
Program Development

pla
nin

g
alg

orit
hm

,

dat
a str

uct
ure

lun
ch

com
muni

cat
ion

sha
rpe

n

pen
cil pro

ble
m

sol
vin

g dom
ain

kno
wled

ge

understanding
the specifica-
tion

prototyping testing,
debugging

simplyfing,
improving optimizing

Program Development Program Development © 1 April 2024 1 / 34

Objectives

• editing and refactoring
• errors and warnings
• style
• IDE’s
• problem solving

Program Development Program Development © 1 April 2024 2 / 34

Program Development

com
pile

test

ed
it

Program Development Program Development © 1 April 2024 3 / 34

IDE (Integrated Development Environment)

IDE’s can be complicated to learn, diverse, and single-purpose, yet are valuable,
because they:

• support the development process in many ways,
• unify the editing and testing in one application, and
• make development easier, faster, and less error prone.

IDE’s accomplish these things by hiding the details.

But it is helpful to understand what is going on.

Program Development Program Development © 1 April 2024 4 / 34

Developing Java Programs – BlueJ

Program Development Program Development © 1 April 2024 5 / 34

Developing Java Programs – Eclipse

Program Development Program Development © 1 April 2024 6 / 34

Developing Java Programs – Emacs

Program Development Program Development © 1 April 2024 7 / 34

Developing Java Programs – Notepad++

Program Development Program Development © 1 April 2024 8 / 34

Developing Java Programs – Intellij

Program Development Program Development © 1 April 2024 9 / 34

• compile error
• syntax error — Syntax.java
• semantic error — Semantic.java

• type error — Type.java

• style error — example program
Style errors are mistakes in the program source code that contravene policy or
hamper the ability of programmers to read and understand the program even
though the program can be translated by the compiler into a executable
program. A list of errors

• execution error or (fatal) runtime error — example program
Runtime errors are mistakes that manifest themselves during the execution of
the program. These errors prevent the computer from completing the
execution of the program.

• logic error — example program
Logic errors are mistakes in the behavior of the program even though the
program can be translated into a running, executable program.

Program Development Program Development © 1 April 2024 10 / 34

http://www.cs.fit.edu/~ryan/java/programs/errors/Syntax.java
http://www.cs.fit.edu/~ryan/java/programs/errors/Semantic.java
http://www.cs.fit.edu/~ryan/java/programs/errors/Type.java
http://www.cs.fit.edu/~ryan/java/programs/style/Bad.java
http://www.cs.fit.edu/~ryan/java/programs/style/Bad-java.chst8.txt
http://www.cs.fit.edu/~ryan/java/programs/errors/Execution.java
http://www.cs.fit.edu/~ryan/java/programs/errors/Logic-java.html

Java requires many suspicious behaviors to be flagged as errors (not just warnings).
According to the Java Language Specification:
“It is a compile-time error if a statement cannot be executed because it is
unreachable.”

In many languages suspicious code is given a warning, but the program may be
executed anyway.

Program Development Program Development © 1 April 2024 11 / 34

Warnings, as opposed to compile-time errors, have gradually been added to the
Java language specification.

Java has optional warnings enabled by javac -Xlint
In Java 1.6 the complete list was

cast,deprecation,divzero,empty,unchecked,
fallthrough,path,serial,finally,overrides

The warnings deprecation and unchecked are checked in all cases (regardless of
the command line options).

java -Xlint:all -Xlint:-serial -Werror

Program Development Program Development © 1 April 2024 12 / 34

Thou shalt lint thy program

It is common for software development groups to require -Xlint (enable warnings)
and -Werror (treat warngins as errors) for javac in order to insure the code is
warning-free.

Program Development Program Development © 1 April 2024 13 / 34

Thou shalt lint thy program

It is common for software development groups to require -Xlint (enable warnings)
and -Werror (treat warngins as errors) for javac in order to insure the code is
warning-free.

