
CSE1002 Lecture Notes
Program Analysis

Ryan Stansifer

Florida Institute of Technology
Melbourne, Florida USA 32901

http://www.cs.fit.edu/~ryan/

1 April 2024

CSE1002 (Program Analysis) © 1 April 2024 1 / 96

http://www.cs.fit.edu/~ryan/


What is CS?

A definition of computer science: The study of information, protocols
and algorithms for idealized and real automata.

Peter J. Denning et al. (Jan.
1989). “Computing as a
discipline”. In: Communications
of the ACM 32.1, pages 9–32,
page 12

One important aspect of the study is efficiency. We wish to examine performance

and introduce Big-Oh notation which is used to categorize computer programs
quite usefully.
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Worst Case (Aside)

“Usefully” does not mean that Big-Oh captures the whole story.
Merge sort O(n log n) comparisons, but Quick sort O(n2) comparisons is “better,”
and Tim’s sort is even “better.”
Adaptive sort takes advantage of the existing order of the input to try to achieve
better times, so that the time taken by the algorithm to sort is a smoothly growing
function of the size of the sequence and the disorder in the sequence. In other
words, the more presorted the input is, the faster it should be sorted.
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Textbook
Sedgewick and Wayne, Section 4.1 “Performance” in Introduction to Programming
in Java.

Goodrich and Tamassia, Chapter 4 “Analysis Tools” in Data Structures and
Algorithms in Java
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Two approaches

1 Analytical. Static analysis of the program. Requires program source.
(Mathematical guarantees.)

2 Empirical. Time experiments running the program with different inputs.
(Scientific method.)
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Profiling

Measuring the time a program takes is difficult. Many factors influence the time:
processor, OS, multitasking, input data, resolution of the clock, etc. It is difficult
to predict the performance of a program in general based on timing experiments.
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Steps, Worse Case

It is plausible that the time it takes a program to execute is proportional to the
number of instructions it executes.
This work that a program does can be approximated by the number of operations
or steps it calls for–operations like assignment, IO, arithmetic operations and
relational comparisons. The size of the steps–10 machine instructions, 100 machine
instructions—does not matter in the long run.

When counting the steps of a program we always assume the worse. We assume
that the program will “choose” the path that requires the most steps. This way we
get an upper bound on the performance.
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Input

Useful programs take different steps depending on the input. So, the number of
steps a program takes for some particular input does not tell us how good the
program is. A bad algorithm may take few steps for some small, simple input; and
a good algorithm may take many steps for some large, complex input.
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Input

Suppose we count the number of steps in terms of the size of the input, call it N.
The number of steps is a function of N. For the program which reads N numbers
in order to sum them, the number of steps might be f (N) = 2N + 1.
What is the size of the input? Many algorithms have a parameter that affects the
running time most significantly. For example, the parameter might be the size of
the file to be sorted or searched, the number of characters in a string.
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The number of steps a programs takes is a function of the size of the input.
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Asymptotic Notation

We wish to compare functions carefully by their growth. Unimportant information
should be ignored, like “rounding” where

1, 000, 001 ≈ 1, 000, 000

And we want the “big picture.” This means that a function f may be smaller than a
function g for some particular values, but “in the long run” it may be larger than g .
Fortunately, a precise definition that captures our intuition (most of the time) is
possible.
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[Detour to pictures comparing.pdf]
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Preliminaries

We want a precise, i.e., mathematical way to compare functions.
What kind of functions? Although the usual approach applies to functions
f : R → R, our context is more restrictive, so we simplify.

We consider our domain to be discrete “sizes,” i.e., N, and our domain to be
discrete resource units “steps” or “bytes,” i.e., N.

Since the input to a program cannot have negative size, and the resources
consumed by a program cannot be negative, we restrict ourselves to functions
whose graphs are in the first quadrant.
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Preliminaries

Let f (n) and g(n) be functions mapping from natural numbers N (non-negative
integers) to N.

f : N → N and g : N → N

We need to use traditional, real-valued functions like f (n) = log n, but we can
quietly think of them rounded up to the nearest integer, as in f (n) = ⌈log n⌉.
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Big-Oh – g(n) in O(f (n))

D. Knuth, SIGACT News, 1976.
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Donald E. Knuth (1938–)

Introduction to Knuth’s organ composition YouTube [17 minutes]
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https://www.youtube.com/watch?v=_gRD9k_impU
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Science is knowledge which we understand so well that we can teach it
to a computer; and if we don’t fully understand something, it is an art to
deal with it.

