
Objectives

Some terms related to translation systems:
• transcompilation
• batch processing
• compiling
• interpretation
• interactive systems – “read-eval-print-loop” (REPL)

A programming language is distinct from its implementation.

Translation and Compilation © 1 April 2024 1 / 102

Objectives

Types of code:
• Source code
• Bytecode
• Assembly code
• Machine code

Translation strategies:
• Ahead-of-time (AOT). Translation prior to running the program.
• Just-in-time (JIT). Translation while running the program.

Translation and Compilation © 1 April 2024 2 / 102

Objectives

Notable compilers:
• GCC
• Clang (LLVM)
• ifort for Intel, IBM/Power Fortran, Cray (all commercial compilers)

Notable virtual machines:
• Java virtual machine
• Common Language Runtime (CLR)

Translation and Compilation © 1 April 2024 3 / 102

Literature

Besides Wikipedia and textbooks on compiler construction we have:
1 Scott 4th, Section 1.4, page 17ff
2 Loudin & Lambert 3rd, Section 1.5, page 18ff
3 Sebesta, Chapter 1

Translation and Compilation © 1 April 2024 4 / 102

High-Level Languages

High-level languages are created to make programming easier for people and reduce
the tedious detail of programming with the instructions of the (low-level) computer
hardware.

Computer manufacturers are likewise free to concentrate on economical and
powerful hardware without directly addressing the need for an interface for people.

Programming language translation systems (and operating systems) make the
hardware usable.

Translation and Compilation © 1 April 2024 5 / 102

Implementation

A program in a high-level programming language must be prepared for execution,
because these languages are designed to accommodate humans and not be
executed directly by the hardware.

This translation is too complex, tedious and error prone to be done manually. In
fact, other computer programs translate the program to instructions a machine can
understand.

IBM’s Fortran programming language was first to make this clear to a wide
audience.

Translation and Compilation © 1 April 2024 6 / 102

PDP8 in which the programs were toggled in

Translation and Compilation © 1 April 2024 7 / 102

Ultimately you must bring the program source code to the computer.

A high-level programming language has one or more translators or implementations
which translates all programs in that language.

For example, there are the GNU gfortran and g77 compilers, not to mention
many commercial compilers for Fortran.
There are the Sun/Oracle JDK tools for Java, the IBM Jikes compiler for Java (no
longer being maintained), and the GNU gcj compiler (also no longer current).
The GNU gcc compiler for the C programming language and Clang another open
source translation system for the C programming language.
Numerous commercial Ada compilers (Cray, Harris, Rational/IBM, etc.) and GNU
GNAT.

Translation and Compilation © 1 April 2024 9 / 102

https://en.wikipedia.org/wiki/Clang

Definition
Batch processing is execution of a series of programs (“jobs”) on a computer
without manual intervention. This is in contrast to “online” or interactive
programs which prompt the user for such input.

An executable file, executable code, executable program, or simply an executable or
a binary is a data file that can be executed directly by the hardware over and over
again.

For example, once your payload programs where translated to executable files, they
could be run over and over again every week for years.

Translation and Compilation © 1 April 2024 10 / 102

Terminology

• transcompilation : source to source translation
• compiling (originally): linking subroutines
• compiling: translating to native (for some real machine) code Compilers

sometimes produce an object module which can then then be executed again
and again on different data.

• interpreting: running the program under the control of a software program
• interactive language system: read-eval-print loop (REPL). Evaluate often

means interpret; but could be extended to compile and run.
• just-in-time compiling: a hybrid approach of translation during execution to

machine code or software emulation whichever is predicted to make execution
faster

Translation and Compilation © 1 April 2024 11 / 102

https://en.wikipedia.org/wiki/Source-to-source_compiler

Transcompilation

Definition
The translation of source code in one programing langauge into equivalent source
code of another prgramming language.

For example, the Chicken programming language, a dialect of Scheme, has an
implementation in which Chicken programs are translated into the C programming
language.

Although we may consider the C programming language to be a high-level
programming, it is pretty “low” and is often used as a target in transcompilers.
Also, C has implementations that produce efficient native code.

Translation and Compilation © 1 April 2024 12 / 102

https://en.wikipedia.org/wiki/Chicken_(Scheme_implementation)

Compiler

In its usual English meaning, a compiler is one that collects and edits material
written by others into a collection.

. . . compiled by Carl Parrish, . . . edited by F. Bauer and J. Eickel

Translation and Compilation © 1 April 2024 13 / 102

Compiler

A compiler was originally a program that “compiled” subroutines. When
in 1954 the combination “algebraic compiler” came into use, or rather into
misuse, the meaning of the term had already shifted into the present one.

Friedrich L. Bauer, “Historical remarks on compiler construction”, in Compiler
Construction: An Advanced Course, edited by F. L. Bauer and Jürgen Eickel,
Lecture Notes in Computer Science #21, Springer-Verlag, Berlin, pages 603-621,
1974.

Translation and Compilation © 1 April 2024 14 / 102

Compiler

A compiler translates commands to native code.

Translation and Compilation © 1 April 2024 15 / 102

Traditional Compiler

source
program

compiler

executable
file

user
input

executable/file

output

Translation and Compilation © 1 April 2024 16 / 102

Traditional Compiler With Runtime System

source
program

compiler

runtime
system

executable
file

user
input

executable
file

output

Translation and Compilation © 1 April 2024 17 / 102

Traditional Compiler With Dynamic Loading

source
program

compiler

dynamic
loader

executable
file

user
input

exec
file

run
sys

output

Translation and Compilation © 1 April 2024 18 / 102

General Translation System

source
program

user
input

translator

abstract
instructions

Translation and Compilation © 1 April 2024 19 / 102

Bytecode Translation System

source
program

translator

byte
code

byte
code

user
input

virtual
machine

output

Translation and Compilation © 1 April 2024 20 / 102

Read, Eval, Print Loop (REPL)

Some sort of cycle

program,input

read, eval, print
system

output

Translation and Compilation © 1 April 2024 21 / 102

Interpreter

An interpreter performs commands immediately.

Translation and Compilation © 1 April 2024 22 / 102

Traditional Compilation

[See tikz picture translations systems.tex]

compiler/translate

Translation and Compilation © 1 April 2024 23 / 102

Traditional Compilation

A program — software written by people like you – translates the high-level
language into a form the computer can execute.

The source program — a text file — is the input, and the output is an an
executable file for some machine.

Translation and Compilation © 1 April 2024 24 / 102

How do you write a compiler?
How do you solve a large problem?

