
Is data, value, or object???

Definition
Data is the basis for reasoning or calculation, the quantities used by a computer
application.

Definition
Values are the specific quantities used in computer computation.

Definition
Objects are the more abstract quantities used in computer computation, e.g., the
color red.

CSE1002 (Data in Java) © 1 April 2024 1 / 80

Data Types

A computer and hence a computer program computes on or refers to “things” of
interest. These things go by different names data, objects, quantities, or values.
We often think of integers as being the primary data values. But at the lowest level
all data is just binary bits.
But a program language organizes the bits into varieties called data types. With
different data types the same bit pattern might represent a different object. A
language can provide assistance in computing with these data types giving the
illusion or the abstraction of computing with complex objects like real numbers,
sound, video, graphs, etc.
Now we look at the data types supported by the Java programming language.

CSE1002 (Data in Java) © 1 April 2024 2 / 80

Overview

• Definition: objects are everything but primitives
• The eight primitive data type in Java

• twos complement representation, IEEE754
• The wrapper classes: java.lang.Boolean, Character, Float, etc.
• java.math.BigInteger, java.math.BigDecimal
• Strings: java.lang.String, and java.lang.StringBuilder, but do not

use java.lang.StringBuffer.
• Arrays and its “wrapper” class java.util.Arrays
• Lists (abstractly and practically) is a later topic.
• Enums (particular kind of classes)
• Characters: Unicode

CSE1002 (Data in Java) © 1 April 2024 3 / 80

Know the Java API (i.e., memorize) for Integer, String, StringBuilder, and
Arrays.

CSE1002 (Data in Java) © 1 April 2024 4 / 80

Java Primitive Data Types

The primitive data types (of which there are eight in Java) are those data types
with simple structure and can be represented in the 32 or 64 bits of hardware, for
example int and long. The operations on the primitive data types usually have
hardware support. So computing with primitive data types is typically fast and
convenient. These data types are used a lot in computing, though as computers
get more powerful, programmers get more knowledgeable, and APIs get more
expressive, it is more and more common for programs to use more complex data
types.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 5 / 80

Java Objects

The other families of data types in Java are called objects. (This is another use of
the overworked word “object.” In Java jargon an object is a specific category of
data types: namely all those that are not primitive.)

Arrays and strings are objects, not primitive types (but they have special support in
the language syntax).
The programmer can even define new Java objects and this is extremely important.
This is the subject of a later lecture.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 6 / 80

Java Primitive Data Types

• boolean
• char (16 bit)
• arithmetic

• integral (twos-complement representation)
• byte (8 bit)
• short (16 bit)
• int (32 bit)
• long (64 bit)

• floating-point (IEEE 754)
• float (32 bit)
• double (64 bit)

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 7 / 80

boolean

There are only two different boolean values: true and false. The boolean data type
is essential for expressions to control conditional statements and loops.

The actual implmentation used by the computer is entriely immaterial to the
programmer—a true abstract data type.
However, the progammer must be aware of the implementation of the other data
types in order to write correct programs. Because these problems are infrequent, it
is easy to forget or ignore the details. This make these bugs all the more insidious.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 8 / 80

char

The data type char represents characters of text like the letter ’A’, ’B’, etc. The
repertoire of characters comes from the important and well-established Unicode
standard. We discuss this interesting and Byzantine collection later in much detail.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 9 / 80

Arithmetic Data Types

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 10 / 80

In an ideal world it ought not to matter how the data is represented.
However, the usual mathematical laws do not apply to data represented by a
computer. For example, none of the following hold for all values:

|x | ≥ 0

x(y + z) = xy + xz

x + 1 > x

Worse is that fact that the laws often apply and so people educated in
mathematics may delude themselves into thinking that they can program a
computer. Society is beset by the consequences.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 11 / 80

One can look up, say, the equations for Hohmann transfer orbit on Wikipedia. But
a computer scientist can translate the concept into correctly working computer
programs.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 12 / 80

Failure to know the science of computing may led to disaster. Take the Ariane 5
disaster and many other failures, both big and small.