Knuth, Turing Award Lecture, 1974.

Science is what we understand well enough to explain to a computer.
Art is everything else we do.

Knuth, 1995, foreword to the book A = B, page xi.
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[Software] is harder than anything else I’ve ever had to do.

Knuth, Notices of the AMS, 49 (3), 2002, page 320, 2002

Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what to
do, let us concentrate rather on explaining to human beings what we want
a computer to do.

Knuth, “Literate Programming,” The Computer Journal, volume 27, 1984.

The point in my words: “Writing a computer program or a proof requires
understanding the solution to a problem so well you can explain it to a mindless
automaton, and yet express it so eloquently a fellow human can rapidly apprehend
the method.”
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Biographies appear in:
• O’Regan, Giants of Computing: A Compendium of Select, Pivotal Pioneers,

2013
• Shasha and Lazere, Out of Their Minds: The Lives and Discoveries of 15

Great Computer Scientists, 1995
• Slater, Portraits in Silicon, 1987
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Preliminaries

To define the Big-Oh notation, we first give a diagram, then Knuth’s original
definition (in which the roles of f and g are swapped), and finally our definition.
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Big-Oh – f (n) is O(g(n))
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Categorizing functions [ f in g ]

Let f (n) and g(n) be functions mapping non-negative numbers to non-negative
numbers.

Big-Oh. f (n) is O(g(n)) if there is a constant c > 0 and a constant n0 ≥ 1 such
that f (n) ≤ c · g(n) for every number n ≥ n0.

Big-Omega. f (n) is Ω(g(n)) if there is a constant c > 0 and a constant n0 ≥ 1
such that f (n) ≥ c · g(n) for every integer n ≥ n0.

Big-Theta. f (n) is Θ(g(n)) if f (n) is O(g(n)) and g(n) is Ω(f (n)).

Little-Oh. f (n) is o(g(n)) if for any c > 0 there is n0 ≥ 1 such that f (n) ≤ c · g(n)
for every number n ≥ n0.

Little-Omega. f (n) is Ω(g(n)) if for any c > 0 there is n0 ≥ 1 such that
f (n) ≥ c · g(n) for every number n ≥ n0.
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f (n) is O(g(n)) ≈ x ≤ y
f (n) is Θ(g(n)) ≈ x = y
f (n) is Ω(g(n)) ≈ x ≥ y
f (n) is o(g(n)) ≈ x < y
f (n) is ω(g(n)) ≈ x > y

The analogy is rough since some functions are not comparable, while any two real

numbers are comparable.
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Categorizing functions

There is a family or related notions, however, O(n) is the only notion required at
the moment.
You are asked to commit the definition to memory now. Eventually (e.g., in
Algorithms and Data Structures), you will be expected to have a deeper
understanding of these notions.
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Big-Oh and Connection to Limits [ f in g ]

Let f (n) and g(n) be functions mapping non-negative real numbers to
non-negative real numbers.

Big-Oh. f (n) is O(g(n)) if there is a constant c > 0 and a constant n0 ≥ 1 such
that f (n) ≤ c · g(n) for every number n ≥ n0.

Lemma. f (n) is O(g(n)) if (but not only if) limn→∞ f (n)/g(n) = L where
0 < L < ∞.
Lemma. f (n) is O(g(n)) if, and only, if lim supn→∞ f (n)/g(n) = L where
0 < L < ∞.
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Relationships

O(g(n))
Θ(g(n))

Ω(g(n))

ω(g(n))o(g(n))
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Relationships

O(g(n)) Θ(g(n)) Ω(g(n))

0 < L < ∞ ω(g(n))
L = ∞

o(g(n))
L = 0

Here L denotes the limit
lim

n→∞
f (n)
g(n)
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Polynomial

In mathematics, a polynomial is an expression consisting of indeter-
minates and coefficients, that involves only the operations of addition,
subtraction, multiplication, and positive-integer powers of variables. An
example of a polynomial of a single indeterminate x is x2 − 4x + 7.