One important approach is to break it into well-defined sub-problems.
(A compiler is just a big program.)

Translation and Compilation © 1 April 2024 25 / 102

How do you write a compiler?
How do you solve a large problem?

One important approach is to break it into well-defined sub-problems.
(A compiler is just a big program.)

Translation and Compilation © 1 April 2024 26 / 102

Compilation Steps

When examined in more detail, compilation takes several steps.
1 preprocessing, macro processing
2 translation (compiling)
3 assembling mnemonics
4 linking other code and preparing for execution

Macros (a dangerous facility) are found in C and C++. Java does some limited
preprocessing to translate character sets and Unicode escapes.

Translation and Compilation © 1 April 2024 27 / 102

A More Detailed View

Input: source program
1 lexical analysis
2 syntax analysis
3 intermediate code generation
4 code optimization
5 assembly code generation

Output: Assembly program identical to the input.

Translation and Compilation © 1 April 2024 28 / 102

Phases of the Typical Compiler

Translation and Compilation © 1 April 2024 29 / 102

Phases of the Typical Compiler

Translation and Compilation © 1 April 2024 30 / 102

Phases of the Typical Compiler

Translation and Compilation © 1 April 2024 31 / 102

Phases of the Typical Compiler

Translation and Compilation © 1 April 2024 32 / 102

Language Systems

Language translation and execution systems are big and complex, because
computers can execute larger and larger programs faster and faster. The
programmer or program user rarely sees the individual steps.
IDEs, interactive language systems, JIT compilers, incremental compilers, and
dynamic linking all conspire to hide and blur the important individual steps. (But
make programming development faster and easier).
Let us take a brief look at some of this individual steps.

Translation and Compilation © 1 April 2024 33 / 102

Assembly

Assembler: mnemonic, human readable, text code –> machine code (binary,
architecture dependent)
Loader/OS : collects, relocates machine code into an executable image
Relocating loaders
dynamic linking loaders

compiler/load

Translation and Compilation © 1 April 2024 34 / 102

Interpreting

An interpreter is a program that takes another program as input and executes it,
possibly line-by-line, possibly without translating it to an intermediate form.
Sometimes the translation is to an intermediate form which may be executed by a
virtual or abstract machine. Examples of abstract machines include: Forth virtual
machine, p-code machine (Pascal), Python virtual machine, SECD machine
(lambda calculus), Smalltalk virtual machine, Warren Abstract machine (Prolog).
As hardware gets faster, the advantage of portability overtakes the disadvantage of
slow emulation, and multi-language virtual machines are becoming more important:
the Microsoft .Net platform (C#, F#, Managed C++, Python) and the Java
virtual machine (Java, Jython, Ada, and many other languages). Since these
abstract machines execute complex source languages the machines must also
provide the run-time support these languages expect.

Translation and Compilation © 1 April 2024 35 / 102

Interpreting (continued)

Since an abstract machine may be abstract by virtue of having abstract
instructions or by having abstract capabilities, the term abstract/virtual machine
may be ambiguous and lead to confusion.
Abstract instructions are likely to be slower than real instructions because of the
extra software overhead of interpretation. Abstract capabilities are likely to be
faster than programmer-supplied code because of the skill of the implementers and
the use of the underlying machine.
The key aspect of an interpreter is emulation. The key aspect of a run-time system
is support of functionality.

Translation and Compilation © 1 April 2024 36 / 102

Interpreting (continued)

Superficially, we equate abstract and virtual machine.
Technically, abstract connotes emulation, and virtual functionality.
Hence, JVM is so-called to emphasize that the computing base of Java is beyond a
mere ordinary machine and it does not mean the language is emulated. The base
could be realized in hardware (but attempts so-far have not proved popular). JVMs
could be interpreters, JITs, or the native executable code from compilers.

Translation and Compilation © 1 April 2024 37 / 102

Run-time system

Modern, high-level languages require that a program have additional support
during execution. This is sometimes called the run-time system. The run-time
system contains lots of code that is not written by the programmer, but was
written by others and used when a program in the language is run.

The run-time system may provide support for mathematical operations (e.g.,
exponentiation), floating-point arithmetic, complex numbers, high-level input and
output functions, concurrency, memory management (e.g., garbage collection), etc.
Modern languages tend to have larger and larger support systems.

Translation and Compilation © 1 April 2024 38 / 102

The work of the run-time system may require assistance of the translation system,
for example, to insert reference counting code, debugging code, etc. The run-time
system must be available to every program in the language so it can run correctly,
but none of the functionality might actually be used.

Translation and Compilation © 1 April 2024 39 / 102

Run-time system

The distinction between the run-time system and the standard libraries is not
always clear. Take these two statements in Java:
printf ("%d %s %f", 4, this , Math.sqrt (2.0));
new Thread (). start ();

Both statements appear to be just simple calls to library routines, but ultimately
considerable code gets executed which the programmer did not, could not, or
would not write (in Java).

The run-time system may depend on detailed knowledge about the program itself
and the hardware. A library routine usually depends on just its arguments.

Translation and Compilation © 1 April 2024 40 / 102

A language with a small run-time system like C, is efficient in time and space, but
provides less of a virtual platform to support the programmer.
The programmer needs to write more code and know more about the hardware,
but may be able to utilize the hardware more directly.

Translation and Compilation © 1 April 2024 41 / 102

Back to translation . . .

Translation and Compilation © 1 April 2024 42 / 102

Some Important Unix Development Tools

• gcc
• gas
• gdb
• make
• objdump
• uname
• od

Translation and Compilation © 1 April 2024 43 / 102

http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/GNU_Assembler
http://en.wikipedia.org/wiki/Gdb
http://en.wikipedia.org/wiki/make
http://en.wikipedia.org/wiki/Objdump
http://en.wikipedia.org/wiki/Uname
http://en.wikipedia.org/wiki/Od_%28Unix%29

• assembler – like a compiler, a translator from source code to target code; it
converts symbolic machine code to binary machine code, and from symbolic
data to binary data.

• linker – combines one or more program object files and probably some library
objects files into one executable file.

• loader – An integrated part of the operating system (which makes it essentially
invisible) which loads the content of an executable code file into memory.

Translation and Compilation © 1 April 2024 44 / 102

Compilation — gcc

include <stdio.h>

int
main () {

fputs ("Hello world !\n", stdout);
return 0;

}

Translation and Compilation © 1 April 2024 45 / 102

Compilation — gcc

Originally written primarily in C.

