Generics

Request for Taxpayer Giwsfnnnl;oﬂnn;t
. N L requaster.
Identification Number and Certification Sond 10 the IRS.

NaME (3% NN on YouT INGame Lax reurm)

Business name, If difterer from above,

% Check appropiiate box: (] Individual'scte propristoe [Corporation [Parnership -
2 [company. Ener entity, ., Pepartnersng) ® _______ O payes

53 | O e o reinctirs -

E Adkdress (number, street, and apt. or sute no.) Requester's name and address (optinal)
a

City, state, and ZIF cods

LISt 3220Ur UMB2r(s] hers (optenal

Sss Spacific Instructions cn pags 2

2RI Taxpayer Mentification Number (TTH]

Enter your TIN in the appropriats box. The TIN provided must metch the name given on Line 1 to avoid | $0¢lal sscurlty number
bazhup withhekling. For individuals, this is your social security numbsr (SSN). Howener, for a rssident]]
alien, sole propristcr, or diaregarded entity, see the Part | nsinuctiona on page 3. For oiher sritse, it i

your emplayer identification number (EIN). If you do not have a number, see How o gata TI on page 3. or

Nate, If the account s in mare than on name, see the chart on pags 4 for guidslines on whoss EMpla ST IaENiicatian umbsr

number o antsr.]

EEH Certification

Under penaltiss of pejury, | certiy that:

1. The number shown on this form is. my comest taapayer identification number for | am waiting for a number to be isausd to me), ard

2.1 am not subject to backup withhokling becauss: (z) | em sxsmpt frem backup withhokding, cr (5] | have ot been ratified by the Intsmal
Revenus Service IRE) that | am subjest to baskup withholding aa & result of a failure to r=port all insrsst or dividends, or (c] the IRS has
natiiecl me thet | am ne longsr subjéct to backup withholding, and

2. 1 ama U.S. citizen or other U.S. person defined below).

Gartification instrustions. You must crasa cut ilem 2 above if you have been notifisd by the IRS that you are cumsntly subject to backup

itihcling beceuss ycu have flled t repart al ntarest sre cividande cn ycur tx rstum, Far ral stats nansactions, e 2 coss ot apply

For mortgage hitereat pakd, azquisition cr abandonment of secured property, cancellation of debt, contributions to an |

amangement (IRA), and generally, paymenta oiher than inter=st and dividends, you are not requirsd P e the Gerifisation, but yeu et

provids your comsct TIN. S22 the nstucticns cn pags 4.

Sign

Here

Signature of
3. person b Date >

IRS W-9 Form
AuFITO 15 April 2024 1/ 80

Generics

The Practice of

Programmimng

Brian W. l»._emlghan

e Simplify, don't repeat yourself (DRY)
e Clarify, express clearly to reader

® Generalize, abstract

Rob Pike
Common sense comes from extensive experience,
learning from the masters is a short cut. See also
:%j: Effectice Java by Block. Knowing all Java
e W constructs is important, but good programming is

|Q about effective use of the language.

Java Generics

AFITO 15 April 2024 2/80

Generics

Generics (parametric polymorphism)
is HUGE!

(but simple and natural)

Computer science is about “bookkeeping.” Some of the bookkeeping has been
captured in standard libraries—all of it generic, ready to be applied to your
application. Much remains to be tweaked or even invented for other problems, so
designing generic data structures is important.

o YA Y

In Java, one type is a subtype of antoher if the are related by the extends or
implments clause.

Integer is a subtype of Number

Double is a subtype of Number
ArrayList<E> is a subtype of List<E>
List<E> is a subtype of Collection<E>

Collection<E> is a subtype of Iterable<E>

THe subtypign relation is transitive, meaning that if one type is a subtype of a
second, and the second is a subtype of a third, then the first is a subtype of the
third.