See the Ariane 5 explosion on YouTube.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 13 / 80

http://www.youtube.com/watch?v=z-r9cYp3tTE

Doing math is a lot like programming, but we are usually lost in the weeds and fail
to the see the goal at all. A computer does math rather poorly, and so the
programmer must understand the limitations and avoid them, or a provide better
and better infrastructure.
In fact, looking at software development over time, much of programming can be
viewed as taking a bad interface and improving it.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 14 / 80

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 15 / 80

By understanding data, particularly arithmetic data, it is possible to write correct
programs in Java. But this is only possible because the Java programming language
defines its data types. This means that a correctly written program will execute
that same regardless of the Java implementation or the hardware on which it is run.

In some languages, notably C and C++, the properties of the data depend on the
implementation or the hardware. Programs written in these languages are difficult
to port.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 16 / 80

Integral Data Types

How should an integer be represented?

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 17 / 80

Integral Data Types
How should an integer be represented?

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 18 / 80

Binary numbers

Using binary numbers as in discrete math class to represent integers has two
problems:

1 They assume an indefinite number of bits.
2 They do not have negative numbers.

So given a fixed number of bits to represent an integer, what system of bit patters
do we use?

Sign-magnitude seems simple enough. Why not?

Two bit patterns for zero.

Two’s complempent was proposed by John von Neuman and is universally used by
computer hardware. (I not not sure exactly why.)

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 19 / 80

Binary numbers

Using binary numbers as in discrete math class to represent integers has two
problems:

1 They assume an indefinite number of bits.
2 They do not have negative numbers.

So given a fixed number of bits to represent an integer, what system of bit patters
do we use?

Sign-magnitude seems simple enough. Why not?

Two bit patterns for zero.

Two’s complempent was proposed by John von Neuman and is universally used by
computer hardware. (I not not sure exactly why.)

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 20 / 80

Binary numbers

Using binary numbers as in discrete math class to represent integers has two
problems:

1 They assume an indefinite number of bits.
2 They do not have negative numbers.

So given a fixed number of bits to represent an integer, what system of bit patters
do we use?

Sign-magnitude seems simple enough. Why not?

Two bit patterns for zero.

Two’s complempent was proposed by John von Neuman and is universally used by
computer hardware. (I not not sure exactly why.)

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 21 / 80

Binary numbers

Using binary numbers as in discrete math class to represent integers has two
problems:

1 They assume an indefinite number of bits.
2 They do not have negative numbers.

So given a fixed number of bits to represent an integer, what system of bit patters
do we use?

Sign-magnitude seems simple enough. Why not?

Two bit patterns for zero.

Two’s complempent was proposed by John von Neuman and is universally used by
computer hardware. (I not not sure exactly why.)

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 22 / 80

Two’s complement (8 bits)

0 1 1 1 1 1 1 1 = 127
...

0 0 0 0 0 0 1 0 = 2
0 0 0 0 0 0 0 1 = 1
0 0 0 0 0 0 0 0 = 0
1 1 1 1 1 1 1 1 = -1
1 1 1 1 1 1 1 0 = -2

...
1 0 0 0 0 0 0 1 = -127
1 0 0 0 0 0 0 0 = -128

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 23 / 80

Two’s complement

+1

0000

0

0001
1

0010
2

0011
3

0100 4

0101
5

0110
60111

7
1000
−8

1001
−7

1010
−6

1011−5

1100−4

1101
−3

1110
−2 1111

−1

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 24 / 80

Two’s complement

• fixed number of bits, hence bounded
• int ± nine (decimal) digits, long ± nine (decimal) digits,
• one bit pattern for zero, asymetric
• cyclic (wraps abound)
• signed; no unsigned data type in Java Integer.toUnsignedString() ,

Integer.toUnsignedLong() Integer.tocompareUnsigned()
• caution with % (negative numbers); see topic on expresssions

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 25 / 80

https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html#toUnsignedString-int-
https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html#toUnsignedLong-int-
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Integer.html#compareUnsigned(int,int)

Two’s complement

−2n −2n + 1 −2 −1 0 1 2 2n − 1

−2n

−2n + 1

−2

−1

0

1

2

2n − 1

?

