}

Pair <String > q = new Pair <String > ("abc","xyz");
String s = q.first ();

Pair <Pair <String >> r = new Pair <Pair <String >> (
new Pair <String >("a","b"), new Pair <String >("c","d"));

String t = r. second (). first ();

Java Generics © 15 April 2024 18 / 80

Use the static factory method—not the deprecated constructor new Integer(3)

Pair <Integer > p =
new Pair <Integer > (

Integer . valueOf (3), Integer . valueOf (8));

Or better . . .

Java Generics © 15 April 2024 19 / 80

Wrapper Classes

Generics class can be instantiated only with classes (not primitive types).
However, autoboxing and unboxing of primitive types make generics act as if they
were applicable to primitive types. This is hugely useful.
The duplication of the type can be avoid by type inference

Pair <Integer > p = new Pair <>(5, 8);
Pair <Character > q = new Pair <>(’a’, ’b’);
int i = p. getFirst ();
char c = q. getFirst ();

Java Generics © 15 April 2024 20 / 80

class Pair <T,U> {
public final T first;
public final U second ;
Pair (T first , U second) {

this.first=first; this. second = second ;
}
T getFirst () { return first; }
U getSecond () { return second ; }

}

Autoboxing and unboxing.
Pair <Integer ,String > p = new Pair <>(5, "hello");
int i = p. getFirst ();
String s = p. getSecond ();

Java Generics © 15 April 2024 21 / 80

record Pair <T,U> (T first , U second) {}

Autoboxing and unboxing.
Pair <Integer ,String > p = new Pair <>(5, "hello");
int i = p.first ();
String s = p. second ();

Java Generics © 15 April 2024 22 / 80

Generic method

A method can be generic even if the class it is in is not generic.
public <T> T pick (T... choices) {

if (choices . length ==0) return null;
final int i = new Random (). nextInt (choices . length);
return choices [i];

}

Java Generics © 15 April 2024 23 / 80

Using Generic Methods

AdjMain.java

Java Generics © 15 April 2024 24 / 80

http://www.cs.fit.edu/~ryan/java/programs/generic/AdjMain.java

Bounds
This does not work:
public <T> T max (T t1 , T t2) {

if (t1 >t2) {
return t1;

} else {
return t2;

}
}

Nor does this:
public <T> T max (Comparable <T> t1 , T t2) {

if (t1. compareTo (t2) > 0) {
return t1; // Not necessarily of type T!

} else {
return t2;

}
}

Java Generics © 15 April 2024 25 / 80

Bounds
This does not work:
public <T> T max (T t1 , T t2) {

if (t1 >t2) {
return t1;

} else {
return t2;

}
}

Nor does this:
public <T> T max (Comparable <T> t1 , T t2) {

if (t1. compareTo (t2) > 0) {
return t1; // Not necessarily of type T!

} else {
return t2;

}
}

Java Generics © 15 April 2024 26 / 80

Bounds
This does not work:
public <T> T max (T t1 , T t2) {

if (t1 >t2) {
return t1;

} else {
return t2;

}
}

A type bound works!
public <T extends Comparable <T>> T max (T t1 , T t2) {

if (t1. compareTo (t2) > 0) {
return t1;

} else {
return t2;

}
}

Java Generics © 15 April 2024 27 / 80

Bounds
This does not work:
public <T> T max (T t1 , T t2) {

if (t1 >t2) {
return t1;

} else {
return t2;

}
}

A type bound works!
public <T extends Comparable <T>> T max (T t1 , T t2) {

if (t1. compareTo (t2) > 0) {
return t1;

} else {
return t2;

}
}

Java Generics © 15 April 2024 28 / 80

Three important Java generic interfaces:
1 Iterator

2 Comparable

3 Comparator

are often used in conjunction with Java collections.
Also important is:

1 AutoCloseable

Java Generics © 15 April 2024 29 / 80

Java 8 Functional Interfaces (Skip)

Java Generics © 15 April 2024 30 / 80

AutoCloseable

The try-with-resources statement is a try statement that declares one or more
resources. A resource is an object that should be closed after the program is
finished with it. The try-with-resources statement ensures that each resource is
closed at the end of the statement. Any object that implements
java.lang.AutoCloseable, which includes all objects which implement
java.io.Closeable, can be used as a resource.
An object that may hold resources (such as file or socket handles) until it is closed.
The close() method of an AutoCloseable object is called automatically when exiting
a try-with-resources block for which the object has been declared in the resource
specification header. This construction ensures prompt release, avoiding resource
exhaustion exceptions and errors that may otherwise occur.