PRI s gl D)

4/80

Syntax

Non-parameterized class:

<class declaration> ::=
"class" <identifier>
["extends" <type>]
["implements" <type list>]
"{" <class body> "}"

Generic class

<class declaration> ::=
"class" <identifier> [<type parameter list>]
["extends" <type>]
["implements" <type list>]
"{" <class body> "}"

R T

Syntax

Non-parametrized method

<method declaration> ::=
<type> <identifier>
"(" [<formal parameters list>] ")"
["throws" <qualified identifier 1list>]
"{" <method body> "1}"

Generic method

<method declaration> ::=
[<type parameter list>] <type> <identifier>
"(" [<formal parameters list>] ")"
["throws" <qualified identifier list>]
"{" <method body> "}"

o YAy

Syntax

Generic type parameters

<type parameter list> ::=

"<" <type parameter> {"," <type parameter>} ">"
<type parameter> ::=

<identifier> ["extends" <bound>]
<bound> ::= <type> { "&" <type> 7}

<type argument list> ::=
"<" <type argument> {"," <type argument>} ">"
<type argument> ::= <type>
["?" ["extends" <type>]
/ n?u ["super" <type>]

o YAy

Syntax

<type> ::= <identifier> [<type argument list>]
{"." <identifier> [<type argument list>]}
{"[ll Il]ll}

| <primitive type>

Java Generics

Already we have used ArrayList and LinkedList.

List<BigDecimal> listl = new ArraylList<>();
listl.add (new BigDecimal ("123"));
listl.add (new BigDecimal ("4567"));
System.out.println (listl);

List<String> 1ist2 = new LinkedList<String>();
list2.add ("How");

list2.add ("now");

list2.add ("brown");

list2.add ("cow");

System.out.println (list2);

o YA

Consider building a class to hold two values.

class Pair {
int first, second;

}

Java Generics

Not very flexible. So we try using subtype polymorphism (object-oriented
programming). We take advantage of the fact that every object is a subclass of
Object.

class Pair {
Object first,second;
void setFirst (Object first) { this.first=first;}
Object getFirst () { return first; }

}

o R YA e

Not very flexible. So we try using subtype polymorphism (object-oriented
programming). We take advantage of the fact that every object is a subclass of
Object.

class Pair {
Object first,second;
void setFirst (Object first) { this.first=first;}
Object getFirst () { return first; }

}

Pair p = new Pair ();

p-setFirst (new Object ());
p.setFirst ("hello");

p.setFirst (new Integer (5));
System.out.println (p.getFirst());

PRSI SIS 12 €

Why Not Subtype?

Subtype polymorphism here is unsafe. The type of the objects is “laundered.” We
can put it in; but we can't take it out as the same type of thing we put in.

class Pair {
Object first,second;
void setFirst (Object first) { this.first=first;}
Object getFirst () { return first; }

}

o YA e

Why Not Subtype?

Subtype polymorphism here is unsafe. The type of the objects is “laundered.” We
can put it in; but we can't take it out as the same type of thing we put in.

class Pair {
Object first,second;
void setFirst (Object first) { this.first=first;}
Object getFirst () { return first; }

}

Pair p = new Pair();
p-setFirst ("Hello, World!");
char leadingChar = p.getFirst().charAt(0); // Error

PRRITD SSa E0E

Why Not Subtype?

Subtype polymorphism here is unsafe. The type of the objects is “laundered.” We
can thwart the compiler, but this is not wise. The class can be abused and this is
not discovered until runtime.

class Pair {
Object first,second;
void setFirst (Object first) { this.first=first;}
Object getFirst () { return first; }

}

Pair p = new Pair ();
p.-setFirst (new Integer (5));

// Trust me!
Integer i = (Integer) p.getFirst(); // narrowing

PRRITD SIS i €

Why Generics?

Generic classes (universal polymorphism) is the perfect solution. The compiler
checks that the class is used correctly.

class Pair <T> {
public final T first, second;
Pair (T first, T second) {
this.first=first; this.second=second;
}
T getFirst () { return first; }
}

PRSI i3 €

Pairs of integers, pairs of strings, pairs of pairs ... there are possible and natural.

Pair<Integer> p =
new Pair<Integer>(new Integer(5), new Integer (8));
Integer i = p.getFirst ();

Pair<String> q = new Pair<String>("abc","xyz");
String s = q.getFirst ();

Pair<Pair<String>> r = new Pair<Pair<String>> (
new Pair<String>("a","b"), new Pair<String>("c","d"));

PRRITD SIS L €

Why Generics?

