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Abstract

For intrusion detection, the LERAD algorithm learns a succinct set of compre-
hensible rules for detecting anomalies, which could be novel attacks. LERAD
validates the learned rules on a separate held-out validation set and removes
rules that cause false alarms. However, removing rules with possible high cov-
erage can lead to missed detections. We propose three techniques for increasing
coverage - Weighting, Replacement and Hybrid. Weighting retains previously
pruned rules and associate weights to them. Replacement, on the other hand,
substitutes pruned rules with other candidate rules to ensure high coverage.
We also present a Hybrid approach that selects between the two techniques
based on training data coverage. Empirical results from seven data sets in-
dicate that, for LERAD, increasing coverage by Weighting, Replacement and
Hybrid detects more attacks than Pruning with minimal computational over-
head.

1 Introduction

Intrusion detection has two general approaches – signature detection (also
known as misuse detection), where patterns signaling well-known attacks are
searched; and anomaly detection, where deviations from normal behavior are
flagged. Signature detection works reliably for known attacks, but has a lim-
itation of missing new attacks. Though anomaly detection can detect novel
attacks, it has the drawback of not being able to discern intent; it can only
signal that some event is unusual, but not necessarily hostile, thus generating
false alarms. This paper focuses on anomaly detection.
∗ Portion of this work appeared in Proceedings of ACM KDD 2007 [36]. The KDD

conference paper proposes Weighting, this journal submission proposes additional
techniques: Replacement and Hybrid.
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Rules for normal behavior can be introduced manually by a human expert,
a tedious task that incurs significant effort and cost; or automatically learned
from normal data using machine learning. One such technique, called LERAD
(LEarning Rules for Anomaly Detection)[22], efficiently learns a succinct set
of comprehensible rules from normal data and detects attacks unknown to
the algorithm. To reduce false alarms, these rules are validated on normal
held-out data and all violated rules are discarded. However, these rules were
selected initially to cover a relatively large number of training examples and
their elimination could possibly lead to missed detections. Outright rejection
of such rules (called Pruning in this paper) reduces rule set coverage over
training data. We propose two methods to improve rule coverage: we can
either lessen the belief in the violated rule instead of eliminating it (Weight-
ing), or backtrack to find rules that cover the training examples that should
be covered (Replacement). In Weighting, rules are associated with weights es-
timating rule belief. A conformed rule increases our belief in it and hence its
weight is increased. On the other hand, weight is decreased upon rule violation
symbolizing decrease in trust. In Replacement, coverage is increased by includ-
ing candidate rules that cover attribute values which have lost coverage due to
pruned rules. Additionally, new rules are learned from attribute values that
are not covered. We conjecture that increasing coverage over training data
would increase the number of attack detections. Thus, we also present a third
technique, called Hybrid, that chooses between Weighting and Replacement,
the one that has higher coverage on training data.

Our main contributions are:

• to increase the detection rate of LERAD, we propose coverage augment-
ing techniques (Weighting, Replacement and Hybrid) that overcome the
limitations of Pruning ;

• we compare the techniques on various network and host data sets and
demonstrate the efficacy of our models in terms of accuracy and computa-
tional overhead - at less than 1% false alarm rate, Weighting, Replacement
and Hybrid are more accurate than Pruning by 23%, 21% and 29% re-
spectively;

• we study the effect of coverage on accuracy for our data sets - Hybrid
selects higher coverage technique and generally detects more attacks;

• we analyze the new attack detections - most of them are attributed to
rules ignored by Pruning during validation (included in Weighting) and
coverage test (included in Replacement).

In Section 2 we discuss some network and host-based anomaly detection
systems and rule learning algorithms. Section 3 briefly describes pruning in
the LERAD algorithm. Weighting for LERAD and three weighting strategies
are described in Section 4. The replacement technique is detailed in Section 5,
whereas Section 6 motivates and presents our hybrid model. Section 7 eval-
uates and compares the accuracy of Pruning, Weighting, Replacement and
Hybrid on multiple network and host data sets. The effect of coverage on
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accuracy is studied for Hybrid and new attacks detected by Weighting and
Replacement are analyzed. The rule set size and CPU time requirements for
training and testing are also presented. Section 8 summarizes the results and
presents some future research directions.