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 26 / 80

Two’s complement

−2n −2n + 1 −2 −1 0 1 2 2n − 1

−2n

−2n + 1

−2

−1

0

1

2

2n − 1

?

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 27 / 80

Two’s complement

−2n −2n + 1 −2 −1 0 1 2 2n − 1

−2n

−2n + 1

−2

−1

0

1

2

2n − 1

?

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 28 / 80

byte

The byte data type is an 8-bit signed two’s complement integer. It has a minimum
value of -128 and a maximum value of 127. The byte data type can be useful for
saving memory in large arrays, where the memory savings actually matters. They
can also be used in place of int where their limits help to clarify your code; the
fact that a variable’s range is limited can serve as a form of documentation.
In computing many think of the word byte as describing an unsigned data value of
eight bits. This leads to a source of errors in Java code.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 29 / 80

short
The short data type is a 16-bit signed two’s complement integer. It has a
minimum value of -32,768 and a maximum value of 32,767. As with byte, the
same guidelines apply: you can use a short to save memory in large arrays, in
situations where the memory savings actually matters. It sometimes slower to
manipulate units smaller than the word size of the hardware.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 30 / 80

1 short i = Short. MAX_VALUE ;
2 System .out. println (i);
3 i = i + 1;
4 System .out. println (i);
5 System .out. println (Short. MIN_VALUE };

Integral data type silently overflow.

32767
-32768
-32768

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 31 / 80

int
The int data type is a 32-bit signed two’s complement integer. It has a minimum
value of -2,147,483,648 and a maximum value of 2,147,483,647. For integral
values, this data type is generally the default choice unless there is a reason to
choose something else. This data type will most likely be large enough for the
numbers your program will use, but if you need a wider range of values, use long
instead.

approximately, ± a billion, all ± nine (decimal) digit numbers

The Library of Congress holds approximately 119 million items.
Approximately 400,000,000 native speakers of English.
The Guide Star Catalog II (2008) lists 945,592,683 stars.
The music video for South Korean singer Psy’s Gangnam Style has been viewed
more than 2,147,483,647 times.
Now 2.9 billion active Facebook users (2021) up from 500,000,000 users in 2010.

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 32 / 80

long

The long data type is a 64-bit signed two’s complement integer. It has a minimum
value of -9,223,372,036,854,775,808 and a maximum value of
9,223,372,036,854,775,807. Use this data type when you need a range of values
wider than those provided by int.

approximately, ± a quintillion, all ± 18 (decimal) digit numbers
not quite enough to count all the insects on earth, or the possible states of the

Rubik’s cube

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 33 / 80

Integer Literals

For int and long only.
0 2 0372 0 xDada_Cafe 1996 0 x00_FF__00_FF
0l 0777L 0 x100000000L 2 _147_483_648L 0 xC0B0L

0 b0110_1101_0000
0 b0110_1101_0000L

0 xffff_ffff /* -1 */
0 b1111_1111_1111_1111_1111_1111_1111_1111 /* -1 */

Don’t use octal literals!

CSE1002 (Data in Java) Primitive Data Types © 1 April 2024 34 / 80

Floating-Point Types

CSE1002 (Data in Java) Floating-Point © 1 April 2024 35 / 80

Fractional Numbers

For any base (2, 10, 16, etc) the positional representation of integers can easily
extended to fractions including negative exponents.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 36 / 80

Fractional Binary Numbers

CSE1002 (Data in Java) Floating-Point © 1 April 2024 37 / 80

Why float the point?
A compromised between efficiency (the limited number of bits makes the
operations easily implementable in hardware) and accuracy (not all real number
can be represented).