Generic classes (universal polymorphism) is the perfect solution. The compiler
checks that the class is used correctly.

record Pair<T> (T first, T second) {}

Pair<String> q = new Pair<String> ("abc","xyz");
String s = q.first();

Pair<Pair<String>> r = new Pair<Pair<String>> (

new Pair<String>("a","b"), new Pair<String>("c","d"));
String t = r.second().first();

o YA e

Use the static factory method—not the deprecated constructor new Integer(3)

Pair<Integer> p =
new Pair<Integer> (
Integer.valueOf (3), Integer.valueOf (8));

Or better ...

o R YA e

Wrapper Classes

Generics class can be instantiated only with classes (not primitive types).

However, autoboxing and unboxing of primitive types make generics act as if they
were applicable to primitive types. This is hugely useful.

The duplication of the type can be avoid by type inference
Pair<Integer> p = new Pair<>(5, 8);
Pair<Character> q = new Pair<>(’a’, ’b’);
int i = p.getFirst();

char ¢ = q.getFirst ();

PRRITD SIS 20 1€

class Pair <T,U> {
public final T first;
public final U second;
Pair (T first, U second) {
this.first=first; this.second=second;
}
T getFirst () { return first; 1}
U getSecond() { return second; 1}
}

Autoboxing and unboxing.

Pair<Integer ,String> p = new Pair<>(5, "hello");
int i = p.getFirst();
String s = p.getSecond();

PRRITD SSa 22h e

record Pair <T,U> (T first, U second) {}

Autoboxing and unboxing.

Pair<Integer ,String> p = new Pair<>(5, "hello");
int i = p.first();
String s = p.second();

PRI T A 26

Generic method

A method can be generic even if the class it is in is not generic.

public <T> T pick (T... choices) {
if (choices.length==0) return null;
final int i = new Random().nextInt(choices.length);

return choices[i];

PRSI S 2 €

Using Generic Methods

AdjMain.javatd

Java Generics

http://www.cs.fit.edu/~ryan/java/programs/generic/AdjMain.java

Bounds
This does not work:
public <T> T max (T t1, T t2) {
if (t1>t2) {
return t1;
} else {
return t2;

}

Java Generics

Bounds
This does not work:

public <T> T max (T t1, T t2) {
if (t1>t2) {
return t1;
} else {
return t2;
}
}

Nor does this:

public <T> T max (Comparable<T> t1, T t2) {
if (t1.compareTo(t2) > 0) {
return t1; // Not necessarily of type T!
} else {
return t2;
}
}

e e T

Bounds
This does not work:
public <T> T max (T t1, T t2) {
if (t1>t2) {
return t1;
} else {
return t2;

}

Java Generics

Bounds
This does not work:

public <T> T max (T t1, T t2) {
if (t1>t2) {
return t1;
} else {
return t2;
}
}

A type bound works!

public <T extends Comparable<T>> T max (T t1, T t2) {
if (t1.compareTo(t2) > 0) {
return ti1;
} else {
return t2;
}
}

e T

Three important Java generic interfaces:
@ Iterator
® Comparable
©® Comparator

are often used in conjunction with Java collections.
Also important is:

@ AutoCloseable

PSS 29 €

Java 8 Functional Interfaces (Skip)

Table 2-1. Important functional interfaces in Java

Interface name Arguments Returns Example

Predicate<T> T boolean Has this album been released yet?
Consumer<T> T void Printing out a value
Function<T,R> T R Get the name from an Artist object
Supplier<T> None T A factory method
UnaryOperator<T> T T Logical not (!)
BinaryOperator<T> (T, T) T Multiplying two numbers (*)

e e T

AutoCloseable

The try-with-resources statement is a try statement that declares one or more
resources. A resource is an object that should be closed after the program is
finished with it. The try-with-resources statement ensures that each resource is
closed at the end of the statement. Any object that implements
java.lang.AutoCloseable, which includes all objects which implement
java.io.Closeable, can be used as a resource.

An object that may hold resources (such as file or socket handles) until it is closed.
The close() method of an AutoCloseable object is called automatically when exiting
a try-with-resources block for which the object has been declared in the resource
specification header. This construction ensures prompt release, avoiding resource
exhaustion exceptions and errors that may otherwise occur.

