
Controlling actions (assignment statements) with if, and iteration
if only half the story

Classes © 1 April 2024 1 / 42

Published in 1976, this book
was one of the most influential
computer science books of the
time, and was used extensively
in education.

Classes © 1 April 2024 2 / 42

Classes © 1 April 2024 3 / 42

Niklaus Emil Wirth (1934–2024)

Ph.D 1963 from Berkeley in Electrical Engineering “A generalization of ALGOL”,
Professor of Computer Science at ETH Zurich from 1968 until he retired in 1999.
In 1984 he received the ACM Turing Award and in 1987 the Computer Pioneer
award from the IEEE. Algol committee, ALGOL W, Pascal, Euclid, Modula,
Oberon.
Known for his pioneering research in programming languages and algorithms, Wirth
was the recipient of the 1984 ACM A.M. Turing Award, the IEEE Emanuel R. Piore
Award, and the Marcel Benoist Prize, among other honors. The chief designer of
several programming languages: ALGOL W, Pascal, Euclid, Modula, Oberon.

Classes © 1 April 2024 4 / 42

Trilingual Pun: Pascal/English/German

When asked how to pronounce his name, he is said to have answered that if you
call him by name, it is “virt” (the German pronunciation), and if you call him by
value, it is “worth” (the American pronunciation). (The German word “Wert”
means “value” in English.)

In response to the surprising call-by-name parameter passing in Algol-60, Wirth
introduced call-by-value in the Pascal programming language. Call-by-value is the
only parameter passing mechanism in Java; C and C++ have call-by-reference in
addition.

Classes © 1 April 2024 5 / 42

Wirth’s Law

Wirth’s Law asserts that software execution is slowing down faster than hardware is
speeding up. “Groves giveth, and Gates taketh away." That is, as the speed of
calculation rises, thanks to Intel’s Andy Grove, the amount of calculation needed to
do the job rises also, thanks to Microsoft’s Bill Gates, leaving hardly any gains for
the user to enjoy. Some assume that the ignorant or tolerant user is responsible.
ETH Zurich’s Niklaus Wirth, who actually credits the law to former IBM Research
scientist Martin Reiser, claims that software companies’ pressure to roll out new
products, not user tolerance, is chiefly responsible for feature bloat.
Wirth’s article crediting Reiser, “A Plea for Lean Software,” appeared in IEEE
Computer, February 1995, volume 28, number 2.

Classes © 1 April 2024 6 / 42

• Procedural Abstraction
• Data Abstraction

Classes © 1 April 2024 7 / 42

Classes
Java is an object-oriented language. Object-oriented languages try (unsuccessfully)
to make everything simple by making everything a class. The programmer has but
one tool and must keep in mind the different objectives (not just data creation).

What is a class? It is the most prominent feature of the Java language for
incorporating all program parts, for creating instances of data structures, and for
the design of other classes.

Classes © 1 April 2024 8 / 42

“Abraham Maslow once said that to him who has only a hammer, the
whole world looks like a nail,” said Joseph Weizenbaum, a professor of
computer science at M.I.T.

4 April 1982, New York Times, Computers Alter Lives of Pupils and Teachers by
Edward B. Fiske

In 1966 the prominent psychologist Abraham Maslow published “The Psychology
of Science: A Reconnaissance”.

Classes © 1 April 2024 9 / 42

Java classes are complicated. However, creating simple data structures has been
made easier by the introduction of a kind of Java class called a record in Java.
Data abstraction is important, not hard, so we illustrate creating data in Java.

• Main.java
• DB.java

Data design is so important that it is studied in a data structures course. To be
prepared to do that, we need to introduce generics and interfaces in Java. But first
we examine Java classes in detail.

Classes © 1 April 2024 10 / 42

http://www.cs.fit.edu/~ryan/java/programs/records/Main.java
http://www.cs.fit.edu/~ryan/java/programs/records/DB.java

public record Point(double x, double y) {}

The output of javap -p Point:
public final class Point extends java.lang. Record {

private final double x;
private final double y;
public Point(double , double);
public java.lang. String toString ();
public final int hashCode ();
public final boolean equals (java.lang. Object);
public double x();
public double y();

}

Classes © 1 April 2024 11 / 42

The Three I’s
There are three disparate goals for which a Java class can be used.

1 incorporation (cue static)

2 instantiation (cue new)

3 inheritance (cue extends)

Classes © 1 April 2024 12 / 42

Classes I

The class in Java is fundamental unit of program construction. And it has syntax:
class ClassName {

// Contents of class:
// static fields
// static methods
// static inner classes
// [records and enums are implicitly static]
// static initializer blocks

}

The class is the principle unit of compilation.
These members of the class are said to be “static”, “class”, or “class-wide”
members.

Classes © 1 April 2024 13 / 42

Classes II

A Java class is (also) a template for creating new instances called objects.
class ClassName {

// Instance fields
// Constructors
// Instance methods

}

These members of the class are said to be “instance” members.
Instances are constructed using the keyword new followed by the name of the class.
Arguments are permitted in construction, provided an appropriate constructor has
been defined.