Java Generics © 15 April 2024 31 / 80

Iterator
The interface java.lang.Iterator<E> has methods (i.a.):

boolean hasNext()
E next()

The interface java.util.Collection has method (i.a.):

Iterator<E> iterator()

public static void main (String [] args) {
final List <Integer >list=new ArrayList < >();
final Iterator <Integer > it=list. iterator ();
while (it. hasNext () {

// NB. auto unboxing , no narrowing
final int x = it.next ();
// Do something with "x"

}
}

Java Generics © 15 April 2024 32 / 80

Iterator

I tend to use the for loop.
public static void main (String [] args) {

final List <Integer >list=new ArrayList < >();
for (final Iterator <Integer > it=list. iterator ();

it. hasNext ();
/**/) {

final int x = it.next (); // auto - unboxing
// Do something with "x"

}
}

(Interesting use of final in a for loop. Iterator is a mutable class.)

Java Generics © 15 April 2024 33 / 80

The “for each” loop is better:
public static void main (String [] args) {

final List <Integer >list=new ArrayList < >();
for (final int x: list) {

// Do something with "x"
}

}

No narrowing necessary, and static type checking possible!

Java Generics © 15 April 2024 34 / 80

The interface java.lang.Comparable<T> has just one method.
interface Comparable <T> {

int compareTo (T other);
}

The interface is used to give a class a “natural” ordering — an ordering the Java
API’s (especially the collection API’s) uses by default.
It should be a total ordering consistent with equals: for every e1 and e2 of the
class T, e1.compareTo(e2)==0 iff e1.equals(e2).

Java Generics © 15 April 2024 35 / 80

// Give X a " natural " ordering
class X implements Comparable <X> {

/* ... */
int compareTo (X other) {

/* compare ’this ’ and ’other ’ */
if (/* ’this ’ is greater than ’other ’ */) {

return +1;
} if (/* ’this ’ is less than ’other ’ */) {

return -1;
} else {

/* Should be consistent with ‘‘equals ()’’ */
return 0;

}
}

}

Java Generics © 15 April 2024 36 / 80

class Person implements Comparable <Person > {
final String name;
final int idNumber ;
/* Warning : This method is *not* consistent with

equals ; use for sorting only and not hashing . */
@java.lang. Override
int compareTo (final Person other) {

if (this. idNumber > other. idNumber) {
return +1;

} else if (this. idNumber < other. idNumber) {
return -1;

} else {
return this.name. compareTo (other.name);

}
}

}

Java Generics © 15 April 2024 37 / 80

Comparator

The interface java.util.Comparator<T> has two methods.
interface Comparator <T> {

int compare (T o1 , T o2)
boolean equals (Object obj); // equal comparing classes

}

(We rarely create more than one instance of a particular comparator, so equals is
hardly ever overridden.)
A comparator allows us to describe an ordering of objects without a natural
ordering, or with a completely different ordering. This ordering is completely
independent from the class.

Java Generics © 15 April 2024 38 / 80

Comparator

An example program which compares 2D points in threes ways.
[Need a better example without double.] Main.java

Java Generics © 15 April 2024 39 / 80

http://www.cs.fit.edu/~ryan/java/programs/interface/Main.java

Comparable

By implementing Comparable, you allow your class to interoperate
with all of the many genereic algorithms and collection implementations
that depend on this interface. You gain a tremendous amount of power
of a small amount of effort. Virtually all of the value classes [data struc-
tures] in the Java platform libraries, as well as all enum types, implement
Comparable. If you are writing a value class with an obvious natural or-
dering, such as alphabetical order, numerical order, or chronological order,
you should implement the Comparable interface:
public interface Comparable<T>

int compareTo(T t);

Block, Effective Java, third edition, “Item 14: Consider Implementing
Comparable,” 2018, page 66

Java Generics © 15 April 2024 40 / 80

Comparator
The generic procedure reserveOrder() has some really advanced code ultimately relying
on a unsafe cast to do the work. The code is something like this:
class Collections {