From Wikipedia
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Example

The function f (n) = 3 · n + 17 is O(n). (Here g(n) = n.)
Proof. Take c = 4 and n0 = 17. Then f (n) = 3 · n + 17 ≤ c · g(n) for every
n ≥ n0. because 3 · n + 17 ≤ 4 · n = 3 · n + n for every n ≥ 17.

f (n) = 4 · n + 17 is O(n)?

f (n) = 3 · n + 88 is O(n)?
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Properties

In what follows, let d(n), f (n), g(n), and h(n) be functions mapping nonnegative
integers to nonnegative integers.

Example: 5n4 + 6n3 + 7n2 + 4n + 1 is in O(n4). Because
5n4 + 6n3 + 7n2 + 4n + 1 ≤ (5 + 6 + 7 + 4 + 1)n4 = 23n; take n ≥ 1 and c = 23.
In general, for all polynomials

f (n) = a0 + a1n + · · · + adnd ,

f (n) is O(nd). Because

f (n) = a0 + a1n + · · · + adnd ≤ (a0 + a1n + · · · + ad)nd

take n ≥ 1 and c = a0 + a1n + · · · + ad .
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Properties

In what follows, let d(n), f (n), g(n), and h(n) be functions mapping nonnegative
integers to nonnegative integers.

Example, if n + 9 is in O(2n + 1), and 2n + 1 is in O(n2/9), then n + 9 is in
O(n2/9)
In general, if d(n) is in O(f (n)), and f (n) is in O(g(n)), then d(n) is in O(g(n)).
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Properties

• For all functions f , f (n) is in O(f (n)).
• If f (n) ≤ g(n) for all n0 < n, then f (n) is in O(g(n)).
• If d(n) is in O(f (n)), then ad(n) is in O(f (n), for any constant a > 0.
• If d(n) is in O(f (n)), and f (n) is in O(g(n)), then d(n) is in O(g(n)).
• If f1(n) is in O(g(n)) and f2(n) is in O(g(n)), then f1(n) + f2(n) is in O(g(n)).
• If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)), then f1(n) + f2(n) is in

O(g1(n) + g2(n)).
• nx is in O(an) for any constants x > 0 and a > 1.
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Using the Big-Oh Notation

The notation is strange and even bad. It is difficult to use. [The language of
mathematics has (and this is quite amazing) dealt very poorly with functions.
Church’s lambda notation is not widely used.]
The idea is simple: a function gives rise to a collection of functions containing that
function and other functions.

It is best to write “f (n) is O(g(n))” spoken f of n is in big-oh of g of n.

Some authors write f (n) ∈ O(g(n)), or even f (n) = O(g(n)), but I find this
misleading.
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Big-Oh Math

Lemma: If d(n) is O(f (n)), then a × d(n) is O(f (n)), for any constant a > 0. Just
take c = a × c1.

Another fact: If f (n) and h(n) are both O(g(n)), then f (n) + h(n) is O(g(n)); just
take c = c1 + c2 and n0 = max(n1, n2).

Finally: If f (n) is a polynomial of degree d , then f (n) is O(nd).

For example, if f (n) = an2 + bn + c, then it is O(n2).
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Big-Oh Math

Lemma: nd is in O(nd+1)

CSE1002 (Program Analysis) Big Oh © 1 April 2024 42 / 96



Big-Oh Math

Fact: f (n) = n is O(2n) because, by induction, n < 2n for all n.

Another fact: 2n+4 = 24 × 2n < (24 + 1) × 2n, so take c = 24 + 1 and therefore,
2n+4 is O(2n).
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Important Categories of Functions

O(1) constant
O(log n) logarithmic

O(n) linear
O(n log n) loglinear

O(n2) quadratic
O(n3) cubic
O(2n) exponential
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Intractable Problems

Harel 3rd
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Unsolvable Problems

Harel 3rd
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Intractable Problems

A problem is said to be intractable if the algorithm takes an impractical amount of
time to find the solution.
Roughly speaking, we consider polynomial algorithms to be tractable and
exponential algorithms to be impractical.
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Many important problems (NP complete problems) are thought to be intractable
no matter what algorithm is used.