Program Development Program Development © 1 April 2024 14 / 34

javac warnings
$javac -X [Java 16]
cast use of unnecessary casts.
classfile issues related to classfile contents.
deprecation use of deprecated items.
dep-ann missing @Deprecated annotation.
divzero division by constant integer 0.
empty empty statement after if.
fallthrough falling through from a case of a switch statement.
finally finally clauses that do not terminate normally.
options issues relating to use of command line options.
overrides issues regarding method overrides.
path invalid path elements on the command line.
rawtypes use of raw types.
serial Serializable classes with no serial version ID.
static accessing a static member using an instance.
try issues relating to use of try blocks.
unchecked unchecked operations.
varargs potentially unsafe vararg methods

Program Development Program Development © 1 April 2024 15 / 34

https://docs.oracle.com/en/java/javase/16/docs/specs/man/javac.html#examples-of-using--xlint-keys

javac warnings
$ javac --help-lint
The supported keys for -Xlint are:

auxiliaryclass Warn about an auxiliary class that is hidden in a source file, and is used from other files.
cast Warn about use of unnecessary casts.
classfile Warn about issues related to classfile contents.
deprecation Warn about use of deprecated items.
dep-ann Warn about items marked as deprecated in JavaDoc but not using the @Deprecated annotation.
divzero Warn about division by constant integer 0.
empty Warn about empty statement after if.
exports Warn about issues regarding module exports.
fallthrough Warn about falling through from one case of a switch statement to the next.
finally Warn about finally clauses that do not terminate normally.
missing-explicit-ctor Warn about missing explicit constructors in public and protected classes in exported packages.
module Warn about module system related issues.
opens Warn about issues regarding module opens.
options Warn about issues relating to use of command line options.
overloads Warn about issues regarding method overloads.
overrides Warn about issues regarding method overrides.
path Warn about invalid path elements on the command line.
processing Warn about issues regarding annotation processing.
rawtypes Warn about use of raw types.
removal Warn about use of API that has been marked for removal.
requires-automatic Warn about use of automatic modules in the requires clauses.
requires-transitive-automatic Warn about automatic modules in requires transitive.
static Warn about accessing a static member using an instance.
strictfp Warn about unnecessary use of the strictfp modifier.
synchronization Warn about synchronization attempts on instances of value-based classes.
text-blocks Warn about inconsistent white space characters in text block indentation.
try Warn about issues relating to use of try blocks (i.e. try-with-resources).
unchecked Warn about unchecked operations.
varargs Warn about potentially unsafe vararg methods.
preview Warn about use of preview language features.

Program Development Program Development © 1 April 2024 16 / 34

https://docs.oracle.com/en/java/javase/19/docs/specs/man/javac.html#examples-of-using--xlint-keys

Eclipse warns about semantic problems not required by the Java language
specification

Program Development Program Development © 1 April 2024 17 / 34

If you make a mistake and write a program that goes into an endless loop, and the
computer runs out time or space resources and terminates your program
prematurely, is this a runtime or a logic error?

Either, both, what difference does it make?

Program Development Program Development © 1 April 2024 18 / 34

What is a compiler warning (as opposed to an error)?

Have you ever encountered a compiler warning issued by javac?

Program Development Program Development © 1 April 2024 19 / 34

Indenting is very important; many annoying white-space complaints

Program Development Style © 1 April 2024 20 / 34

• MagicNumber
• [Checkstyle IllegalToken] “Use double instead of float”
• [Checkstyle IllegalToken] “Avoid typecasts”

Program Development Style © 1 April 2024 21 / 34

https://checkstyle.sourceforge.io/config_coding.html#MagicNumber

Integer . parseInt ("42"); // String to int
Integer . valueOf ("42"); // String to Integer
Double . parseDouble ("42"); // String to double
Double . valueOf (42); // int or double to

// Double [double , auto - boxing]
Math.round (3.4D) // double to long
Math.ceil (3.4D) // double to double !
Math.floor (3.4D) // double to double !
Math. floorDiv (42L ,43L) // long ,long -> long

Program Development Style © 1 April 2024 22 / 34

/* Coerce to double , create Double object ,
auto -unbox , discard object ; lots of overhead

*/
double d = Double . valueOf (42);

/* Deprecated because new immutable records are more
efficient than plain , old Java classes .