2 Related Work

Prior research on anomaly-based intrusion detection has focussed on moni-
toring sniffed network data as well as audit logs. Network anomaly detection
systems can warn of attacks launched from the outside at an earlier stage,
before the attacks actually reach the host. SNORT [29] and BRO [25] are ex-
amples of rule-based network anomaly detection systems. Rules can be hand-
coded to restrict access to specific hosts and services. But manual update
of rules is deemed impractical. Intrusion detection systems (IDSs) such as
NIDES [3], ADAM [4], and SPADE model features of the network and trans-
port layer, such as port numbers, IP addresses, and TCP flags. Web based
attacks are detected by monitoring web request parameters in [28]. Some
anomaly detection algorithms are for specific attacks (e.g., portscans [34]) or
services (e.g., DNS[18]). More recent work used pointwise mutual information
for anomaly detection [9]. Since a large number of dependencies of attribute
values is stored, the storage and computational overhead for the technique
can be quite high. Complementing network systems, a host-based anomaly
detector can detect some attacks (for example, inside attacks) that do not
generate network traffic. Host based anomaly detection generally uses system
call sequences [12, 38, 39] and have been represented using finite state au-
tomata [31] and neural networks [16]. Other features used include system call
arguments [24, 35, 5] and call stack information [10, 15].

Associating weights with rules attempts to characterize the quality of the
rules. One aspect of quality is predictiveness, which quantifies how likely the
consequent occurs when the antecedent is observed; that is, how accurately
the antecedent predicts the consequent. Predictiveness is commonly measured
by estimating P (consequent|antecedent). Another aspect of quality is belief,
which measures the level of trust for the rule; that is, how believable the entire
rule is. For example, in association rules [2], each rule has a confidence value
and a support value — the confidence value estimates predictiveness, while
the support value approximates belief.

Many learning algorithms, including RIPPER [8] and CN2 [7], use pre-
dictiveness to formulate rules during the learning (training) process and/or
provide confidence values for their predictions during the prediction (test)
process. Ensemble methods, including Weighted Majority [21] and Boosting
[30, 13], use belief to combine predictions from multiple learned models. Prun-
ing is an approach to reduce overfitting the training data. After learning a
decision tree and converting each path in the tree into rules, Quinlan [27]
removes conditions from the antecedent of a rule if the estimated accuracy
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improves. Furnkranz [14] has a review of various rule pruning techniques. For
rule learning algorithms, studies cited above demonstrate the efficacy of us-
ing weights (predictiveness and/or belief) over not using weights as well as
pruning over not pruning. However, we are not aware of studies in comparing
using weights and pruning, particularly in anomaly detection. In this paper,
we study how rule weighting compares to pruning in a rule learning algorithm
for anomaly detection.

Rules can generally be learned in two ways: generate and test strategy vs.
data driven approach. Generate and test adpots a hypothesis driven approach,
where a general to specific search is usually performed in the hypothesis space.
CN2 [7] is a general to specific beam search algorithm that maintains the k
best candidates at each step, where rules are refined based on their accuracy
on the data set. Apriori [1] learns all association rules above user defined
confidence and support thresholds. It is also a generate and test approach, with
only a subset of rules generated at each step are considered for specialization
in the subsequent iteration. Using a general-to-specific search, ITRULE [32,
33] learns k (user-specified) rules that have the highest information content
based on the J-measure (mutual-information based). Different candidate rules
are formed with each attribute as the consequent. According to information-
theoretic bounds, specializations of the current rules are not explored if they
will not yield higher information content than the top k rules found so far.

Contrary to generate and test strategy, data driven approach involves gen-
eration of hypotheses that is constrained by specific data instances. AQ15 [23]
generates a rule to cover a specific attribute value, and these rules are spe-
cialized at each step. After each rule, the algorithm picks another attribute
value not covered to initiate search in the hypothesis space. For the LERAD
algorithm, two instances are randomly chosen and rules are generated us-
ing matching attribute values, making it a data driven approach. Hypotheses
search is from general to specific, and rules are updated by adding values
over entire training data. LERAD differs from AQ15 in that it allows differ-
ent attributes in the rule consequent, whereas AQ15 learns classes based on
a single attribute. Also, AQ15 generates all rules that cover a data instance.
In contrast, LERAD randomly choses matching attributes, thus generating a
subset of the rules and making the algorithm more efficient. In this paper,
we present Replacement variant for LERAD that revisits candidate rules to
replace rules discarded during validation. Since rules generated previously are
checked against the validation set for false alarms, this step is hypotheses
driven. In addition, Replacement takes into account attribute values not cov-
ered and learns rules based on those target values, making this step a data
driven strategy and the technique a mixture of data and hypotheses driven
methods.
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Table 1. Example data set and rule set.