• Important: traveling salesman, Boolean satisfiability, scheduling, packing
• One algorithm solves them all
• Great unsolved problems of mathematics. The Clay Mathematics Institute is

offering a US$1 million reward to anyone who has a formal proof that P=NP
or P ̸=NP.
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Choice of Algorithm

Observation 1: You cannot make an inefficient algorithm efficient by how you
choose to implement it or what machine you choose to run it on.
Observation 2: It is virtually impossible to ruin the efficiency of an efficient
algorithm by how you implement it or what machine you run it on.
So, the efficiency is determined by the algorithms and data structures used in your
solution. Efficiency is not significantly affected by how well or how poorly you
implement the code.
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Fast Growing Functions

The order of an algorithm is generally more important than the speed of the
processor.

Fast growing functions grow really fast. Their growth is stupefying. Don’t be
misled.

Goodrich and Tamassia, Table 3.2, page 120.
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Comparing Functions

In finding a name in phone book, suppose every comparison takes one millisecond
(0.001 sec). How long does it take to find the name in the worse case?

city pop linear binary
Port St. Lucie 164,603 2.8 min 0.017 sec
Fort Lauderdale 165,521 2.8 min 0.017 sec
Tallahassee 181,376 3.0 min 0.017 sec
Hialeah 224,669 3.7 min 0.018 sec
Orlando 238,300 4.0 min 0.018 sec
St. Petersburg 244,769 4.0 min 0.018 sec
Tampa 335,709 5.6 min 0.018 sec
Miami 399,457 6.7 min 0.019 sec
Jacksonville 821,784 13.7 min 0.020 sec
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Comparing Functions

In finding a name in phone book, suppose every comparison takes one microsecond
(0.001 sec). How long does it take to find the name in the worse case?

city pop linear binary
Dallas, TX 1,299,543 21.7 min 0.020 sec
San Diego, CA 1,306,301 21.8 min 0.020 sec
San Antonio, TX 1,373,668 22.9 min 0.020 sec
Philadelphia, PA 1,547,297 25.8 min 0.021 sec
Phoenix, AZ 1,601,587 26.7 min 0.021 sec
Houston, TX 2,257,926 37.6 min 0.021 sec
Chicago, IL 2,851,268 47.5 min 0.021 sec
Los Angeles, CA 3,831,868 63.9 min 0.022 sec
New York, NY 8,391,881 139.9 min 0.023 sec
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Comparing Functions

In finding a name in phone book, suppose every comparison takes one microsecond
(0.001 sec). How long does it take to find the name in the worse case?

city pop linear binary
Seoul 10,575,447 2.9 hr 0.023 sec
São Paulo 11,244,369 3.1 hr 0.023 sec
Moscow 11,551,930 3.2 hr 0.023 sec
Beijing 11,716,000 3.3 hr 0.023 sec
Mumbai 12,478,447 3.5 hr 0.024 sec
Delhi 12,565,901 3.5 hr 0.024 sec
Istanbul 12,946,730 3.6 hr 0.024 sec
Karachi 12,991,000 3.6 hr 0.024 sec
Shanghai 17,836,133 5.0 hr 0.024 sec
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Fast Growing Functions

log n n n log n n2 n3 2n

3 10 30 100 1,000 1,024 kilo
4 20 80 400 8,000 1,048,576 mega
4 30 120 900 27,000 1,073,741,824 giga
5 40 200 1,600 64,000 1,099,511,627,776 tera
5 50 250 2,500 125,000 1,125,899,906,842,624 peta
6 60 300 3,600 216,000 1.15 × 1018 exa
6 70 420 4,900 343,000 1.18 × 1021 zetta
6 80 480 6,400 512,000 1.21 × 1024 yotta
6 90 540 8,100 729,000 1.24 × 1027

6 100 600 10,000 1,000,000 1.27 × 1030
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Algorithms Have Changed the World

Performance is the key.
• QuickSort
• FFT
• Barnes-Hut

J. MacCormick, Nine Algorithms That Changed The Future. [I like the title, but
not the list.]
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What’s the N?

while (STDIN. hasNext ()) {
final String token = STDIN.next ();

}

The size N is the number of tokens in the input. So, the number of steps is
a(N + 1) + bN where a is some arbitrary measure of the “cost” of executing
hasNext() and b the “cost” of executing next(). Therefore, we say O(N).
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Two Independent Variables

for (int i=1; i<=N; i++) {
x=x+1;

}
for (int j=1; j<=M; j++) {

y=y+1;
}

Therefore, we say O(N + M).