// ...
private static final class RevComp <T>

implements Comparator <T> {
private static final RevComp <Object > INSTANCE

= new RevComp <Object >();

public int compare (Comparable <Object > o1 , T o2) {
// ’o2’ better know how to compare type ’T’
final Comparable <T> c2 = (Comparable <T>) o2;
return c2. compare (o1); // swap places

}
}
public static <T> Comparator <T> reverseOrder () {

return (Comparator <T>) RevComp . INSTANCE ;
}

}

Java Generics © 15 April 2024 41 / 80

Example Reverse Order

Reverse the natural order.
List <Event > track = new LinkedList <Event > ();
Collections .sort (track , Collections . reverseOrder ());

Java Generics © 15 April 2024 42 / 80

Equality

Consistent with Equals.
Usually, we require that two objects are equal if and only if they compare as the
same:
x.equals(y) if and only if x.compareTo(y) == 0
It is recommended that when designing a class you choose a natural ordering that
is consistent with equals.
Failure to do so will cause problems with hash sets and maps which will be difficult
to diagnose.

Java Generics © 15 April 2024 43 / 80

Type of max Function ∗

// WRONG. A collection of things S that implement Comparable <T>
// do not have to be things of type T.
<T> T max(Collection <Comparable <T>> coll)

<T extends Comparable <T>> T max(Collection <T> coll) // OK

// Why not be more flexible ?
<T extends Comparable <? super T>>

T max(Collection <? extends T> coll)

// Multiple bounds for backward compatibility
<T extends Object & Comparable <? super T>>

T max(Collection <? extends T> coll)

See Fruity example by Naftalin and Wadler. Oranges and apples ordered by name
(kind of fruit) and size.

Java Generics © 15 April 2024 44 / 80

Collection Classes

Many predefined classes in Java are generic. Generics make these classes useful in
more situations. The Java package java.util is filled with generic, “utility”
classes — classes that are used to solve a wide variety of problems types.

Many of these classes are container or collection classes — classes the hold many
individual sub-pieces (like arrays do). These classes are organized in a rich system
known as the collection classes.

Collections classes share two important characteristics:
1 the individual items have arbitrary type
2 it is common to iterate over all the individual items of the collection

Most prominently: lists, stacks, queues, sets, and maps.

Java Generics © 15 April 2024 45 / 80

Collection Classes

• java.util.Collections uninstaniable, utility class. Many static facilities for
the collection classes

• java.util.Collection<E> generic interface. Root interface for the
collection classes.

Java Generics © 15 April 2024 46 / 80

List

What is a list?
A list is an ordered collection of elements, like a chain.

There is a first element, a second element, and so on. There is a last element as
well. Sometimes this structure is called a sequence.
The same value may occur more than once (unlike a set).

Java Generics © 15 April 2024 47 / 80

List

What is a list? It is the first and simplest of the data structures.
It is a polymorphic (generic), recursive structure with two constructors.
data List a = Nil | Cons a (List a)

Java Generics © 15 April 2024 48 / 80

List Essence

Operations:
• Constructor of polymorphic empty list “nil”
• Constructor of non-empty list “cons”
• Recognizer “null?”
• Destructor of the non-empty list “head” and “tail”

Rules:
• head(cons(e,_)=e
• tail(cons(_,l)=l

Implementation and performance are other matters.

Java Generics © 15 April 2024 49 / 80

List versus Array

The advantage of an array is that it is fairly cheap to allocate a big fixed amount
of storage at once. But it wastes storage if a lot of elements are requested, but few
are needed. Also, removing an element in the middle of an array is expensive
because one has to move a lot of elements.

A list allocates exactly what is needed as it is needed— no space is wasted.
Removing an element in the middle can be cheaper than with an array. On the
other hand, random access to all elements is lost and more bookkeeping is
required. Access to the first and last elements of a list may be cheap.

ArrayList in an attempted compromise. How does it handle changes in the
number of elements?

Java Generics © 15 April 2024 50 / 80

List
The Java API has already implemented the LinkedList class. Let us implement
our own simple version.

Implementing our own lists:
IntList.java
GenericList.java

But first a mental picture of the approach:

Abstract representation of a list

Java Generics © 15 April 2024 51 / 80

http://www.cs.fit.edu/~ryan/java/programs/list/IntList.java
http://www.cs.fit.edu/~ryan/java/programs/list/GenericList.java

List

See Sedwick and Wayne section 4.3 for a array-based stack, and a linked-list with
header implementation.