This solution is not perfect and in some contexts one might represent the
constructable reals with computer programs.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 38 / 80

Scientific Notation
An practical way of presenting real numbers has been developed over a long period
of time by scientists: scientific notation.
In scientific notation all numbers are written in the form of

a × 10b

(a times ten raised to the power of b), where the exponent b is an integer, and the
coefficient a is a real number, called the significand or mantissa. The exponent
shifts (floats) the decimal point.

This notation avoids lots of zeros which tend to make large and small numbers
hard to read. A variant of this notation is often used by programming languages for
the input and output of real numbers. Because of the typographical difficulty of
superscripts these numbers are written with the letter ’e’ or ’E’ for “exponent.”

aEb

CSE1002 (Data in Java) Floating-Point © 1 April 2024 39 / 80

Floating Point

Floating point uses a fixed, total number of bits in the representation of real
numbers.
More bits in the exponent expand the range of numbers represented and the more
bits in the mantissa extend the precision of the numbers represented.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 40 / 80

IEEE754

bits exponent mantissa bias range places
32 8 23 127 1.5 · 10−45 . . . 3.4 · 1038 7–8
64 11 52 1023 5.0 · 10−324 . . . 1.7 · 10308 15–16

1 = 1 · 20 = 1 · 2127−127 = 0x3F800000 = 00111111110 · · · 0

1 = 1 · 20 = 1 · 21023−1023 = 0x3FF000000000000 = 0011111111110 · · · 0

CSE1002 (Data in Java) Floating-Point © 1 April 2024 41 / 80

IEEE754

A sign bit, followed by w exponent bits that describe the exponent offset by a bias
b =, and p − 1 bits that describe the mantissa.

s · m · 2e

where s is the sign, 0 for positive or 1 for negative. For words of length 32 bits m
is a positive integer less that 224, and e is between -127 and 128, inclusive.

zero 0 0 ±0
infinity 2b + 1 0 ±∞

denormalized 0 ̸= 0 ±0.f × 2−b+1

normalized 1 ≤ e ≤ 2b ±1.f × 2e−b

not a number 2b + 1 ̸= 0 NaN

CSE1002 (Data in Java) Floating-Point © 1 April 2024 42 / 80

IEEE754

Execute TestFloat.java to show bit patterns for

Float.NAN
Float.POSITIVE_INFINITY
Float.MAX_VALUE
Float.MIN_VALUE
0.1

and so on.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 43 / 80

http://www.cs.fit.edu/~ryan/java/programs/float/TestFloat.java

float

The float data type is a single-precision 32-bit IEEE 754 floating point. Its range of
values is beyond the scope of this discussion, but is specified in section 4.2.3 of the
Java Language Specification. As with the recommendations for byte and short, use
a float (instead of double) if you need to save memory in large arrays of floating
point numbers. This data type should never be used for precise values, such as
currency. For that, you will need to use the java.math.BigDecimal class instead.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 44 / 80

double

The double data type is a double-precision 64-bit IEEE 754 floating point. Its
range of values is beyond the scope of this discussion, but is specified in section
4.2.3 of the Java Language Specification. For real numbers, this data type is
generally the default choice. As mentioned above, this data type should never be
used for precise values, such as currency.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 45 / 80

All the primitive, numeric data in Java are limited (obviously you can only represent
232 or 264 numbers). This is a lot of numbers, but we have the expectation that
one does not run out of numbers and this causes trouble in some contexts.

Even worse, the mathematics of computer numbers, is not the same as “real”
mathematical numbers and this causes a great deal of trouble.

To ameliorate the these problems the Java libraries provide arbitrary-precision
signed decimal numbers java.lang.BigDecimal and arbitrary-precision integers
java.lang.BigInteger. They are not primitive data types, but they have many
of the same operations as the primitive data types.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 46 / 80

Consider the difference between precise and imprecise quantities.
1 Can you measure temperature exactly? No.
2 Can you measure velocity exactly? No.
3 Can you measure position exactly? No.

But, can you measure money exactly? Yes.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 47 / 80

Block, Effective Java, Item 48: Avoid float and double, if exact answers are
required.