di SrcPort DestPort SrcIp DestIp

d1 80 80 128.1.2.3 128.4.5.6
d2 80 80 128.1.2.3 128.4.5.6
d3 80 25 128.3.2.1 128.4.5.6

r1: ∗ ⇒ DestPort ∈ {25, 80}[p = 2/3]
r2: SrcIp = 128.1.2.3 ⇒ DestIp ∈ {128.4.5.6}[p = 1/2]
r3: DestIp = 128.4.5.6 ⇒ SrcPort ∈ {80}[p = 1/3]

3 Rule Pruning in LERAD

LEarning Rules for Anomaly Detection (LERAD) [22] is an efficient random-
ized algorithm that forms conditional rules of the form:

a1 = v11 ∧ a2 = v23 ∧ ... => ac ∈ {vc1, vc2, ...} [p] (1)

where ai is the ith attribute and vij is the jth value for ai. LERAD adopts a
probabilistic framework and estimates P (C|A), where A is the antecedent and
C is the consequent of the rule A ⇒ C. During training, a set of rules R that
“minimally” describes the training data are generated and their p = P (¬C|A)
is estimated, where C, though expected, is not observed when A is observed.
An estimate for novel events from data compression [40] is used:

p = P (NovelEvent) =
r

n
. (2)

where n is the total number of observed events and r is the number of unique
observed events. That is, n is the number of data instances that conform to
the rule, and r is the cardinality of the set of possible attribute values in the
consequent. A sample network anomaly rule for LERAD is:

SrcIp = 128.1.2.3∧DestIp = 128.4.5.6 ⇒ DestPort ∈ {21, 25, 80}[p =
r

n
=

3
100

]

(3)
A data instance is a feature vector comprised of all feature attribute values,

and multiple data instances form a data set. For example, a network data
set may be composed of data instances represented by the feature vector
< SrcPort, DestPort, SrcIp,DestIp >. The rule of Eq. 3, which claims three
distinct destination ports (21-FTP, 25-SMTP, 80-HTTP) given the source
and destination IP addresses, is satisfied by 100 data instances. One or more
such rule(s) forms the rule set. A synthetic network data set and rule set is
presented in Table 1, with the semantics of data instance and rule as explained
above.

Definition 1. Let i be a data instance and j be an attribute. coverij is 1 if
there exists a rule rk (Eq. 1) in the rule set R such that instance i satisfies
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the condition(s) in the antecedent of rule rk and the value of attribute j
in instance i is a member of the set of values of the same attribute j in the
consequent of rule rk. That is, coverij indicates if the value of attribute j
in instance i is covered by a rule in the rule set. More formally:

coverij =





1, if jth attribute value is in consequent
of a rule satisfied by ith instance

0, otherwise

(4)

In Table 1, rule r1 is applicable for all three data instances, and all DestPort
values are contained in the consequent. Hence, cover12 = cover22 = cover32=1.
The attribute values not covered by the rule set are SrcIp of data instances
{d1, d2, d3}, each of which has a cover value of 0. Similarly, cover34=0, since
DestIp of data instance d3 is not covered by any rule in the rule set.

Definition 2. For the entire data set, coverage is defined as the fraction
of attribute values covered by the rule set. Let N be the total number
of instances, and M the number of distinct attributes, then coverage is
formally defined as:

coverage =
1

N ×M

N∑

i=1

M∑

j=1

coverij (5)

The example in Table 1 has three data instances (d1−d3) and four attributes.
Eight attribute values are covered by the 3 rules in the rule set, resulting in
a coverage value of 0.67.

3.1 Training Candidate Rules and Coverage Test

For describing the LERAD algorithm, we use the following notation. Let D
be the entire data set, and DT be the training set with normal behavior
and DE be the evaluation (test) data set with normal behavior as well as
attacks such that DT ∪DE = D and DT ∩DE = ∅. Training data is further
partitioned into subsets Dt (training data set) and Dv (validation held-out

Input: sample set (Ds), training set (Dt), and validation set (Dv)
Output: LERAD rule set R
1. generate candidate rules from Ds and evaluate them
2. perform coverage test - select a “minimal” set of candidate rules that covers Ds:

a) sort candidate rules in increasing order of probability of being violated
b) discard rules that do not cover any attribute values in Ds