Java Generics © 15 April 2024 52 / 80

List

The simple version
• IntList.java
• GenericList.java

does not have an empty list–a major defect.

• ImmutableList.java interface
• ImmutableLinkedList.java generic class

The Java API has already implemented the LinkedList class, which like the
ArrayList class, implements the generic List interface.

Java Generics © 15 April 2024 53 / 80

http://www.cs.fit.edu/~ryan/java/programs/list/IntList.java
http://www.cs.fit.edu/~ryan/java/programs/list/GenericList.java
http://www.cs.fit.edu/~ryan/java/programs/list/ImmutableList.java
http://www.cs.fit.edu/~ryan/java/programs/list/ImmutableLinkedList.java

We can put static factory methods in an interface to increase cohesion.
As of Java 8, the restriction that interfaces cannot contain static meth-

ods was eliminated, so there is typically little reason to provide a nonin-
stantiable companion class for an interface [Effective Java, 3rd edition].

Java Generics © 15 April 2024 54 / 80

List Interface in the Collection Classes

interface java.util.List<E> implements Collection <E>

E get (int index)
E set (int index, E element) returns previous elem, if any

void add (int index, E element)
E remove (int index)

int size() number of elements in the list
void clear() removes all the elements

boolean contains (Object o) search
int indexOf (Object o) index of the first occurrence

Iterator<E> iterator ()

Java Generics © 15 April 2024 55 / 80

List Interface in the Collection Classes

The Java API has two implementations of the list interface with different
performance characteristics.

Java Generics © 15 April 2024 56 / 80

ArrayList in the Collection Classes

java.util.ArrayList<E> implements List<E>

ArrayList()
ArrayList (int initialCapacity)

void ensureCapacity (int minCapacity)
void trimToSize ()

Java Generics © 15 April 2024 57 / 80

LinkedList in the Collection Classes

java.util.LinkedList<E> implements List<E>, Dequeue<E>

LinkedList()

E getFirst () same as element()
E getLast ()
void addFirst () same as push()
void addLast ()
E removeFirst () same as pop(), remove()
E removeLast ()

Java Generics © 15 April 2024 58 / 80

Lists

If you have to save space, then use a linked list, If you have to have fast access
(set/get) to random elements, then use a list implemented as an array.
If you have to remove and add elements in the middle of the list, use a linked list.
See the Josephus problem.

Java Generics © 15 April 2024 59 / 80

List methods: get add contains next remove(0) iterator.remove

ArrayList chp chp exp chp exp exp
LinkedList exp chp exp chp chp chp

Java Generics © 15 April 2024 60 / 80

List methods: get add contains next remove(0) iterator.remove

ArrayList O(1) O(1) O(n) O(1) O(n) O(n)
LinkedList O(n) O(1) O(n) O(1) O(1) O(1)

Java Generics © 15 April 2024 61 / 80

Deque methods: get add contains next remove(0) iterator.remove

ArrayList O(1) O(1) O(n) O(1) O(n) O(n)
LinkedList O(n) O(1) O(n) O(1) O(1) O(1)

Java Generics © 15 April 2024 62 / 80

Collection Classes

Not be be confused with the generic interface Collection<T> is the utility class

java.util.Collections

static <T> int binarySearch (List <. . .> list ,T key)
static <T> List <T> emptyList ()
static <T> List <T> singletonList (T o)
static <T . . .> T max (Collection <? extends T> coll)
static <T . . .> T min (Collection <? extends T> coll)
static int frequency (Collection <?> coll , Object o)
static void shuffle (List <?> list)
static <T . . .> void sort (List <T> list)
static <T> List <T> synchronizedList (List <T> list)
static <T> List <T> unmodifiableList (List <T> list)

Java Generics © 15 April 2024 63 / 80

http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

Also Useful

Also in java.util.Arrays

static <T> List <T> asList (T... a)

List <Integer > list = Arrays . asList (1 ,2 ,3 ,4 ,5 ,6);

I never can remember where this very useful static method is found.

Java Generics © 15 April 2024 64 / 80

Avoid

Do not use StringBuffer, Stack, Vector, or Hashtable, unless you need
synchronization.
Use StringBuilder, ArrayDeque, ArrayList, or HashMap, instead.