GCC started out using LALR parsers generated with Bison, but gradually switched
to hand-written recursive-descent parsers for C++ in 2004, and for C and
Objective-C in 2006. Currently [when?] all front ends use hand-written
recursive-descent parsers.

In August 2012, the GCC steering committee announced that GCC now uses C++
as its implementation language. This means that to build GCC from sources, a
C++ compiler is required that understands ISO/IEC C++03 standard.

Translation and Compilation © 1 April 2024 46 / 102

Compilation — gcc

The standard compiler releases since 7 include front ends for C (gcc), C++ (g++),
Objective-C, Objective-C++, Fortran (gfortran), Ada (GNAT), and Go (gccgo).
Version 9.1 added support for D. Versions prior to GCC 7 also supported Java (gcj).

The Fortran front end was g77 before version 4.0, which only supports FORTRAN
77. In newer versions, g77 is dropped in favor of the new GNU Fortran front end
(retaining most of g77’s language extensions) that supports Fortran 95 and large
parts of Fortran 2003 and Fortran 2008 as well.

Backends: ARM, IA-32 (x86), PA-RSIC, MIPS, PowerPC, Sparc, x86-64

Translation and Compilation © 1 April 2024 47 / 102

Translation and Compilation © 1 April 2024 48 / 102

GENERIC is an intermediate representation language used as a “middle end" while
compiling source code into executable binaries. A subset, called GIMPLE, is
targeted by all the front ends of GCC.
GCC Architecture
Translation and Compilation © 1 April 2024 49 / 102

https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_Compiler_Architecture

Compilation — gcc

Now the preprocessing is integrated with the tokenization in cc1.
The options -save-temps will save the intermediate files *.i *.s by running cc1
twice.

Translation and Compilation © 1 April 2024 50 / 102

Compilation — gcc

-no-integrated-cpp
Perform preprocessing as a separate pass before compilation. By default, GCC
performs preprocessing as an integrated part of input tokenization and parsing. If
this option is provided, the appropriate language front end (cc1, cc1plus, or cc1obj
for C, C++, and Objective-C, respectively) is instead invoked twice, once for
preprocessing only and once for actual compilation of the preprocessed input. This
option may be useful specify an alternate preprocessor or perform additional
processing of the program source between normal preprocessing and compilation.

Translation and Compilation © 1 April 2024 51 / 102

Compilation — gcc 5.4.0

date: Thu, 10 Jan 2019 at 09:32am EST

node: cs-compute
machine: x86_64
OS: GNU/Linux
processor: x86_64

GCC version: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609

bytes name file type
86 hello.c C source, ASCII text

534 hello.s assembler source, ASCII text
1584 hello.o ELF 64-bit LSB relocatable, x86-64
8648 hello ELF 64-bit LSB executable, x86-64

Translation and Compilation © 1 April 2024 52 / 102

Compilation — gcc 5.4.0
$ gcc -o hello -v hello.c

Target: x86_64-linux-gnu

[No cpp0!]

cc1 -v hello.c -o /tmp/cctmeoRd.s

as -v --64 -o /tmp/ccLzLAho.o /tmp/cctmeoRd.s
GNU assembler version 2.26.1 (x86_64-linux-gnu)

using BFD version (GNU Binutils for Ubuntu) 2.26.1

collect2 -m elf_x86_64 --hash-style=gnu -z relro -o hello
.../x86_64-linux-gnu/crt1.o .../x86_64-linux-gnu/crti.o
.../crtbegin.o .../crtend.o .../crtn.o
/tmp/ccLzLAho.o -lgcc -lc

Translation and Compilation © 1 April 2024 53 / 102

Compilation — gcc
%gcc -o hello -v hello.c
Reading specs from /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/specs
gcc version 2.95.3 20010315 (release)
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/cpp0

-lang-c -v -D__GNUC__=2 -D__GNUC_MINOR__=95 -Dsparc -Dsun -Dunix -D__svr4__ -D__SVR4 -D__sparc__ -D__sun__ -D__unix__ -D__svr4__ -D__SVR4 -D__sparc -D__sun -D__unix
-Asystem(unix) -Asystem(svr4) -D__GCC_NEW_VARARGS__ -Acpu(sparc) -Amachine(sparc) hello.c /var/tmp/cc5V4Wy1.i

GNU CPP version 2.95.3 20010315 (release) (sparc)
#include "..." search starts here:
#include <...> search starts here:
/software/solaris/gnu/include
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/../../../../sparc-sun-solaris2.6/include
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/include
/usr/include

End of search list.
The following default directories have been omitted from the search path:
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/../../../../include/g++-3

End of omitted list.
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/cc1

/var/tmp/cc5V4Wy1.i -quiet -dumpbase hello.c -version -o /var/tmp/cc47fQVU.s
GNU C version 2.95.3 20010315 (release) (sparc-sun-solaris2.6) compiled by GNU C version 3.0.3.
/software/solaris/gnu/bin/as -V -Qy -s -o /var/tmp/ccNHrBWS.o /var/tmp/cc47fQVU.s

GNU assembler version 2.11.2 (sparc-sun-solaris2.6) using BFD version 2.11.2
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/collect2

-V -Y P,/usr/ccs/lib:/usr/lib -Qy -o hello /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/ctr1.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/crti.o /usr/ccs/lib/values-Xa.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/crtbegin.o -L/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3 -L/software/solaris/gnu/sparc-sun-solaris2.6/lib -L/usr/ccs/bin -L/usr/ccs/lib -L/software/solaris/gnu/lib /var/tmp/ccNHrBWS.o -lgcc -lc -lgcc /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/crtend.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/crtn.o
GNU ld version 2.11.2 (with BFD 2.11.2)

Supported emulations:
elf32_sparc

Translation and Compilation © 1 April 2024 54 / 102

crt1.o is the main program.

Translation and Compilation © 1 April 2024 55 / 102

crt0 (also known as c0) is a set of start-up routines linked into a C program that
performs any initialization work required before calling the program’s main
function. It generally takes the form of an object file called crt0.o, often written in
assembly language, which is automatically included by the linker into every
executable file it builds.
crt0 contains the most basic parts of the runtime library. As such, the exact work
it performs depends on the program’s compiler, operating system and C standard
library implementation. Beside the initialization work required by the environment
and tool chain, crt0 can perform additional operations defined by the programmer,
such as executing C++ global constructors and C functions carrying the GCC’s
((constructor)) attribute.
“crt” stands for “C runtime”, and the zero stands for “the very beginning”.
However, when programs are compiled using GCC, it is also used for languages
other than C. Alternative versions of crt0 are available for special usage scenarios;
for example, the profiler gprof requires its programs to be compiled with gcrt0.