The float and double types are designed primarily for scientific and
engineering calculations. They perform binary floating-point arithmetic,
which was carefully designed to furnish accurate approximations quickly
over a broad range of magnitudes. They do not, however, provide exact
results and should not be used where exact results are required. The
float and double types are particularly ill-suited for monetary calculations
because it is impossible to represent 0.1 (or any other negative power of
ten) as a float or double exactly.

Read “What every computer scientist should know about floating point arithmetic”
by D. Goldberg, ACM Computing Surveys, volume 23, number 1, 1991, pages 5–48.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 48 / 80

Consider the following program.
public final class Monetary {

private static final String FMT =
" Bought %d items @ $%.2f; funds remaining $%.2f%n";

public static void main (final String [] args) {
final double price = 0.10;
double funds = 2.00;
int items = 0;
while (funds >= price) {

funds -= price;
items ++;

}
System .out. format (FMT , items , price , funds);

}
}

CSE1002 (Data in Java) Floating-Point © 1 April 2024 49 / 80

The output is a surprising:

Bought 19 items @ $0.10; funds remaining $0.10

because the number 0.1 cannot be represented exactly in binary.

The problem can be avoided by using BigDecimal which does not represent
numbers in binary digits.

(Of course, everything is binary in a computer; it is just that BigDecimal uses
some bit patterns to represent decimal digits.)

CSE1002 (Data in Java) Floating-Point © 1 April 2024 50 / 80

import java.math. BigDecimal ;

public final class Monetary2 {

private static final String FMT =
" Bought %d items @ $%s; funds remaining $%s%n";

public static void main (final String [] args) {
final BigDecimal price = new BigDecimal (".10");
BigDecimal funds = new BigDecimal ("2.00");
int items = 0;
while (funds. compareTo (price) >= 0) {

funds = funds. subtract (price);
items ++;

}
System .out. format (FMT , items , price , funds);

}
}

Bought 20 items @ $0.10; funds remaining $0.00

CSE1002 (Data in Java) Floating-Point © 1 April 2024 51 / 80

Binary Fractions
How is .1 represented on a computer?
Fractions are the sum of negative powers of two: 0.1 = 1/16 + 1/32 + 1/256 · · · .
Binary powers (positive and negative) of two:

3 8.0
2 4.0
1 2.0
0 1.0

-1 0.5
-2 0.25
-3 0.125
-4 0.0625
-5 0.03125
-6 0.015625
-7 0.0078125

CSE1002 (Data in Java) Floating-Point © 1 April 2024 52 / 80

An illustration of a simple algorithm to convert a tenth to a binary fraction.
0.1 0.
0.1 × 2 = 0.2 < 1 0.0
0.2 × 2 = 0.4 < 1 0.00
0.4 × 2 = 0.8 < 1 0.000
0.8 × 2 = 1.6 ≥ 1 0.0001
0.6 × 2 = 1.2 ≥ 1 0.00011
0.2 × 2 = 0.4 < 1 0.000110
0.4 × 2 = 0.8 < 1 0.0001100
0.8 × 2 = 1.6 ≥ 1 0.00011001
0.6 × 2 = 1.2 ≥ 1 0.000110011
0.2 × 2 = 0.4 < 1 0.0001100110

0.1 (decimal) = 0.00011001100110011 . . . (binary)
It may come as a surprise that terminating decimal fractions can have
non-terminating expansions in binary. (But not the other way around.) Meaning
that some (finite) decimal fractions cannot be represented precisely in a finite
number of bits.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 53 / 80

It seems “unfair” that all binary fractions can be converted to decimal fractions,
but not vice versa. A decimal fraction is a fraction with a power of 10 (101, 102,
etc.) in the denominator.

Exact decimal fractions for each power of two:

16 8 4 2 1 0.5 0.25 0.125 0.0625 0.03125

CSE1002 (Data in Java) Floating-Point © 1 April 2024 54 / 80

0.10 in IEEE754

In Java, floating-point numbers can be read in and out (or, equivalently, converted
to a string and back) without loss by avoiding base 10.