Java Generics © 15 April 2024 65 / 80

The class java.util.Collections has methods (i.a.):
static void sort (List list);
static void sort (List list , Comparator c);

Notice the use of the interface List.
class Main {

// For some class X implementing Comparable <X>
public static void main (String [] args) {

final List <X> list = new ArrayList <X> ();
add (new X());
add (new X());
Collections .sort (list);
Collections .sort (list ,

Collections <X>. reverseOrder ());
}

}

Java Generics © 15 April 2024 66 / 80

Lists: Stack, Queue, Deque

From Knuth, volume I, page 235. The term deque was coined by E. J. Schweppe.
Java Generics © 15 April 2024 67 / 80

Lists: Stack, Queue, Deque

stack (LIFO): push() = addFirst(); pop() = removeFirst()
queue (FIFO): add()=addLast() (enqueue); remoe=removeFirst() (dequeue)
deque: addFirst(); addLast(); removeFirst(); removeLast()

Java Generics © 15 April 2024 68 / 80

push()=addFirst(), pop()=remove()=removeFirst(); top is first or front.

Java Generics © 15 April 2024 69 / 80

add()=addLast(), remove()=removeFirst(); first is front; back is last

Java Generics © 15 April 2024 70 / 80

addFirst(), removeFirst(), addList(), removeLast()

Java Generics © 15 April 2024 71 / 80

Stack, Queue in Java

If you want a stack, a queue, or a deque in Java.
Deque <Integer > stack = new ArrayDeque <Integer > ();
Deque <String > queue = new ArrayDeque <String > ();
Deque <Integer > deque = new ArrayDeque <Integer > ();

The LinkedList class also implements the interface Deque. It is preferred only
when it that data is treated as an ordered sequence in which it is necessary to
insert elements.

Java Generics © 15 April 2024 72 / 80

Stack

Java Generics © 15 April 2024 73 / 80

1 Main.java stack convert to binary
2 Examples.java sundary examples of maps

Java Generics © 15 April 2024 74 / 80

http://www.cs.fit.edu/~ryan/java/programs/stack/Main.java
http://www.cs.fit.edu/~ryan/java/programs/map/Examples.java

Important Data Structures

Java Generics © 15 April 2024 75 / 80

Sets

A set is more complicated data structure philosphically that a list, because it
required a notion of equality.

Yet since is the common in mathematics, its “essence” is generally more familiar.

Concrete implementation in Java of the interface Set including the HashSet
and the TressSet which are fascinating implementations to be studied in data
structures classes. Also to be mentioned is the class BitSet. One of many things
there is not time to discuss presently.

Java Generics © 15 April 2024 76 / 80

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/api/java/util/Set.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/api/java/util/HashSet.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/api/java/util/TressSet.html

Sets

Using (mutable!) sets are easy in Java.
Set <Integer > set = new HashSet <> ();

Java Generics © 15 April 2024 77 / 80

Maps/Dictionaries

Maps are key/value pairs. They are finite functions like arrays.
For example, keyword–definition:

bodkin instrument for making holes
censorious severly critical
dictionary book that lists words

A word is the key and its defintion is its value.

Java Generics © 15 April 2024 78 / 80

Maps/Dictionaries

Maps are key/value pairs. They are finite functions like arrays. So they have two
type parameters: one for the type of keys and one for the type of values.
Using (mutable!) maps are easy in Java.
Map <String ,List <Integer >> set = new HashMap <> ();

1 Main.java stack convert to binary
2 Examples.java sundary examples of maps

Java Generics © 15 April 2024 79 / 80

http://www.cs.fit.edu/~ryan/java/programs/stack/Main.java
http://www.cs.fit.edu/~ryan/java/programs/map/Examples.java

Immutable Maps

// this works for up to 10 elements :
import java.util.Map;
Map <String , Integer > test1 = Map.of (

"a", 101,
"b", 327,

);

// this works for any number of elements :
import static java.util.Map.entry;
Map <String , Integer > test2 = Map. ofEntries (

entry("a", 101) ,
entry("b", 327)

);

Java Generics © 15 April 2024 80 / 80

Maps/Dictionaries

The tools (the data structures) lists, sets, and map solve many problems.

What is missing are the algorithms, the performance analyses, the implementation
choices to solve problems efficiently.

Java Generics © 15 April 2024 81 / 80