Translation and Compilation © 1 April 2024 56 / 102

cs> gcc -S hello.c -o hello.s

.file "hello.c"
gcc2_compiled .:
. section ". rodata "

.align 8
.LLC0:

.asciz "Hello world !\n"
. section ".text"

.align 4

. global main

.type main ,# function

.proc 04
main:

!# PROLOGUE # 0
save %sp , -112, %sp
!# PROLOGUE # 1
sethi %hi(. LLC0), %o1
or %o1 , %lo(. LLC0), %o0
sethi %hi(__iob +16) , %o2
or %o2 , %lo(__iob +16) , %o1
call fputs , 0
nop
mov 0, %i0
b .LL2
nop

.LL2:
ret
restore

.LLfe1:
.size main ,. LLfe1 -main
.ident "GCC: (GNU) 2.95.3 20010315 (release)"

gcc compiles C tonative code

Translation and Compilation © 1 April 2024 57 / 102

cs> gcc -S hello.c -o hello.s

.file "hello.c"
gcc2_compiled .:
. section ". rodata "

.align 8
.LLC0:

.asciz "Hello world !\n"
. section ".text"

.align 4

. global main

.type main ,# function

.proc 04
main:

!# PROLOGUE # 0
save %sp , -112, %sp
!# PROLOGUE # 1
sethi %hi(. LLC0), %o1
or %o1 , %lo(. LLC0), %o0
sethi %hi(__iob +16) , %o2
or %o2 , %lo(__iob +16) , %o1
call fputs , 0
nop
mov 0, %i0
b .LL2
nop

.LL2:
ret
restore

.LLfe1 :
.size main ,. LLfe1 -main
.ident "GCC: (GNU) 2.95.3 20010315 (release)"

gcc compiles C tonative code

Translation and Compilation © 1 April 2024 58 / 102

Assemble, Link

Assemble assembly code to ELF relocatable, and link to ELF executable module.

Translation and Compilation © 1 April 2024 59 / 102

ELF Executable File
7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 01 00 03 00
01 00 00 00 00 00 00 00 00 00 00 00 fc 00 00 00 00 00 00 00
34 00 00 00 00 00 28 00 0b 00 08 00 8d 4c 24 04 83 e4 f0 ff
71 fc 55 89 e5 51 83 ec 14 a1 00 00 00 00 89 44 24 0c c7 44
24 08 0d 00 00 00 c7 44 24 04 01 00 00 00 c7 04 24 00 00 00
00 e8 fc ff ff ff b8 00 00 00 00 83 c4 14 59 5d 8d 61 fc c3
48 65 6c 6c 6f 20 77 6f 72 6c 64 21 0a 00 00 47 43 43 3a 20
28 55 62 75 6e 74 75 20 34 2e 33 2e 32 2d 31 75 62 75 6e 74
75 31 32 29 20 34 2e 33 2e 32 00 00 2e 73 79 6d 74 61 62 00
2e 73 74 72 74 61 62 00 2e 73 68 73 74 72 74 61 62 00 2e 72
65 6c 2e 74 65 78 74 00 2e 64 61 74 61 00 2e 62 73 73 00 2e
72 6f 64 61 74 61 00 2e 63 6f 6d 6d 65 6e 74 00 2e 6e 6f 74
65 2e 47 4e 55 2d 73 74 61 63 6b 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 1f 00 00 00 01 00 00 00
06 00 00 00 00 00 00 00 34 00 00 00 44 00 00 00 00 00 00 00
00 00 00 00 04 00 00 00 00 00 00 00 1b 00 00 00 09 00 00 00
00 00 00 00 00 00 00 00 80 03 00 00 18 00 00 00 09 00 00 00
01 00 00 00 04 00 00 00 08 00 00 00 25 00 00 00 01 00 00 00
03 00 00 00 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 04 00 00 00 00 00 00 00 2b 00 00 00 08 00 00 00
03 00 00 00 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 04 00 00 00 00 00 00 00 30 00 00 00 01 00 00 00
02 00 00 00 00 00 00 00 78 00 00 00 0e 00 00 00 00 00 00 00
00 00 00 00 01 00 00 00 00 00 00 00 38 00 00 00 01 00 00 00
00 00 00 00 00 00 00 00 86 00 00 00 25 00 00 00 00 00 00 00
00 00 00 00 01 00 00 00 00 00 00 00 41 00 00 00 01 00 00 00
00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 01 00 00 00 00 00 00 00 11 00 00 00 03 00 00 00
00 00 00 00 00 00 00 00 ab 00 00 00 51 00 00 00 00 00 00 00
00 00 00 00 01 00 00 00 00 00 00 00 01 00 00 00 02 00 00 00
00 00 00 00 00 00 00 00 b4 02 00 00 b0 00 00 00 0a 00 00 00
08 00 00 00 04 00 00 00 10 00 00 00 09 00 00 00 03 00 00 00
00 00 00 00 00 00 00 00 64 03 00 00 1c 00 00 00 00 00 00 00
00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
04 00 f1 ff 00 00 00 00 00 00 00 00 00 00 00 00 03 00 01 00
00 00 00 00 00 00 00 00 00 00 00 00 03 00 03 00 00 00 00 00
00 00 00 00 00 00 00 00 03 00 04 00 00 00 00 00 00 00 00 00
00 00 00 00 03 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 07 00 00 00 00 00 00 00 00 00 00 00 00 00 03 00 06 00
09 00 00 00 00 00 00 00 44 00 00 00 12 00 01 00 0e 00 00 00
00 00 00 00 00 00 00 00 10 00 00 00 15 00 00 00 00 00 00 00
00 00 00 00 10 00 00 00 00 68 65 6c 6c 6f 2e 63 00 6d 61 69
6e 00 73 74 64 6f 75 74 00 66 77 72 69 74 65 00 12 00 00 00
01 09 00 00 2d 00 00 00 01 05 00 00 32 00 00 00 02 0a 00 00

Translation and Compilation © 1 April 2024 60 / 102

Executable and Linkable Format (ELF, formerly called Extensible Linking Format)
is a common standard file format for executables, object code, shared libraries, and
core dumps. First published in the System V Application Binary Interface
specification, and later in the Tool Interface Standard, it was quickly accepted
among different vendors of Unix systems. In 1999 it was chosen as the standard
binary file format for Unix and Unix-like systems on x86 by the 86open project. It
has replaced a.out and COFF formats in Unix-like operating systems.
ELF is flexible and extensible, and it is not bound to any particular processor or
architecture. This has allowed it to be adopted by many different operating
systems on many different platforms.