System.out.format ("f = %f %a %s %08x %s%n", d, d,
Float.toString(d), Float.floatToIntBits(d), Float.toHexString(d));

f = 0.100000 0x1.99999ap-4 0.1 3dcccccd 0x1.99999ap-4

sign bit = 0
exponent (8 bits) = 01111011, 123; exp = -4
mantissa (23 bits) = 10011001100110011001101

CSE1002 (Data in Java) Floating-Point © 1 April 2024 55 / 80

Hexadecimal Floating-Point Literals

Hexadecimal floating-point literals originated in C99 and were later included in a
revision of the IEEE 754 floating-point standard.
sign, significand, and exponent fields defining a finite floating-point value; sign ’0x’
significand ’p’ exponent. This syntax allows the literal

0x1.8p1

to be to used represent the value 3; 1.816 × 21 = 1.510 × 2 = 3. More usefully, the
maximum value of can be written as 0x1.fffffffffffffp1023 and the minimum
value of 2−1074 can be written as 0x1.0P-1074 or 0x0.0000000000001P-1022,
which maps easily to the various fields of the floating-point representation and is
much more perspicacious than the raw-bit encoding.
In addition, "printf" facility including the %a format for hexadecimal floating-point.

CSE1002 (Data in Java) Floating-Point © 1 April 2024 56 / 80

Wrapper Classes

boolean Boolean
char Character
byte Bytes
short Short
int Integer

long Long
float Float

double Double
Void

Corresponding to each primitive data type there is a
Java class, known as its wrapper class.

Using wrapper classes, all data (including primitive
data) can be considered objects. Thus a pleasing
simplicity is achieved.

CSE1002 (Data in Java) Wrapper Classes © 1 April 2024 57 / 80

Wrapper Classes

Instances of the wrapper class act as data just as the primitive data types to. So,
an instance of java.lang.Integer is a lot like int. These wrapper class allows
data of each primitive type to be used as an object. This redundancy is especially
significant in the connection to generics which can only be used with objects
(non-primitive data).
final ArrayList <Integer > list = new ArrayList <> (); // legal
final var list = new ArrayList <Integer > (); // legal
final ArrayList <int > list = new ArrayList <> (); // NOT legal

final Integer [] a = new Integer [5]; // legal
final int [] b = new int [5]; // legal
a[0] = b[0]; // legal; auto boxing
b[0] = a[0]; // legal; auto unboxing

CSE1002 (Data in Java) Wrapper Classes © 1 April 2024 58 / 80

Wrapper Classes

Leaving aside generics (a future topic), wrapper class have another purpose.
These class holds a few static methods that make the use of the primitive data
type more convenient, for examples, methods to convert between strings and the
data type.
public static void main (final String [] a) {

final int n = Integer . parseInt (a[0]); /* primitive */
final double x = Double . parseDouble (a[1]); /* primitive */
final boolean b = Boolean . parseBoolean (a[2]); /* primitive */
final BigInteger big = new BigInteger (a[3]); /* object */

}

CSE1002 (Data in Java) Wrapper Classes © 1 April 2024 59 / 80

ParseInt in Integer class

parseInt ("42") // returns 42
parseInt ("0", 10) // returns 0
parseInt ("473", 10) // returns 473
parseInt ("+42", 10) // returns 42
parseInt (" -0", 10) // returns 0
parseInt ("-FF", 16) // returns -255
parseInt (" 1100110 ", 2) // returns 102
parseInt (" 2147483647 ", 10) // returns 2147483647
parseInt (" -2147483648 ", 10) // returns -2147483648
parseInt (" 2147483648 ", 10) // throws NumberFormatException
parseInt ("99", 8) // throws NumberFormatException
parseInt ("Kona", 10) // throws NumberFormatException
parseInt ("Kona", 27); // returns 411787

CSE1002 (Data in Java) Wrapper Classes © 1 April 2024 60 / 80

Wrapper Classes

There is an important implementation distinction which primitive types which are
said to be “unboxed” and data of the wrapper classes which are said to be
“boxed.” We discuss this later.