Two types: data structures and simulation objects

Classes © 1 April 2024 14 / 42

Classes III

Java classes can be used to derive other classes. This permits data structures to be
organized to take advantage of their commonality (if any). Cues: the keyword
extends and the related keyword implements.
class ClassName extends SuperClass {

// Changes and additions to the super class
// additional member fields and methods

}

Classes © 1 April 2024 15 / 42

Syntax

A class declaration may be prefixed by a number of modifiers (some meaningful
only for inner classes):

class modifiers
public unrestricted (access modifier)

protected restricted (access modifier)
private local only (access modifier)

abstract incomplete, uninstantiable
static independent
final all methods final, no subclasses

strictfp all methods, operations FP-strict (obsolete)

Classes © 1 April 2024 16 / 42

Incorporation

Some examples of incorporation from the Java API:
For example, the math functions
class Math {

static double PI
static int abs ()
static double sqrt ()
static double atan ()
static double pow ()

}

Classes © 1 April 2024 17 / 42

Incorporation

Some examples of incorporation from the Java API:
For example, the standard I/O package in the System class:
class System {

static InputStream in
static OutputStream out
static OutputStream err

}

Classes include facilities; your cue is the keyword static.

Classes © 1 April 2024 18 / 42

Incorporation

Other examples:
class Arrays {

static String toString ()
static <T> T[] copyOfRange ()
static void sort ()
static void binarySearch ()

}

class Integer {
static int parseInt ()
static String toString ()

}

Note: wrapper classes are used as templates for data, as well.

Classes © 1 April 2024 19 / 42

Incorporation

Also, classes very often hold (incorporate) the entry point.
class MyClass {

static final int PARAMETER // ... static member field
static void subProcedure () // ... static subprocedure
public static void main // ... point of entry for OS

}

Classes © 1 April 2024 20 / 42

Incorporation

How are these facilities accessed?

⟨class name⟩ . ⟨static member name⟩

double pi = Math.PI;
double x = Math.sqrt (3.14159);
Arrays .sort (new int [] {4 ,2 ,8 ,1 ,9 ,2 ,7 ,6 ,5 ,8});
int i = Integer . parseInt ("3");
String s = Integer . toString (3, 8);

Classes © 1 April 2024 21 / 42

Classes are sometimes used for incorporation (though sometimes all uses are mixed
together).

• Junk.java
• Main.java
• Supervisor.java
• Init.java (static initialization blocks)

Classes © 1 April 2024 22 / 42

http://www.cs.fit.edu/~ryan/java/programs/incorporation/Junk.java
http://www.cs.fit.edu/~ryan/java/programs/incorporation/Main.java
http://www.cs.fit.edu/~ryan/java/programs/incorporation/Supervisor.java
http://www.cs.fit.edu/~ryan/java/programs/misc/Init.java

Class Design

Definition (Cohesion)
A Java class has cohesion if all the members constitute a unified, easily identified
purpose.

Classes © 1 April 2024 23 / 42

II: Instantiation

Classes © 1 April 2024 24 / 42

Instantiation

A class as a template stamps out new data. Each instance has its own data as
opposed to shared (static) data and as opposed to local data in a method.

Classes © 1 April 2024 25 / 42

Data Structures

Data structure. A data structure is a way of organizing and accessing data.
We have seen integers, strings, streams, scanners, arrays, lists, and so on.
It is important to distinguish between the data structure (the organization), and
the particular data (the instance).
In Java, the class is used as a model or a template for organizing data, and an
instance of a template is obtained using the keyword new. Instances of classes are
also called objects.

• Main.java (object creation and method invocation)

Classes © 1 April 2024 26 / 42

http://www.cs.fit.edu/~ryan/java/programs/misc/Main.java

Access of Instance Members

How are objects (instances of classes) created?

Definition
A constructor in Java is a class member with special syntax that is used to create
an instance of a class (in the heap) and it usually initializes the attributes.

Classes © 1 April 2024 27 / 42

Access of Instance Members

How are these facilities accessed?

⟨class instance⟩ . ⟨instance member name⟩

String line = stdin. nextLine ();
int length = "abc". length ();

Classes © 1 April 2024 28 / 42

Classes © 1 April 2024 29 / 42

Using class instances.
• Main.java
• CopyText.java
• StringFest.java

Classes © 1 April 2024 30 / 42

http://www.cs.fit.edu/~ryan/java/programs/misc/Main.java
http://www.cs.fit.edu/~ryan/java/programs/io/CopyText.java
http://www.cs.fit.edu/~ryan/java/programs/string/StringFest.java

Class as Data Structure

public class SimpleTime {
int hours;
int minutes ;

}

One top-level class per file or compilation complications.