Translation and Compilation © 1 April 2024 61 / 102

Compilation
0000 7f45 4c46 0102 0100 0000 0000 0000 0000 del E L F soh stx soh nul nul nul nul nul nul nul nul nul
0020 0001 0002 0000 0001 0000 0000 0000 0000 nul soh nul stx nul nul nul soh nul nul nul nul nul nul nul nul
0040 0000 00e8 0000 0000 0034 0000 0000 0028 nul nul nul h nul nul nul nul nul 4 nul nul nul nul nul (
0060 000a 0007 9de3 bf90 1300 0000 9012 6000 nul nl nul bel gs c ? dle dc3 nul nul nul dle dc2 ‘ nul
0100 1500 0000 9212 a000 4000 0000 0100 0000 nak nul nul nul dc2 dc2 sp nul @ nul nul nul soh nul nul nul
0120 b010 2000 1080 0002 0100 0000 81c7 e008 0 dle sp nul dle nul nul stx soh nul nul nul soh G ‘ bs
0140 81e8 0000 0000 0000 4865 6c6c 6f20 776f soh h nul nul nul nul nul nul H e l l o sp w o
0160 726c 6421 0a00 0000 0047 4343 3a20 2847 r l d ! nl nul nul nul nul G C C : sp (G
0200 4e55 2920 322e 3935 2e33 2032 3030 3130 N U) sp 2 . 9 5 . 3 sp 2 0 0 1 0
0220 3331 3520 2872 656c 6561 7365 2900 002e 3 1 5 sp (r e l e a s e) nul nul .
0240 7379 6d74 6162 002e 7374 7274 6162 002e s y m t a b nul . s t r t a b nul .
0260 7368 7374 7274 6162 002e 7465 7874 002e s h s t r t a b nul . t e x t nul .
0300 7265 6c61 2e74 6578 7400 2e64 6174 6100 r e l a . t e x t nul . d a t a nul
0320 2e62 7373 002e 726f 6461 7461 002e 636f . b s s nul . r o d a t a nul . c o
0340 6d6d 656e 7400 0000 0000 0000 0000 0000 m m e n t nul nul nul nul nul nul nul nul nul nul nul
0360 0000 0000 0000 0000 0000 0000 0000 0000 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul
*
0420 0000 001b 0000 0001 0000 0006 0000 0000 nul nul nul esc nul nul nul soh nul nul nul ack nul nul nul nul
0440 0000 0034 0000 0030 0000 0000 0000 0000 nul nul nul 4 nul nul nul 0 nul nul nul nul nul nul nul nul
0460 0000 0004 0000 0000 0000 0021 0000 0004 nul nul nul eot nul nul nul nul nul nul nul ! nul nul nul eot
0500 0000 0000 0000 0000 0000 0368 0000 003c nul nul nul nul nul nul nul nul nul nul etx h nul nul nul <
0520 0000 0008 0000 0001 0000 0004 0000 000c nul nul nul bs nul nul nul soh nul nul nul eot nul nul nul ff
0540 0000 002c 0000 0001 0000 0003 0000 0000 nul nul nul , nul nul nul soh nul nul nul etx nul nul nul nul
0560 0000 0064 0000 0000 0000 0000 0000 0000 nul nul nul d nul nul nul nul nul nul nul nul nul nul nul nul
0600 0000 0001 0000 0000 0000 0032 0000 0008 nul nul nul soh nul nul nul nul nul nul nul 2 nul nul nul bs
0620 0000 0003 0000 0000 0000 0064 0000 0000 nul nul nul etx nul nul nul nul nul nul nul d nul nul nul nul
0640 0000 0000 0000 0000 0000 0001 0000 0000 nul nul nul nul nul nul nul nul nul nul nul soh nul nul nul nul
0660 0000 0037 0000 0001 0000 0002 0000 0000 nul nul nul 7 nul nul nul soh nul nul nul stx nul nul nul nul
0700 0000 0068 0000 0010 0000 0000 0000 0000 nul nul nul h nul nul nul dle nul nul nul nul nul nul nul nul

Translation and Compilation © 1 April 2024 62 / 102

Compilation
hello.o: file format elf32-sparc

Contents of section .text:
0000 9de3bf90 13000000 90126000 15000000‘.....
0010 9212a000 40000000 01000000 b0102000@......... .
0020 10800002 01000000 81c7e008 81e80000

Contents of section .data:
Contents of section .rodata:
0000 48656c6c 6f20776f 726c6421 0a000000 Hello world!....

Contents of section .comment:
0000 00474343 3a202847 4e552920 322e3935 .GCC: (GNU) 2.95
0010 2e332032 30303130 33313520 2872656c .3 20010315 (rel
0020 65617365 2900 ease).

Disassembly of section .text:

00000000 <main>:
0: 9d e3 bf 90 save %sp, -112, %sp
4: 13 00 00 00 sethi %hi(0), %o1
8: 90 12 60 00 mov %o1, %o0 ! 0 <main>
c: 15 00 00 00 sethi %hi(0), %o2

10: 92 12 a0 00 mov %o2, %o1 ! 0 <main>
14: 40 00 00 00 call 14 <main+0x14>
18: 01 00 00 00 nop
1c: b0 10 20 00 clr %i0 ! 0 <main>
20: 10 80 00 02 b 28 <main+0x28>
24: 01 00 00 00 nop
28: 81 c7 e0 08 ret
2c: 81 e8 00 00 restore

Translation and Compilation © 1 April 2024 63 / 102

ELF i386

hello.o: file format elf32-i386

Contents of section .text:
0000 8d4c2404 83e4f0ff 71fc5589 e55183ec .L$.....q.U..Q..
0010 14a10000 00008944 240cc744 24080d00D$..D$...
0020 0000c744 24040100 0000c704 24000000 ...D$.......$...
0030 00e8fcff ffffb800 00000083 c414595dY]
0040 8d61fcc3 .a..

Contents of section .rodata:
0000 48656c6c 6f20776f 726c6421 0a00 Hello world!..

Contents of section .comment:
0000 00474343 3a202855 62756e74 7520342e .GCC: (Ubuntu 4.
0010 332e322d 31756275 6e747531 32292034 3.2-1ubuntu12) 4
0020 2e332e32 00 .3.2.