The programmer chooses one or the other, but Java converts back and forth
implicitly making them appear the same to the programmer.
public static void main (final String [] args) {

final long defaultValue = 234L;

// Note auto boxing and un - boxing
final long g = Long. getLong (" sysPropKey ", defaultValue);
final Long h = 10L * defaultValue ;
final long i = 20L * h;

}

CSE1002 (Data in Java) Wrapper Classes © 1 April 2024 61 / 80

String Objects

String literals have special syntax:
" ... "

This raises the questions what can be a part of a string and how can a double
quote be included in a string.

Do not confuse character escape sequences with Unicode escapes or the format
specifiers used in format strings in conjunction with printf.

CSE1002 (Data in Java) Strings © 1 April 2024 62 / 80

Character Escape

Escape Sequence Description
\t Insert a tab in the text at this point.
\b Insert a backspace in the text at this point.
\n Insert a newline in the text at this point.
\r Insert a carriage return in the text at this point.
\f Insert a formfeed in the text at this point.
\’ Insert a single quote character in the text at this point.
\" Insert a double quote character in the text at this point.
\\ Insert a backslash character in the text at this point.

CSE1002 (Data in Java) Strings © 1 April 2024 63 / 80

java.lang.String
Text Blocks

[As brought up in the section of lexems/literals/string.]
An example of text blocks can be found on-line in this program: Block.java

CSE1002 (Data in Java) Strings © 1 April 2024 64 / 80

http://www.cs.fit.edu/~ryan/java/programs/string/Block.java

java.lang.String

In many cases it is more efficient to use the class java.lang.StringBuilder
than java.lang.String.

java.lang.String is a immutable class and java.lang.StringBuilder is a
mutable class. Immutable classes will cause fewer programming errors, mutable are
more efficient to use in some circumstances. This topic will be discussed later.

CSE1002 (Data in Java) Strings © 1 April 2024 65 / 80

java.lang.String

An immutable sequence of characters.

int length() string length
char charAt(int i) ith character

String substring(int i,int j) ith - j-1 characters
boolean equals(Object o) test for same string

int compareTo(String s) lexicographic ordering

CSE1002 (Data in Java) Strings © 1 April 2024 66 / 80

java.lang.StringBuilder

A mutable sequence of characters.

int length() string length
char charAt(int i) ith character
void setCharAt(int i) set ith character

String substring(int i,int j) ith - j-1 characters
boolean equals(Object o) pointer equality

StringBuilder does not implement comparable.
http://www.javafaq.nu/java-article641.html
Know the Java API for String and StringBuilder! (StringBuffer class is
obsolete.)

CSE1002 (Data in Java) Strings © 1 April 2024 67 / 80

http://www.javafaq.nu/java-article641.html

java.lang.StringBuilder

• A mutable sequence of characters.
• This class extends the Object class. The implication of class inheritance will

be discussed alter.
• Has numerous operations that change the string: append, insert, delete,

replace, reverse, setCharAt, deleteCharAt
• BTW used to implement the ’+’ operator.

new StringBuilder (). append ("abc")
. append ("xyz"). toString ()

• Pitfalls. equals() same as == and does not implement comparator
sb1. toString (). equals (sb2. toString ())
sb1. toString (). compareTo (sb2. toString ())

CSE1002 (Data in Java) Strings © 1 April 2024 68 / 80

Equality

While on the subject of equality . . .

• for primitive data use ==
• for objects use (the instance method) equals()

Unfortunately for some objects equals() has not been implemented in the Java
API. in the way one expects. So, we must:

• for arrays use Arrays.equals()
• for java.lang.StringBuilder use

sb1. toString (). equals (sb2. toString ())

CSE1002 (Data in Java) Strings © 1 April 2024 69 / 80

An array constains a fixed number of spots for values. The values in an array are
called elements.