PRRITD SIS b e

Iterator
The interface java.lang.Iterator<E> has methods (i.a.):

boolean hasNext ()
E next()

The interface java.util.Collection has method (i.a.):

Iterator<E> iterator()

public static void main (String[] args) {
final List<Integer>list=new ArraylList<>();
final Iterator<Integer> it=1list.iterator ();
while (it.hasNext () {
// NB. auto unbozing, nmo narrowing
final int x = it.next ();
// Do something with "z"

PRRITD SIS 2 €

Iterator

| tend to use the for loop.

public static void main (Stringl[] args) {
final List<Integer>list=new ArraylList<>();
for (final Iterator<Integer> it=1list.iterator();
it.hasNext ();
/xx/) A{
final int x = it.next(); // auto-unbozing
// Do something with "z"

}

(Interesting use of final in a for loop. Iterator is a mutable class.)

R T

The “for each” loop is better:

public static void main (Stringl[] args) {
final List<Integer>list=new ArraylList<>();
for (final int x: list) A
// Do something with "z"
}
}

No narrowing necessary, and static type checking possible!

PRSITD SSa £E

The interface java.lang.Comparable<T> has just one method.

interface Comparable <T> {
int compareTo (T other);

}

The interface is used to give a class a “natural” ordering — an ordering the Java
API's (especially the collection API's) uses by default.

It should be a total ordering consistent with equals: for every el and e2 of the
class T, el.compareTo(e2)==0 iff el.equals(e2).

R T T

// Give X a "nmatural" ordering
class X implements Comparable<X> {
V& D V4
int compareTo (X other) {
/* compare ’this’ and ’other’ */
if (/* ’this’ 4is greater than ’other’ */) {
return +1;
} if (/* ’this’ 4is less than ’other’ */) {
return -1;
} else {
/% Should be consistent with ‘‘equals()’’ */
return O;

Java Generics

class Person implements Comparable<Person> {
final String name;
final int idNumber;
/% Warning: This method %is *not* consistent with
equals; use for sorting only and not hashing. */
@java.lang.0Override
int compareTo (final Person other) {
if (this.idNumber > other.idNumber) {
return +1;
} else if (this.idNumber < other.idNumber) {
return -1;
} else {
return this.name.compareTo (other.name);

}

R T

Comparator

The interface java.util.Comparator<T> has two methods.

interface Comparator <T> {
int compare (T ol, T o02)
boolean equals (Object obj); // equal comparing classes

}

(We rarely create more than one instance of a particular comparator, so equals is
hardly ever overridden.)

A comparator allows us to describe an ordering of objects without a natural
ordering, or with a completely different ordering. This ordering is completely
independent from the class.

R e T

Comparator

An example program which compares 2D points in threes ways.
[Need a better example without double.] Main. javac

T T

http://www.cs.fit.edu/~ryan/java/programs/interface/Main.java

Comparable

By implementing Comparable, you allow your class to interoperate
with all of the many genereic algorithms and collection implementations
that depend on this interface. You gain a tremendous amount of power
of a small amount of effort. Virtually all of the value classes [data struc-
tures| in the Java platform libraries, as well as all enum types, implement
Comparable. If you are writing a value class with an obvious natural or-
dering, such as alphabetical order, numerical order, or chronological order,
you should implement the Comparable interface:

public interface Comparable<T>
int compareTo(T t);

Block, Effective Java, third edition, “ltem 14: Consider Implementing
Comparable,” 2018, page 66

PRRITD SIS L0 1€

Comparator

The generic procedure reserveOrder () has some really advanced code ultimately relying
on a unsafe cast to do the work. The code is something like this:

class Collections {
/7
private static final class RevComp<T>
implements Comparator<T> {
private static final RevComp<Object> INSTANCE
= new RevComp<Object>();

public int compare (Comparable<Object> ol, T 02) {
// 02’ better know how to compare type °’T’
final Comparable<T> c2 = (Comparable<T>) o02;
return c2.compare(ol); // swap places
}
}
public static <T> Comparator<T> reverseOrder () {
return (Comparator<T>) RevComp.INSTANCE;
}
}

PRSITD SIS (B e

Example Reverse Order

Reverse the natural order.