Translation and Compilation © 1 April 2024 64 / 102

ELF i386 (continued)

hello.o: file format elf32-i386
Disassembly of section .text:

00000000 <main>:
0: 8d 4c 24 04 lea 0x4(%esp),%ecx
4: 83 e4 f0 and $0xfffffff0,%esp
7: ff 71 fc pushl -0x4(%ecx)
a: 55 push %ebp
b: 89 e5 mov %esp,%ebp
d: 51 push %ecx
e: 83 ec 14 sub $0x14,%esp

11: a1 00 00 00 00 mov 0x0,%eax
16: 89 44 24 0c mov %eax,0xc(%esp)
1a: c7 44 24 08 0d 00 00 movl $0xd,0x8(%esp)
21: 00
22: c7 44 24 04 01 00 00 movl $0x1,0x4(%esp)
29: 00
2a: c7 04 24 00 00 00 00 movl $0x0,(%esp)
31: e8 fc ff ff ff call 32 <main+0x32>
36: b8 00 00 00 00 mov $0x0,%eax
3b: 83 c4 14 add $0x14,%esp
3e: 59 pop %ecx
3f: 5d pop %ebp
40: 8d 61 fc lea -0x4(%ecx),%esp
43: c3 ret

Translation and Compilation © 1 April 2024 65 / 102

ELF – Executable and Linkable Format

Translation and Compilation © 1 April 2024 66 / 102

ELF – Executable and Linkable Format

typedef struct {
unsigned char e_ident[16]; /* version and other info */
uint16_t e_type; /* none, relocatable, executable, shared, core */
uint16_t e_machine; /* none, SPARC, Intel, Motorol, MIPS, ... */
uint32_t e_version;
uintN_t e_entry; /* entry point */
...

} ElfN_Ehdr;

Note objdump (GNU/Linux), readelf (Unix), and elfdump (Solaris) all view elf
files. Note otool (Darwin) to view Mach-o files.

Translation and Compilation © 1 April 2024 67 / 102

Mach-O

Translation and Compilation © 1 April 2024 68 / 102

Mach-O

(Pronounced “macho.”)
/* From #include <mach-o/loader.h> */
/* Mach header of the object file for 32-bit architectures. */
struct mach_header

uint32_t magic; /* mach magic number identifier */
cpu_type_t cputype; /* PowerPC, I386 */
cpu_subtype_t cpusubtype; /* machine specifier */
uint32_t filetype; /* object, executable, shared, core,*/
uint32_t ncmds; /* number of load commands */
uint32_t sizeofcmds; /* the size of all the load commands */
uint32_t flags; /* flags */

;

/* Constant for the magic field of the mach_header (32-bit architectures) */
#define MH_MAGIC 0xfeedface /* the mach magic number */
#define MH_CIGAM 0xcefaedfe /* NXSwapInt(MH_MAGIC) */

Translation and Compilation © 1 April 2024 69 / 102

The traditional compiler produces machine instructions to be executed by the CPU.

The traditional compiler produces an executable file which can be used over and
over again.

The traditional compiler links in all the support code. (With dynamic linking the
additional code might not be a part of the initial executable file, but might be
added while the program is running.)

Translation and Compilation © 1 April 2024 70 / 102

Translating Java

A wide range of techniques are used in translating Java into executable form.
Several translators exist (or did exist) for the language.

1 IBM Jikes
2 GNU gcj
3 Sun/Oracle Java 2 SDK

We begin by looking at GNU gcj to see a traditional translator in action. Then we
move to the Sun/Oracle Java 2 SDK and see the important role of byte code.

Translation and Compilation © 1 April 2024 71 / 102

http://www.ibm.com/developerworks/opensource/jikes/
http://gcc.gnu.org/java/
http://java.sun.com/j2se/

Translating Java

A wide range of techniques are used in translating Java into executable form.
Several translators exist (or did exist) for the language.

1 IBM Jikes
2 GNU gcj
3 Sun/Oracle Java 2 SDK

We begin by looking at GNU gcj to see a traditional translator in action. Then we
move to the Sun/Oracle Java 2 SDK and see the important role of byte code.

Translation and Compilation © 1 April 2024 72 / 102

http://www.ibm.com/developerworks/opensource/jikes/
http://gcc.gnu.org/java/
http://java.sun.com/j2se/

Compilation — gcj

public class Hello {

public static void main (String [] args) {
System .out. println ("Hello world!");

}

}

Translation and Compilation © 1 April 2024 73 / 102

Compilation — gcj
Reading specs from /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/specs
Reading specs from /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/../../../libgcj.spec
rename spec lib to liborig
Configured with: ./configure –prefix=/software/solaris/gnu –with-ld=/software/solaris/gnu/bin/ls –with-as=/software/solaris/gnu/as –enable-threads=posix –with-local-prefix=/software/solaris/cmn : (reconfigured) ./configure –prefix=/software/solaris/gnu –with-ld=/software/solaris/gnu/bin/ld –with-as=/software/solaris/gnu/as –enable-threads=posix –with-local-prefix=/software/solaris/cmn
Thread model: posix
gcc version 3.3.2
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/jc1 Hello.java -fuse-divide-subroutine -fcheck-references -fuse-boehm-gc -fkeep-inline-functions -quiet -dumpbase Hello.java -auxbase Hello -g1 -version -o /var/tmp//ccgEgJBv.s

GNU Java version 3.3.2 (sparc-sun-solaris2.9)
compiled by GNU C version 2.95.3 20010315 (release).

GGC heuristics: –param ggc-min-expand=47 –param ggc-min-heapsize=32768
Class path starts here:

./
/software/solaris/gnu/share/java/libgcj-3.3.2.jar/ (system) (zip)

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/../../../../sparc-sun-solaris2.9/bin/as -V -Qy -s -o /var/tmp//cck00sbY.o /var/tmp//ccgEgJBv.s
GNU assembler version 2.14 (sparc-sun-solaris2.9) using BFD version 2.14 20030612
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/jvgenmain Hellomain /var/tmp//ccWJ2hCQ.i
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/cc1 /var/tmp//ccWJ2hCQ.i -quiet -dumpbase Hellomain.c -g1 -version -fdollars-in-identifiers -o /var/tmp//ccgEgJBv.s

GNU C version 3.3.2 (sparc-sun-solaris2.9)
compiled by GNU C version 2.95.3 20010315 (release).