Classes © 1 April 2024 31 / 42

• basic/SimpleTime1.java and basic/TimeMain.java
• basic/SimpleTime2.java
• basic/SimpleTime3.java
• basic/SimpleTime4.java
• basic/SimpleTime5.java
• basic/SimpleTime6.java
• basic/SimpleTime7.java

Classes © 1 April 2024 32 / 42

http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTime1.java
http://www.cs.fit.edu/~ryan/java/programs/basic/TimeMain.java
http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTime2.java
http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTime3.java
http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTime4.java
http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTime5.java
http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTime6.java
http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTime7.java

Hiding Declarations

• basic/Hide.java – illegal
• basic/Eclipse.java – legal, but style error

Classes © 1 April 2024 33 / 42

http://www.cs.fit.edu/~ryan/java/programs/basic/Hide.java
http://www.cs.fit.edu/~ryan/java/programs/basic/Eclipse.java

Java 16 Records

• basic/SimpleTime8.java
• basic/SimpleTime9.java
• basic/SimpleTimeA.java
• basic/SimpleTimeB.java
• basic/SimpleTimeC.java

Classes © 1 April 2024 34 / 42

http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTime8.java
http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTime9.java
http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTimeA.java
http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTimeB.java
http://www.cs.fit.edu/~ryan/java/programs/basic/SimpleTimeC.java

Simple, complete classes as data structures.
• class/Point2DR.java class/Point2D.java [this; constructor

chaining]
• class/CircleR.java class/Circle.java [composing data]
• class/LineR.java class/Line.java
• class/Polynomial.java [Arrays need private access.]
• class/Person.java [Mutable objects need private access],

class/Person8.java
• class/Elephant.java [Private constructors are useful.]

Classes © 1 April 2024 35 / 42

http://www.cs.fit.edu/~ryan/java/programs/class/Point2DR.java
http://www.cs.fit.edu/~ryan/java/programs/class/Point2D.java
http://www.cs.fit.edu/~ryan/java/programs/class/CircleR.java
http://www.cs.fit.edu/~ryan/java/programs/class/Circle.java
http://www.cs.fit.edu/~ryan/java/programs/class/LineR.java
http://www.cs.fit.edu/~ryan/java/programs/class/Line.java
http://www.cs.fit.edu/~ryan/java/programs/class/Polynomial.java
http://www.cs.fit.edu/~ryan/java/programs/class/Person.java
http://www.cs.fit.edu/~ryan/java/programs/class/Person8.java
http://www.cs.fit.edu/~ryan/java/programs/class/Elephant.java

Summary

• classes can be nested (use keyword static)
• constructors
• private constructors
• constructor chaining
• blank-finals
• immutable classes
• singleton pattern (factory methods)
• eclipsing declarations

Classes © 1 April 2024 36 / 42

Recursion

• basic/Body1.java
• basic/Body2.java
• basic/Body3.java
• basic/Body5.java
• basic/Body6.java
• basic/Body7.java

Classes © 1 April 2024 37 / 42

http://www.cs.fit.edu/~ryan/java/programs/basic/Body1.java
http://www.cs.fit.edu/~ryan/java/programs/basic/Body2.java
http://www.cs.fit.edu/~ryan/java/programs/basic/Body3.java
http://www.cs.fit.edu/~ryan/java/programs/basic/Body5.java
http://www.cs.fit.edu/~ryan/java/programs/basic/Body6.java
http://www.cs.fit.edu/~ryan/java/programs/basic/Body7.java

In addition to classes for immutable data structures, classes are used to create
objects of simulation. The data structures have state that changes during the
lifetime of the object.

Classes © 1 April 2024 38 / 42

• basic_class/Cell1.java
• basic_class/Cell2.java
• basic_class/Cell3.java
• basic_class/Cell5.java
• basic_class/Cell6.java

Classes © 1 April 2024 39 / 42

http://www.cs.fit.edu/~ryan/java/programs/basic_class/Cell1.java
http://www.cs.fit.edu/~ryan/java/programs/basic_class/Cell2.java
http://www.cs.fit.edu/~ryan/java/programs/basic_class/Cell3.java
http://www.cs.fit.edu/~ryan/java/programs/basic_class/Cell5.java
http://www.cs.fit.edu/~ryan/java/programs/basic_class/Cell6.java

Class as Simulation

• draw/Image.java
• class/BankAccount.java . assert statement, preconditions,

postconditions
• assert/GeoPoint.java . class invariants
• simulation/Aircraft.java

Classes © 1 April 2024 40 / 42

http://www.cs.fit.edu/~ryan/java/programs/draw/Image.java
http://www.cs.fit.edu/~ryan/java/programs/class/BankAccount.java
http://www.cs.fit.edu/~ryan/java/programs/assert/GeoPoint.java
https://en.wikipedia.org/wiki/Class_invariant
http://www.cs.fit.edu/~ryan/java/programs/simulation/Aircraft.java

A precondition is a requirement that the caller of a method must meet.
If a method is called in violation of a precondition, the method is not
responsible for computing the correct result.

Horstman, page 293.

A precondition is an assertion that is guaranteed to be true after a
method is called.

A class invariant is an assertion true when a class is constructed and
after all methods.

Classes © 1 April 2024 41 / 42

[Go to other next PDF: objects]

Classes © 1 April 2024 42 / 42