3. train the selected candidate rules on Dt

4. eliminate the rules that cause false alarms on Dv

Fig. 1. Main steps of LERAD algorithm
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Table 2. Example training data subset Ds = {di} for i = 1..3 and rules rk (k = 1..3)
generated from Ds. Consequent attribute values in data instances are marked by
(rk) in coverage test.

di SrcPort DestPort SrcIp DestIp

d1 80 80 (r2) 128.1.2.3 128.4.5.6
d2 80 80 (r2) 128.1.2.3 128.4.5.6
d3 80 25 (r1) 128.3.2.1 128.4.5.6

r1: ∗ ⇒ DestPort ∈ {25, 80}[p = 2/3]
r2: SrcIp = 128.1.2.3 ⇒ DestPort ∈ {80}[p = 1/2]
r3: SrcIp = 128.1.2.3 ∧DestIp = 128.4.5.6 ⇒ DestPort ∈ {80}[p = 1/2]

data set) respectively such that Dt∪Dv = DT , Dt∩Dv = ∅, and |Dt| > |Dv|.
Also, let R be the rule set learned after training.

The LERAD algorithm consists of four main steps as illustrated in Fig. 1.
Step 1 generates and evaluates candidate rules from a small data sample Ds

(such that |Ds| ¿ |Dt|), which allows efficient training. Table 2 contains ex-
ample data and candidate rules to help illustrate the algorithm. A pair of
data instances, say d1 and d2, are picked at random. Rules are generated by
selecting matching attributes in a random order. In the example, d1 and d2

have all matching attributes. Randomly selecting them in the order DestPort,
SrcIp, and DestIp, we get the following rules:
r1: ∗ ⇒ DestPort ∈ {80}
r2: SrcIp = 128.1.2.3 ⇒ DestPort ∈ {80}
r3: SrcIp = 128.1.2.3 ∧DestIp = 128.4.5.6 ⇒ DestPort ∈ {80}

A rule so generated implies that the attribute in the consequent can have a
value from a set of values only if the conditions in the antecedent are satisfied.
It may so happen that there is a consequent but no antecedent in a rule
formed by LERAD. This means that an attribute can take any value from its
set of values without the need to satisfy any other condition. Such a situation
is presented in rule r1 where the antecedent is represented by a wildcard
character *.

Step 2 extends the rules from previous step to the entire set Ds. It selects a
small set of predictive rules that sufficiently describe Ds. This allows learned
models to be small. This step, called coverage test, is based on two heuristics.
First, rules with lower p = P (¬C|A) are preferred. Second, a rule can cover
multiple instances in Ds, but an instance does not need to be covered by more
than one rule. Hence, rules are sorted based on p and evaluated in ascending
order (Step 2a). For each rule, instances covered by the rule are marked. If a
rule cannot mark any remaining unmarked instances, it is removed. That is,
rules with lower p are retained and rules that do not contribute to covering
instances not covered by previous rules with lower p values are discarded
(Step 2b). More specifically, since rules can have different attributes in the
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consequent, the attribute of an instance, not the entire instance, is marked.
Hence, a rule is removed only if it cannot mark any unmarked attribute of
any instance.

Table 2 contains example data and candidate rules to help illustrate the
algorithm. Rules r2 and r3 in the table have a lower p (1/2) than r1, so r2 or r3

is evaluated first. Rule r2 is arbitrarily picked before r3, and marks DestPort
of d1 and d2. Then r3 cannot mark any attribute and is removed. Finally,
r1 marks DestPort of d3. At this point, rules r2 and r1 are selected. This
procedure guarantees at least one attribute of all instances in Ds are marked
by a subset of candidate rules. Also, rules that are subsumed by more general
rules are automatically removed due to a higher p.

The selected rules are then updated using the much larger set Dt (Step
3 in Fig. 1) by updating the consequent and p. If the antecedent of a rule
matches an instance in Dt and the consequent of the rule does not contain
the corresponding value, the value is added to the consequent. p is updated
by updating the number of instances that match the antecedent in Dt (n) and
values in the consequent (r). The validation set Dv is used in Step 4, and is
described next in context of Pruning.

3.2 Validating Rules

To reduce overfitting the training data, machine learning algorithms use a
separate held-out data to validate the trained model. LERAD uses validation
set Dv for the rules learned from Dt. For each rule rk ∈ R and instance
d ∈ Dv, one of three cases apply:

1. The rule is conformed when all conditions in the antecedant as well as
the consequent are satisfied by the instance. For example, instance [SrcIp
= 128.1.2.3, DestIp = 128.4.5.6, DestPort = 80] conforms to the rule in
Eq. 3.