GGC heuristics: –param ggc-min-expand=47 –param ggc-min-heapsize=32768
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/../../../../sparc-sun-solaris2.9/bin/as -V -Qy -s -o /var/tmp//ccqKIYe3.o /var/tmp//ccgEgJBv.s

GNU assembler version 2.14 (sparc-sun-solaris2.9) using BFD version 2.14 20030612
/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/collect2 -V -Y P,/usr/ccs/lib:/usr/lib -Qy -o hello /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/crt1.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/crti.o /usr/ccs/lib/values-Xa.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/crtbegin.o -L/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2 -L/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/../../../../sparc-sun-solaris2.9/lib -L/usr/ccs/bin -L/usr/ccs/lib -L/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/../../.. /var/tmp//ccqKIYe3.o /var/tmp//cck00sbY.o -lgcc_s -lgcc -lgcj -lm -lpthread -lrt -lsocket -ldl -lgcc_s -lgcc -lc -lgcc_s -lgcc -lgcj -lm -lpthread -lrt -lsocket -ldl -lgcc_s -lgcc -lc /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/crtend.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/crtn.o

GNU ld version 2.14 20030612
Supported emulations:
elf32_sparc
elf64_sparc

Translation and Compilation © 1 April 2024 74 / 102

Compilation — gcj

$ gcj -o hello -v Hello.java

Target:

jc1 Hello.java -fuse-boehm-gc -fkeep-inline-functions -quiet -dumpbase
Hello.java -auxbase Hello -g1 -version -o /var/tmp//ccgEgJBv.s

GNU Java version 3.3.2 (sparc-sun-solaris2.9)

as -V -Qy -s -o /var/tmp//cck00sbY.o /var/tmp//ccgEgJBv.s
GNU assembler version 2.14 (sparc-sun-solaris2.9) using BFD version 2.14 20030612

jvgenmain Hellomain /var/tmp//ccWJ2hCQ.i
cc1 /var/tmp//ccWJ2hCQ.i -quiet -dumpbase

Hellomain.c -g1 -version -fdollars-in-identifiers -o /var/tmp//ccgEgJBv.s
GNU C version 3.3.2 (sparc-sun-solaris2.9)

as -V -Qy -s -o /var/tmp//ccqKIYe3.o /var/tmp//ccgEgJBv.s
GNU assembler version 2.14 (sparc-sun-solaris2.9) using BFD version 2.14 20030612

collect2 -V -Y P,/usr/ccs/lib:/usr/lib -Qy -o hello
.../crt1.o .../crti.o /usr/ccs/lib/values-Xa.o .../crtbegin.o

-L
/var/tmp//ccqKIYe3.o /var/tmp//cck00sbY.o
... -lgcj -lm -lpthread -lrt -lsocket -ldl -lgcc_s -lgcc
.../crtend.o .../crtn.o

GNU ld version 2.14 20030612

Translation and Compilation © 1 April 2024 75 / 102

jc1 does the translation (and preprocessing) of the Java source code into assembly
code.

The main program is generated in the C programming language by jvgemain.

Translation and Compilation © 1 April 2024 76 / 102

cs> gcj -S Hello.java -o hello.s

_ZN5Hello4mainEP6JArrayIPN4java4lang6StringEE :
!# PROLOGUE # 0
save %sp , -128, %sp

. LLCFI0 :
!# PROLOGUE # 1
st %i0 , [%fp +68]

.LLBB2:
sethi %hi(_ZN4java4lang6System6class$E), %g1
or %g1 , %lo(_ZN4java4lang6System6class$E), %g1
mov 1, %o4
stb %o4 , [%fp -18]
ldub [%g1 +90] , %g1
sll %g1 , 24, %g1
sra %g1 , 24, %g1
cmp %g1 , 14
bge .LL2
nop
...

gcj compiles Java tonative code

Translation and Compilation © 1 April 2024 77 / 102

cs> gcj -S Hello.java -o hello.s

_ZN5Hello4mainEP6JArrayIPN4java4lang6StringEE :
!# PROLOGUE # 0
save %sp , -128, %sp

. LLCFI0 :
!# PROLOGUE # 1
st %i0 , [% fp +68]

.LLBB2:
sethi %hi(_ZN4java4lang6System6class$E), %g1
or %g1 , %lo(_ZN4java4lang6System6class$E), %g1
mov 1, %o4
stb %o4 , [%fp -18]
ldub [% g1 +90] , %g1
sll %g1 , 24, %g1
sra %g1 , 24, %g1
cmp %g1 , 14
bge .LL2
nop
...

gcj compiles Java tonative code

Translation and Compilation © 1 April 2024 78 / 102

Same kind of assembler output, ELF file, etc, etc.

Translation and Compilation © 1 April 2024 79 / 102

The point is that the traditional compiler produces machine instructions to be
executed by the CPU.
The traditional compiler produces an executable file (object module) which can be
used over and over again.
The traditional compiler links in all the support code. (With dynamic linking the
additional code might not be a part of the initial executable file, but might be
added while the program is running.)

Translation and Compilation © 1 April 2024 80 / 102

Translators, assemblers, and linkers are just program. They are not magic. You can
write one, if you understand what the input is and what the output is.

Translation and Compilation © 1 April 2024 81 / 102

Translation — Sun/Oracle JDK

There are two translation tools in the Sun/Oracle JDK.

javac java
compiler? JVM

Translation and Compilation © 1 April 2024 82 / 102

Translation — Sun JDK

Same program again.

public class HelloWorld {

public static void main (String args []) {
System .out. println ("Hello World!");

}

}

Translation and Compilation © 1 April 2024 83 / 102

Translation — Sun JDK

The output of the javac is a binary file known as a class file. This file contains the
programming instructions in what is known as byte code.
000 ca fe ba be 00 00 00 31 00 1a 0a 00 06 00 0c 09 00 0d
018 00 0e 08 00 0f 0a 00 10 00 11 07 00 12 07 00 13 01 00
036 06 3c 69 6e 69 74 3e 01 00 03 28 29 56 01 00 04 43 6f
054 64 65 01 00 04 6d 61 69 6e 01 00 16 28 5b 4c 6a 61 76
072 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 56 0c 00
090 07 00 08 07 00 14 0c 00 15 00 16 01 00 0c 48 65 6c 6c
108 6f 20 57 6f 72 6c 64 21 07 00 17 0c 00 18 00 19 01 00
126 0a 48 65 6c 6c 6f 57 6f 72 6c 64 01 00 10 6a 61 76 61
144 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 01 00 10 6a 61 76
162 61 2f 6c 61 6e 67 2f 53 79 73 74 65 6d 01 00 03 6f 75
180 74 01 00 15 4c 6a 61 76 61 2f 69 6f 2f 50 72 69 6e 74
198 53 74 72 65 61 6d 3b 01 00 13 6a 61 76 61 2f 69 6f 2f
216 50 72 69 6e 74 53 74 72 65 61 6d 01 00 07 70 72 69 6e
234 74 6c 6e 01 00 15 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f
252 53 74 72 69 6e 67 3b 29 56 00 20 00 05 00 06 00 00 00
270 00 00 02 00 00 00 07 00 08 00 01 00 09 00 00 00 11 00
288 01 00 01 00 00 00 05 2a b7 00 01 b1 00 00 00 00 00 09
306 00 0a 00 0b 00 01 00 09 00 00 00 15 00 02 00 01 00 00
324 00 09 b2 00 02 12 03 b6 00 04 b1 00 00 00 00 00 00

Translation and Compilation © 1 April 2024 84 / 102

Magic Number

Note the magic number of a Java class file. It is “cafebabe.”