*/
Double d = new Double (42);

Java API doc Math

Program Development Style © 1 April 2024 23 / 34

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Math.html

No good explicit function to convert a primitive integer to a primitive double, e.g.,
Real(42) in Ada, fromIntegral(42) in Haskell.
double x = 5L; // sometimes works
double x = 5;
float y = 5L;
float y = 5;

A cast (implicit widening conversion) could be
double quotient = (double) 42 / 5; // Avoid cast

double meaningOfLife = 42; // some int or long expression
double quotient = meaningOfLife / 5.0D;

long x = Math.round (5.3D);

Program Development Style © 1 April 2024 24 / 34

jshell > double x = 5L;
x ==> 5.0

jshell > double x = 5555555555555555555 L;
x ==> 5.5555555555555553 E18

jshell > long x = round (ceil (45.3D))
x ==> 46

jshell > long x = round (ceil (45.3F)))
x ==> 46

jshell > int x = toIntExact (round (ceil (45.3D)))
x ==> 46

Program Development Style © 1 April 2024 25 / 34

Thou shalt not use a caĆ
A case is a type name in parentheses,

e.g., (int) 4.5D
Avoid mistakes by carefully converting

from one data type to another

Program Development Style © 1 April 2024 26 / 34

Thou shalt indent by three
(Four is perfectly reasonably, but we cannot check for three or four.)

Program Development Style © 1 April 2024 27 / 34

Ideal Programs

Ideal programs are readable and well-designed
Program Development Style © 1 April 2024 28 / 34

Editing versus refactoring.

Definition
Refactoring code is the process of restructuring existing code with knowledge of
the programming language (e.g., the scope of identifiers), usually keeping the same
behavior.

The intention is usually to improve the design, efficiency, or readability of the code.
Refactoring code is “smart” editing.
“Dumb” editing text is oblivious to the structure, semantics, and behavior of the
text, like replacing all occurences of the letter ’a’ in a source program with the
letter ’b’. This will likely create many syntax errors.
“Smart” editing (refactoring) code respects the structure, semantics, and behavior
of the code, like replacing all uses of the identifier ’a’ in a source program with the
identifier ’b’.
Many IDEs can perform intelligent changes like renaming identifiers, introducting
methods, adding parameters to methods, adding declarations to remove magic
numbers, and so on.

Program Development Style © 1 April 2024 29 / 34

Program Development

com
pile

t e s t
ed

it
At what point does planning and thinking come in?

... understanding the requirements?

Program Development Style © 1 April 2024 30 / 34

Where do ideas come from?
1 experience
2 problem solving
3 experimentation
4 AFK; pencil and paper

5

Program Development Style © 1 April 2024 31 / 34

S&W Lessons, Page 318ff

• Expect bugs
• Keep modules small
• Limit interactions
• Develop code incrementally
• Solve an easier problem
• Consider a recursive solution
• Build tools where appropriate
• Reuse software when possible

Program Development Style © 1 April 2024 32 / 34

Problem Solving

René Descartes (1596–1650)
Discours de la méthode, 1637

1 Never assume, be critical, put aside your
preconceived notions

Le premier était de ne recevoir jamis au-
cune chose pour vraie que je ne la connusse
évidemment être telle;

2 Decompose your problem until each piece
becomes trivial.

3 Solve the simplest things first.
4 Keep revising your work so that nothing is

forgotten.

Program Development Style © 1 April 2024 33 / 34

Computational Thinking
1 Define. Manageable questions
2 Abstract. Transform into precise

form
3 Compute. Identify and resolve issues
4 Interpret. Re-contextualize and

refine

THE

PROCESS
COMPUTATIONAL THINKING

QUESTIONS
DEFINE

TO COMPUTABLE FORM
ABSTRACT

ANSWERS
COMPUTE

RESULTS
INTERPRET� � � �

�����������������������������
����������������������
����������������
����	��������
�����������������
���������������
������������������������
����	��
�����������������������������������

��������������������������������
�����������������������
�����
�����������	�����������������
�������	���������������������
���������������������������
�����
�������	���������

��������	����������������������
��������������������	���������
��������
��	�������
�����	��
������������	����������
������������������������������
����������������������������

�����������
����������������
���������������������	��������
�
	���
�������������������
��������������������������	������
��������������������������������
����������������������������	�

ComputationalThinking.org

Go interactive with the Solution Helix or get this poster at:

computationalthinking.org/helix

computerbasedmath.org

Why learn computational thinking?

Because it helps you solve problems—and is increasingly critical for individuals and

organisations as computation becomes more e�ective for decision making across a wide range

of activities. As computers become more intelligent, rather than reducing the requirements of

human understanding, they have increased them. Unlocking ever-more-insightful answers

requires driving the computer with broader computational thinking skills.

Program Development Style © 1 April 2024 34 / 34

	Program Development
	Style