List<Event> track = new LinkedList<Event> ();
Collections.sort (track, Collections.reverseOrder ());

PRI T A 6

Equality

Consistent with Equals.

Usually, we require that two objects are equal if and only if they compare as the
same:

x.equals(y) if and only if x.compareTo(y) ==

It is recommended that when designing a class you choose a natural ordering that
is consistent with equals.

Failure to do so will cause problems with hash sets and maps which will be difficult
to diagnose.

PRSI SIS (e

Type of max Function *

// WRONG. A collection of things S that implement Comparable<T>
// do mnot have to be things of type T.
<T> T max(Collection<Comparable<T>> coll)

<T extends Comparable<T>> T max(Collection<T> coll) // 0K

// Why mnot be more flexzible?
<T extends Comparable<? super T>>
T max(Collection<? extends T> coll)

// Multiple bounds for backward compatibility
<T extends 0Object & Comparable<? super T>>
T max(Collection<? extends T> coll)

See Fruity example by Naftalin and Wadler. Oranges and apples ordered by name
(kind of fruit) and size.

PRRITD SIS (e

Collection Classes

Many predefined classes in Java are generic. Generics make these classes useful in
more situations. The Java package java.util is filled with generic, “utility”
classes — classes that are used to solve a wide variety of problems types.

Many of these classes are container or collection classes — classes the hold many
individual sub-pieces (like arrays do). These classes are organized in a rich system
known as the collection classes.

Collections classes share two important characteristics:
@ the individual items have arbitrary type

® it is common to iterate over all the individual items of the collection

Most prominently: lists, stacks, queues, sets, and maps.

PRSITD SIS L3 €

Collection Classes

® java.util.Collections uninstaniable, utility class. Many static facilities for
the collection classes

® java.util.Collection<E> generic interface. Root interface for the
collection classes.

PRSITD SIS L3 €

List

What is a list?
A list is an ordered collection of elements, like a chain.

There is a first element, a second element, and so on. There is a last element as
well. Sometimes this structure is called a sequence.
The same value may occur more than once (unlike a set).

PRSITD SIS LAy €

List

What is a list? It is the first and simplest of the data structures.
It is a polymorphic (generic), recursive structure with two constructors.

data List a = Nil | Comns a (List a)

PRSI S (D €

List Essence

Operations:
® Constructor of polymorphic empty list “nil”
e Constructor of non-empty list “cons”
® Recognizer “null?”

® Destructor of the non-empty list “head” and “tail”

Rules:
® head(cons(e,)=e
® tail(cons(_,1)=1

Implementation and performance are other matters.

PRSITD SIS L9 €

List versus Array

The advantage of an array is that it is fairly cheap to allocate a big fixed amount
of storage at once. But it wastes storage if a lot of elements are requested, but few
are needed. Also, removing an element in the middle of an array is expensive
because one has to move a lot of elements.

A list allocates exactly what is needed as it is needed— no space is wasted.
Removing an element in the middle can be cheaper than with an array. On the
other hand, random access to all elements is lost and more bookkeeping is
required. Access to the first and last elements of a list may be cheap.

ArrayList in an attempted compromise. How does it handle changes in the
number of elements?

PRI T A ED G

List

The Java API has already implemented the LinkedList class. Let us implement
our own simple version.

Implementing our own lists:
IntList.javad

Genericlist. javaC®

But first a mental picture of the approach:

—s[2 bl ¢

Abstract representation of a list

Java Generics RuFITO© 15 April 2024 51 /80

http://www.cs.fit.edu/~ryan/java/programs/list/IntList.java
http://www.cs.fit.edu/~ryan/java/programs/list/GenericList.java

List

See Sedwick and Wayne section 4.3 for a array-based stack, and a linked-list with
header implementation.

PRI T A G

List

The simple version
® IntlList.javaCU
® Genericlist.java®

does not have an empty list—a major defect.

e ImmutablelList.javac] interface

® TmmutableLinkedList.javas generic class

The Java API has already implemented the LinkedList class, which like the
ArrayList class, implements the generic List interface.