• Creating an array of any type
• Assigning elements
• Accessing elements (zero indedexing)
• Size of an array
• IndexOutOfBoundsException
• Iterating (for, for each)
• Array values
• Array wrapper class
• Printing arrays Arrays.toString()
• Sorting arrays Arrays.sort()
• Subroutines may take arrays as parameters and return arrays as results

CSE1002 (Data in Java) Arrays © 1 April 2024 70 / 80

Arrays

• Create, Triangle, Bool, Copy, Sort. Section 1.4, page 89.
• java.util.Arrays

CSE1002 (Data in Java) Arrays © 1 April 2024 71 / 80

http://java.sun.com/javase/6/docs/api/java/util/Arrays.html

Arrays
final double [] a = new double [27];
for (int i=0; i<a. length ; i++) {

a[i] = Math. random ();
}

for (int i=0; i<a. length ; i++) {
System .out. printf ("%6.2f%n", a[i])

}
// Or , even easier ...
System .out. println (Arrays . toString (a));

double max = Double . NEGATIVE_INFINITY ;
for (int i=0; i<a. length ; i++) {

if (a[i]>max) max=a[i];
}
// Or , even easier ...
for (double d: a) if (d>max) max=d;

CSE1002 (Data in Java) Arrays © 1 April 2024 72 / 80

Arrays

Something everybody should know:
final int [] a = {4 ,2 ,8 ,4 ,7};
System .out. println (Arrays . toString (a));

Produces the output:
[4, 2, 8, 4, 7]

CSE1002 (Data in Java) Arrays © 1 April 2024 73 / 80

Arrays

final int [] cost= new int [n];
Arrays .fill (cost , Integer . MAX_VALUE);

CSE1002 (Data in Java) Arrays © 1 April 2024 74 / 80

Arrays

float [] a = {45.1 , 32.9 , 74.3};
int n = 5;
float [] b = Arrays . copyOf (a, n);
assert b. length ==5;

float [] a = {45.1 , 32.9 , 74.3 , 4.8};
int from = 1; // index , inclusive
int to = 3; // index , exclusive
float [] b = Arrays . copyOfRange (a, from , to);
assert b. length ==to -from;

CSE1002 (Data in Java) Arrays © 1 April 2024 75 / 80

Arrays

The “for each” loop is often used with arrays:
double sum = 0.0;
final double [] ar = {2.3 , 6.93 , 0.011};
for (int i=0; i<a. length ; i++) {

sum += a[i];
}

for (double d: ar) {
sum += d;

}

CSE1002 (Data in Java) Arrays © 1 April 2024 76 / 80

[This does not really belong here.] Conditional expression:
int max;
if (a>b) {

max = a;
} else {

max = b;
}
max = (a>b) ? a : b;

CSE1002 (Data in Java) Arrays © 1 April 2024 77 / 80

Enum

Build your own data type with a small, fixed number of values.
enum Color {RED , WHITE , BLUE}

An example program using enums: Block.java

CSE1002 (Data in Java) Enumeration Types © 1 April 2024 78 / 80

http://www.cs.fit.edu/~ryan/java/programs/string/Block.java

Enum

public final class Card {
public enum Suit {CLUBS , DIAMONDS , HEARTS , SPADES }
public enum Rank {

DEUCE , THREE , FOUR , FIVE , SIX , SEVEN , EIGHT ,
NINE , TEN , JACK , QUEEN , KING , ACE

}

final Rank rank;
final Suit suit;

}

CSE1002 (Data in Java) Enumeration Types © 1 April 2024 79 / 80

Enum

enum Direction {
RD(+2,-1), RU (+2 ,+1) , LU(-2,+1), LD(-2,-1),
UL(-1,+2), UR (+1 ,+2) , DL(-1,-2), DR (+1 , -2);
private int dx ,dy;
Direction (int dx , int dy) {

this.dx=dx; this.dy=dy;
}
public final Square move (Square p) {

return new Square (p.x+dx ,p.y+dy);
}

}

CSE1002 (Data in Java) Enumeration Types © 1 April 2024 80 / 80

	Primitive Data Types
	Floating-Point
	Wrapper Classes
	Strings
	Arrays
	Enumeration Types