There are ways to reduce the number of independent variables. For example, ff
M ≤ 10, say, then O(N + M) = O(N + 1) = O(N). If M ≈ N, then
O(N + M) = O(N + N) = O(N).
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Categorizing Programs

Compute
∑n

i=1 i
Algorithm 1 – O(n)
final int n = Integer . parseInt (args [0]);
int sum = 0;
for (int count =1; count <=n; counter ++) {

sum += count;
}

Algorithm 2 – O(1)
final int n = Integer . parseInt (args [0]);
int sum = (n*(n +1))/2;
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Give a Big-Oh analysis in terms of N of the running time for each of the following
program fragments:
for (int i=1; i<N; i++) {

sum ++;
}

O(N)

for (int i=1; i<N; i+=2) {
sum ++;

}

O(N/2) = O(N)
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for (int i=1; i<N; i++) {
for (int j=1; j<N; j++) {

sum ++;
}

}

O(N2)
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for (int i=1; i<N; i++) {
for (int j=1; j<N; j++) {

sum ++;
}

}

O(N2)
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for (int i=1; i <10; i++) {
O(N) steps in loop

}

O(10N) = O(N)
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if ( /**/ ) {
for (int i=1; i <10; i++) {

sum ++
}

} else {
sum ++

}

O(1)
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if ( /**/ ) {
for (int i=1; i<N; i++) {

sum ++
}

} else {
sum ++

}

max (O(N), O(1)) = O(N)
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if ( /**/ ) {
for (int i=1; i<N; i++) {

sum ++
}

} else {
sum ++

}
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for (int i=1; i<=N; i++) {
for (int j=1; j<=i j++) {

sum ++
}

}

N∑
i=1

i∑
j=1

1 =
N∑

i=1
i == 1 + 2 + 3 + · · · + i = N × (N + 1)

2 = N2

2 + N
2 = O(N2)
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i=1
i == 1 + 2 + 3 + · · · + i = N × (N + 1)

2 = N2

2 + N
2 = O(N2)
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for (int i=1; i<=N; i++) {
for (int j=1; j<=N*N; j++) {

for (int k=1; k<=j; k++) {
sum ++;

}
}

}

N∑
i=1

N×N∑
j=1

j∑
k=1

1 =
N∑

i=1

N×N∑
j=1

j =
N∑

i=1

N2 × (N2 + 1)
2 = N × N2 × (N2 + 1)

2

N × N2 × (N2 + 1)
2 = N3 × (N2 + 1)

2 = N5 + N3

2 = O(N5 + N3) = O(N5)
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for (int i=1; i<=N; i++) {
for (int j=1; j<=N*N; j++) {

for (int k=1; k<=j; k++) {
sum ++;

}
}

}

N∑
i=1

N×N∑
j=1

j∑
k=1

1 =
N∑

i=1

N×N∑
j=1

j =
N∑

i=1

N2 × (N2 + 1)
2 = N × N2 × (N2 + 1)

2

N × N2 × (N2 + 1)
2 = N3 × (N2 + 1)

2 = N5 + N3

2 = O(N5 + N3) = O(N5)
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for (int i=1; i<N; i*=2) {
sum ++;

}

while (N >1) {
N = N/2;
/* O(1) */

}

O(log N)
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for (int i=1; i<N; i*=2) {
sum ++;

}

while (N >1) {
N = N/2;
/* O(1) */

}

O(log N)
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Categorizing Programs

Compute ⌈log n⌉
Algorithm 1 – O(log n)
for (lgN =0; Math.pow (2, lgN)<n; lgN ++);

Algorithm 2 – O(log n)
for (lgN =0; n >0; lgN ++, n/=2);