PRI T A DG

http://www.cs.fit.edu/~ryan/java/programs/list/IntList.java
http://www.cs.fit.edu/~ryan/java/programs/list/GenericList.java
http://www.cs.fit.edu/~ryan/java/programs/list/ImmutableList.java
http://www.cs.fit.edu/~ryan/java/programs/list/ImmutableLinkedList.java

We can put static factory methods in an interface to increase cohesion.
As of Java 8, the restriction that interfaces cannot contain static meth-
ods was eliminated, so there is typically little reason to provide a nonin-
stantiable companion class for an interface [Effective Java, 3rd edition].

PRRITD SIS e

List Interface in the Collection Classes

interface java.util.List<E> implements Collection <E>

E get (int index)

E set (int index, E element) returns previous elem, if any
void add (int index, E element)

E remove (int index)

int size() number of elements in the list

void clear() removes all the elements

boolean contains (Object o) search
int index0f (Object o) index of the first occurrence

Iterator<E> iterator ()

PRI T Al oG

List Interface in the Collection Classes

The Java API has two implementations of the list interface with different
performance characteristics.

.

ArrayList in the Collection Classes

java.util.ArrayList<E> implements List<E>

ArrayList()
ArraylList (int initialCapacity)

void ensureCapacity (int minCapacity)
void trimToSize O

PRI T Al (G

LinkedList in the Collection Classes

java.util.LinkedList<E> implements List<E>, Dequeue<E>

LinkedList ()

E getFirst () same as element()

E getlLast ()

void addFirst () same as push()

void addLast ()

E removeFirst () same as pop(), remove()
E removelLast ()

PRI T A DG

Lists

If you have to save space, then use a linked list, If you have to have fast access

(set/get) to random elements, then use a list implemented as an array.
If you have to remove and add elements in the middle of the list, use a linked list.

See the Josephus problem.

R LT

List methods: get add contains next remove(0) iterator.remove

ArraylList chp chp exp chp exp exp
LinkedList exp chp exp chp chp chp

e e T

List methods: get add contains next remove(0) iterator.remove

ArrayList 0(1) 0(1) 0(n) 0(D) 0(n) 0(n)
LinkedList 0(n) 0(1) 0() 01 0D 0

PRRITD SSa (3)e

Deque methods: get add contains next remove(0) iterator.remove

ArrayList 0(1) 0(1) 0(n) 0(D) 0(n) 0(n)
LinkedList 0(n) 0(1) 0() 01 0D 0

PRSI S (20 €

Collection Classes

Not be be confused with the generic interface Collection<T> is the utility class

java.util.Collections(

static <T> int binarySearch(List<...> list,T key)
static <T> List<T> emptyList ()

static <T> List<T> singletonList (T o)

static <T ...> T max (Collection<? extends T> coll)

static <T ...> T min (Collection<? extends T> coll)
static int frequency (Collection<?> coll, Object o)
static void shuffle (List<?> list)

static <T ...> void sort (List<T> list)

static <T> List<T> synchronizedList (List<T> list)
static <T> List<T> unmodifiableList (List<T> list)

N e T

http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

Also Useful

Also in java.util.Arrays

static <T> List<T> aslList (T... a)

List<Integer> list = Arrays.aslist (1,2,3,4,5,6);

| never can remember where this very useful static method is found.

PRSI SIS G e

Avoid

Do not use StringBuffer, Stack, Vector, or Hashtable, unless you need
synchronization.
Use StringBuilder, ArrayDeque, ArrayList, or HashMap, instead.

PRI T A (oG

The class java.util.Collections has methods (i.a.):

static void sort (List 1list);
static void sort (List list, Comparator c);

Notice the use of the interface List.

class Main {

// For some class X implementing Comparable<X>

public static void main (Stringl[] args) {
final List<X> list = new ArraylList<X> ();
add (new X());
add (new X(QO));
Collections.sort (list);
Collections.sort (list,

Collections<X>.reverseOrder ());

e e T

Lists: Stack, Queue, Deque

~ Linear lists in which insertions, deletions, and accesses to values oceur almost

ways ab the first or the last node are very frequently encountered, and we give

1em special names:

A stack is a lincar list for which all insertions and deletions (and usually all
aceesses) are made at one end of the list.