2. The rule is violated if the antecedant holds true but the consequent does
not. The rule in Eq. 3 is violated by the instance [SrcIp = 128.1.2.3, DestIp
= 128.4.5.6, DestPort = 23].

3. The rule is not applicable for the instance if any condition in the an-
tecedant is not satisfied, an example instance being [SrcIp = 128.1.5.7,
DestIp = 128.4.5.6, DestPort = 21].

A conformed rule (case 1) is not updated but the associated p value is
modified. Given instance [SrcIp = 128.1.2.3, DestIp = 128.4.5.6, DestPort =
80], the rule in Eq. 3 has new p value of 3/101 upon conformance. For rule
violation (case 2), the rule is eliminated from the rule set (Step 4 in Fig. 1)
since Dv is normal and each anomaly is a false alarm. Inapplicable rules (case
3) are left unchanged along with their p values. This version of LERAD is
referred to as Pruning for the remainder of the paper.
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3.3 Scoring Anomalies

During the monitoring stage, LERAD uses the learned rules to assign an
anomaly score to each data instance. During detection, given a data instance
d, an anomaly score is generated if d violates any of the rules. Let R′ ⊂ R be
the set of rules that d violates. The anomaly score is calculated as:

AnomalyScore(d) =
∑

rk∈R′

1
pk

, (6)

where rk is a rule in R′ and pk is the p value of rule rk representing its
predictiveness. The reciprocal of pk reflects a surprise factor that is large when
anomaly has a low likelihood (small pk). Intuitively, we are less surprised if
we have observed a novel value in a more recent past. Let tk be the duration
since the last novel value was observed in the consequent of rule rk. A non-
stationary model is proposed and each violated rule rk assigns a score:

Scorek =
tk
pk

. (7)

Total anomaly score is accumulated over all violated rules:

AnomalyScore(d) =
∑

rk∈R′

tk
pk

. (8)

The tk factor also accommodates the “bursty” nature of network traffic [26],
so that multiple successive anomalies generate a single high scoring alarm.

We claim that Pruning reduces rule coverage, resulting in lower accuracy.
We propose two solutions to increase coverage: retain pruned rules with lower
rule belief using Weighting, or revisit candidate rules to replace pruned rules,
called Replacement. Our hypothesis is based on the putative link between
train set coverage and test set accuracy – increasing the coverage might result
in increased accuracy. Resampling techniques such as cross-fold validation or
bootstrap are not applicable due to the temporal aspects of the data sets.
Weighting and Replacement are discussed in the next two sections.

4 Rule Weighting

LERAD performs a coverage test to minimize the number of rules (Step 2 in
Fig. 1). Thus each selected rule covers a relatively large number of examples in
the training set Dt. But removing a rule that causes false alarms also removes
coverage on a relative large number of training examples, which can lead to
missed detections. Thus, there is a trade off between decreasing false alarms
and increasing missed detections.

We propose associating a weight with each rule in the rule set to symbolize
rule belief. Violated rules are penalized by reducing their weights, whereas
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Input: sample set (Ds), training set (Dt), and validation set (Dv)
Output: LERAD rule set R
1. generate candidate rules from Ds and evaluate them
2. coverage test - select a “minimal” set of candidate rules that covers Ds:

a) sort candidate rules in increasing order of probability of being violated
b) discard rules that do not cover any attribute values in Ds

3. train the selected candidate rules on Dt and assign weight of unity
4. validate rules on Dv

a) increase weight on rule conformance (increase rule belief)
b) decrease weight on rule violation (reduce rule belief)

Fig. 2. Rule Weighting in LERAD

conformed rules are rewarded with increase in their respective weights. A
sample rule using our method is of the form:

SrcIp = 128.1.2.3 ∧DestIp = 128.4.5.6
⇒ DestPort ∈ {21, 25, 80}[p = 3/100, w = 1.0] (9)

The semantics of this rule is similar to the rule in Eq. 3, but a new w value
is introduced for the rule weight to represent belief in the rule. p and w
are distinct and independent entities — p is the probability of not seeing a
value in the consequent when the conditions in the antecedant hold true (i.e.
probability of the rule being violated) and corresponds to predictiveness from
Section 2; weight w, on the other hand, approximates the belief of the entire
rule.