There are two meanings for the phrase “magic number.”
1 An indication at the beginning of a file as a hint to the operating system

about the file’s format
2 A number that appears in a the source code of a program that is surprising,

unmotivated, or undocumented.

Translation and Compilation © 1 April 2024 85 / 102

Class File Format

Translation and Compilation © 1 April 2024 86 / 102

Class File Format

Further topics:
1 Bytecode verification
2 Bytecode engineering, e.g.,BCEL from Apache Foundation

Translation and Compilation © 1 April 2024 87 / 102

https://en.wikipedia.org/wiki/Byte_Code_Engineering_Library

Reverse Engineering

You can convert a class back to mnemonics to get an idea of what information is in
the class file.

> javap -c HelloWorld

class HelloWorld extends java.lang.Object {
HelloWorld();

0: aload_0
1: invokespecial #1; //Method java/lang/Object."<init>":()V
4: return

public static void main(java.lang.String[]);
0: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;
3: ldc #3; //String Hello World!
5: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
8: return

}

Translation and Compilation © 1 April 2024 88 / 102

Java virtual machine instructions:
• Load and store (e.g., aload_0, istore)
• Arithmetic and logic (e.g., ladd, fcmpl)
• Control transfer (e.g., ifeq, goto)
• Type conversion (e.g., i2b, d2i)
• Object creation and manipulation (e.g., new, putfield)
• Operand stack management (e.g., swap, dup2)
• Method invocation and return (e.g., invokespecial, areturn)

Translation and Compilation © 1 April 2024 89 / 102

Virtual machine instructions have the advantage of being portal (because it is
relatively easy to write a virtual machine, and virtual impossible to translate a set
of machine instructions into the machine instructions of another kind of machine.)

A class file is machine independent, like a PNG or JPG file.

Translation and Compilation © 1 April 2024 90 / 102

Java gained wide-spread notice in the 1990s by providing the first mechanism for
dynamic content on the WWW: applets.

Translation and Compilation © 1 April 2024 91 / 102

Java – Just-In-Time

Although the byte-code of a Java program can be interpreted, the byte-code could
be just as well be compiled to native code. It is even possible to compile only some
of the byte-code—the parts that are executed a lot—and not other parts.

Sun Microsystems calls the program java a “launcher” as details of the actions
differ from typical compilers or interpreters. Such a translation/execution system
does not have a good name — a virtual machine, perhaps — This hybrid
interpreter/compiler may only compile parts of the byte-code by a JIT compiler
when (and if) they are reached or executed often.

Translation and Compilation © 1 April 2024 92 / 102

Unlike the traditional compiler, the JIT compiler does not begin compiling to
native code until the user of the program launches execution!

Compilation of programs is so fast these days that the user does not usually mind
the extra execution time devoted to compilation. (If the program is run by the
developer and modified frequently, the total amount of time might even be less
than the traditional compilation approach.)

Furthermore, java does not even look for the class files containing the byte code
to translate until after the user launches the programs. This make Java difficult to
deploy as the user my be uncertain if all the class files are available when the
program is launched.

Translation and Compilation © 1 April 2024 93 / 102

Just-in-time (JIT)

Definition
Just-in-time (JIT) compilation is a way of translating virtual machine instructions
or higher-level code during the execution of a program rather than prior to
execution.

Because the system has the higher-level code and user-input at the same time
1 more nuanced, optimized decisions can be made about the translation, and
2 no executable file is produced which can be used later on other input.

Translation and Compilation © 1 April 2024 94 / 102

Ahead-of-time (AOT)

Definition
Ahead-of-time compilation (AOT compilation) is the act of translating a
higher-level programming language such as Ada or C++, or an intermediate
representation such as Java bytecode, into native machine code that can be
execute natively on particular hardware.

It is usually implied that a binary, executable file is produced which can be run at a
later time over and over again when provided with the input.

The translation happens ahead of the user provided input.

Translation and Compilation © 1 April 2024 95 / 102

Do not confuse a language with its implementation.

Translation and Compilation Benchmarks © 1 April 2024 96 / 102

Benchmarks mean very little.

Translation and Compilation Benchmarks © 1 April 2024 97 / 102

1.0 C++ GNU g++ 1.35
1.7 Java 6 -server 2.29
1.7 C GNU gcc 2.31
2.3 Haskell GHC 3.14
2.7 Intel Fortran 3.71
2.8 Pascal Free Pascal 3.74
3.3 C# Mono 4.44
3.8 Ada 2005 GNAT 5.09
12 Java 6 -Xint 16.03
17 Smalltalk VisualWorks 23.12
26 Python 35.43
33 Mozart/Oz 44.62
44 Perl 59.81
51 PHP 68.79
77 Ruby 104.01

Computer Language Benchmarks Game. January 2009. Platform: Ubuntu, 2.4Ghz
Intel Q6600 quad-core. First number is ratio to GNU C++ of the third column:
geometric mean of the measure for the language to the best measurement for any
language over all 11 benchmarks.
Translation and Compilation Benchmarks © 1 April 2024 99 / 102

Translation and Compilation Benchmarks © 1 April 2024 100 / 102

Box-and-whisker plot : Maximum, third quartile, median, first quartile, minimum

[Ordered how? Interquartile range (IQR)?]

How not to lie with statistics

Translation and Compilation Benchmarks © 1 April 2024 101 / 102

https://en.wikipedia.org/wiki/Box_plot
https://dl.acm.org/doi/10.1145/5666.5673

Unqualified statements such as
1 “Language X is compiled.”
2 “Language X is slow.”

are nonsense, because the speed of execution and the type of translation depend on
the implementation and the program. Of course, the language may influence or
seek to influence the implementation. A language may be closely associated with a
particular implementation. But a language itself is not an implementation.

Translation and Compilation Benchmarks © 1 April 2024 102 / 102

	Benchmarks