Algorithm 3 – O(log n)
for (lgN =0,t=1; t<n; lgN ++, t += t);
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Some Recursive Patterns

public static void g (int N) {
if (N==0) return ;
g (N/2); // half the amount work

}

O(log N) as in binary search RecursiveBinary.java — tail recursive

— Bounded polymorphism (recursive) ??
Binary.java — iterative version
GenericBinary.java – Bounded polymorphism (iterative)
— Java program [???] to demonstrate working of
Collections.binarySearch() for List<T> with natural ordering
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public static void g (int N) {
if (N==0) return ;
g (N/2); // half the amount work
g (N/2); // not the same work
/* O(N) */

}

O(N log N) as in merge sort. This pattern is associated with the
divide-and-conquer strategy for problem solving. Merge.java
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Quick Sort

Looks like the same pattern as merge sort, but it different. This is subtle and
important in the study of sorting.
Quick.java
GenericQuick.java
Quick sort with Hungarian Folk Dancers
Select sort
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public static void f (int N) {
if (N==0) return ;
f (N -1);
f (N -1);
/* O(1) */

}

O(2N)

TowersOfHanoi.java Towers of Hanoi at Wiki

CSE1002 (Program Analysis) Big Oh © 1 April 2024 85 / 96

http://www.cs.fit.edu/~ryan/java/programs/basic_algorithms/TowersOfHanoi.java
https://en.wikipedia.org/wiki/Tower_of_Hanoi


public static void f (int N) {
if (N==0) return ;
f (N -1);
f (N -1);
/* O(1) */

}

O(2N)

TowersOfHanoi.java Towers of Hanoi at Wiki

CSE1002 (Program Analysis) Big Oh © 1 April 2024 86 / 96

http://www.cs.fit.edu/~ryan/java/programs/basic_algorithms/TowersOfHanoi.java
https://en.wikipedia.org/wiki/Tower_of_Hanoi


An example of a simple exponential problem: enumerating all the different kinds of
pizzas with N possible pizza toppings.

Pizza.java
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Problems

There is likely more than one algorithm to solve a problem.

Minimum Element in an Array. Given an array of N items, find the smallest
item.
Closest Points in the Plane. Given N points in a plane, find the pair of points
that are closest together.
Co-linear Points in the Plane. Given N points in a plane, determine if any three
form a straight line.
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Prefix Averages

Two algorithms to solve a simple problems.

PrefixAverages.java Java program
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Maximum Contiguous Subsequence Sum

Maximum Contiguous Subsequence Sum Problem. Given (possibly negative)
integers a1, a2, . . ., an, find (and identify the sequence corresponding to) the
maximum value of

∑j
k=i ak . The maximum contiguous subsequence sum is zero if

all the integers are negative.
For example, if the input is {−2, 11, −4, 13, −5, 2}, then the answer is 20 which
corresponds to the contiguous subsequence encompassing elements 2 through 4.

Weiss, Section 5.3, page 153.
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Maximum Contiguous Subsequence Sum

The obvious O(n3) algorithm: for every potential starting element of the
subsequence, and for every potential ending element of the subsequence, find the
one with the maximum sum.
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Maximum Contiguous Subsequence Sum

Since
∑j+1

k=i ak = (
∑j

k=i ak) + aj+1, the sum of the subsequence ai , ai+1, . . ., aj+1
can be computed easily (without a loop) from the sum of ai , ai+1, . . ., aj .
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Maximum Contiguous Subsequence Sum

Theorem. Let ak for i ≤ k ≤ j be any subsequence with
∑j

k=i ak < 0. If q > j ,
then ak for i ≤ k ≤ q is not a maximum contiguous subsequence.

Proof. The sum of the subsequence ak for j + 1 ≤ k ≤ q is larger.
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Maximum Contiguous Subsequence Sum

MaxSubsequenceSum.java Java program
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Dynamic Programming

See Sedgewick and Wayne.
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Math Review

logb a = c if a = bc

Nearly always we want the base to be 2.

n∑
i=1

1 = n

n∑
i=1

i = n(n + 1)
2

Lots of discrete steps
• ⌈x⌉ the largest integer less than or equal to x .
• ⌊x⌋ the smallest integer less than or equal to x .
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