A queue is a linear list for which all insertions are made at one end of the list;
all deletions (and usually all accesses) are made at the other end.

A deque (“double-ended queue”) is a linear list for which all insertions and
deletions (and usually all accesses) are made at the ends of the list.

eque is therefore more general than a stack or a queue; it has some properties
common with a deck of cards, and it is pronounced the same way. We also
distinguish output-restricted or inpul-restricted deques, in which deletions or in-
rtions, respectively, are allowed to take place at only one end.

From Knuth, volume |, page 235. The term deque was coined by E. J. Schweppe.
Java Generics RuFITO© 15 April 2024 67 / 80

Lists: Stack, Queue, Deque

stack (LIF0): push() = addFirst(); pop() = removeFirst()
queue (FIFD): add()=addLast() (enqueue); remoe=removeFirst() (dequeue)
deque: addFirst(); addLast(); removeFirst(); removeLast()

e e T

push(O=addFirst (), pop()=remove()=removeFirst(); top is first or front.

(L

==l
—.
/

=]

Java Generics RuFITO© 15 April 2024 69 / 80

add()=addLast (), remove()=removeFirst(); first is front; back is last

= (il

Java Generics RuFITO© 15 April 2024 70 / 80

addFirst(), removeFirst(), addList(), removeLast()

== oS
;;IDDM%

Stack, Queue in Java

If you want a stack, a queue, or a deque in Java.

Deque<Integer> stack = new ArrayDeque<Integer> ();
Deque<String> queue new ArrayDeque<String> ();
Deque<Integer > deque new ArrayDeque<Integer> ();

The LinkedList class also implements the interface Deque. It is preferred only
when it that data is treated as an ordered sequence in which it is necessary to

insert elements.

PRRITD SSa hed e

Stack

Java Generics

@ Main. javaC stack convert to binary

® Examples.javad sundary examples of maps

Java Generics

http://www.cs.fit.edu/~ryan/java/programs/stack/Main.java
http://www.cs.fit.edu/~ryan/java/programs/map/Examples.java

Important Data Structures

-~

N\

N lists ’
" ’;.-"'

Sets

A set is more complicated data structure philosphically that a list, because it
required a notion of equality.

Yet since is the common in mathematics, its “essence” is generally more familiar.

Concrete implementation in Java of the interface Set (7 including the HashSet (%
and the TressSet 7 which are fascinating implementations to be studied in data
structures classes. Also to be mentioned is the class BitSet. One of many things
there is not time to discuss presently.

e e T

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/api/java/util/Set.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/api/java/util/HashSet.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/api/java/util/TressSet.html

Sets

Using (mutable!) sets are easy in Java.

Set<Integer> set = new HashSet<> ();

Java Generics

Maps/Dictionaries

Maps are key/value pairs. They are finite functions like arrays.
For example, keyword—definition:

BODKIN instrument for making holes
CENSORIOUS severly critical
DICTIONARY book that lists words

A word is the key and its defintion is its value.

R e T

Maps/Dictionaries

Maps are key/value pairs. They are finite functions like arrays. So they have two
type parameters: one for the type of keys and one for the type of values.
Using (mutable!) maps are easy in Java.

Map<String ,List<Integer>> set = new HashMap<> ();

@ Main. java® stack convert to binary

® Examples.java? sundary examples of maps

R e T T

http://www.cs.fit.edu/~ryan/java/programs/stack/Main.java
http://www.cs.fit.edu/~ryan/java/programs/map/Examples.java

Immutable Maps

// this works for up to 10 elements:
import java.util.Map;
Map<String, Integer> testl = Map.of (
uan, 101,
Ilbll, 327,
);

// this works for any number of elements:
import static java.util.Map.entry;
Map<String, Integer> test2 = Map.ofEntries(
entry("a", 101),
entry ("b", 327)
)

e e T

Maps/Dictionaries

The tools (the data structures) lists, sets, and map solve many problems.

What is missing are the algorithms, the performance analyses, the implementation
choices to solve problems efficiently.

PRRITD SSa (3he