4.1 Validating Rules

The training is similar to Pruning, as seen in Fig. 2. The main difference lies
in the validation step (Step 4 in Fig. 2). Instead of making a binary decision of
retaining or eliminating a rule, we keep a rule but update its associated weight.
The rule consequent and p value may also be updated. For conformed rules
(case 1 in Sec. 3.2), p is updated similar to Pruning but has an additional
w value. Rule violation (case 2 in Sec. 3.2) results in updating the rule as
well as probability p. For the instance [SrcIp = 128.1.2.3, DestIp = 128.4.5.6,
DestPort = 23], the rule in Eq. 9 is modified as:

SrcIp = 128.1.2.3 ∧DestIp = 128.4.5.6
⇒ DestPort ∈ {21, 23, 25, 80}[p = 4/101, w] (10)

How weights are updated for conformed and violated rules (case 1 and 2
respectively from Sec. 3.2) is discussed next. No action is taken for inapplicable
rules (case 3).

4.2 Weighting Strategies

We propose associating a weight to each rule rk ∈ R, where weights symbolize
rule belief. Violated rules are penalized by reducing their weights, whereas
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conformed rules are rewarded with increase in their respective weights. Next,
we present three weighting schemes used in our experiments.

Winnow-Specialist-based Weight Update

Winnow is an incremental weight updating algorithm for voting experts [20],
which correspond to rules in our case. Our first weighting strategy is similar
to the Winnow specialist variant of [6]. Initially all rule weights are assigned a
value 1, signifying equality of belief across the rule set. For any data instance
d ∈ Dv, a rule rk ∈ R must either hold good or be inapplicable (in which case
it abstains from voting). Any rule violation in Dv corresponds to a false alarm
(since Dv comprises of non-attack data) and reduces trust in the culprit rule.
If a rule formed during training is not useful, it is likely to be violated many
times. Such rules are penalized by multiplicative decay of their weight. On
the other hand, if a rule is conformed by a data instance d ∈ Dv when other
rule(s) were violated, it stresses upon validity of the rule and increases trust.
Since the rule formed during training is expected to hold true in validation as
well, we increase its weight by a small fraction. The intent is to levy a heavy
penalty by decreasing the weight by a factor α when the rule is violated, but
increase the weights by factor β for a conformed rule.

The strategy to update weights is formally defined by the following weight
update function:

wk =





wk × α, if rk ∈ R is violated

wk(1 + β), if rk ∈ R is conformed but ∃j 6= k
such that rj ∈ R is violated

(11)

where α, β ∈ <, 0 ≤ α < 1 and 0 ≤ β ≤ 1. Assuming α = 0.5 and inital weight
1, the weight is equal to 0.5 the first time the rule is violated. It is reduced to
0.25 upon second violation and so on. On the other hand, weight is updated as
1.5, 2.25, 3.375 (β = 0.5) for the first three conformances respectively, when
there was at least one rule violation for the same data instance. Theoretical
bounds for the parameters have been presented in [20, 6]. It can be noted that
Pruning is a special case of this weighting strategy, with α = β = 0.

Equal Reward Apportioning

This is a variant of the Winnow-Specialist-based approach explained above.
One can observe from Eq. 11 that the weights for correct rules are incremented
by a constant factor β. This results in varied weight increments across con-
forming rules. For example, given α = β = 0.5, current weights 1.0 and 0.5
of two conforming rules r1 and r2 are updated as 1.5 and 0.75 respectively.
The Winnow-Specialist-based scheme thus favors rules with already higher
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weights by increasing their weights even more, resulting in potential imbal-
ance. Moreover, the amount of weight increase is independent of whether a
high or low belief rule was violated.

The Equal Reward Apportioning scheme adopts an impartial approach to-
wards all conforming rules, irrespective of their current weights. This weight-
ing scheme aggregates the total weight reduction due to violation of rules, and
rewards the conforming rules by equally distributing the consolidated weight
mass amongst them. For each instance in d ∈ Dv, the total penalty TP is
computed as:

TP =
∑

rk∈Rv

(1− α)wk, (12)

where Rv ⊆ R is the set of rules violated by d and α ∈ [0, 1). Let Rc ⊆ R be
the set of conformed rules. The weights are updated as follows:

wk =





wk × α, if rk ∈ R is violated

wk + TP
|Rc| , if rk ∈ R is conformed

(13)

The amount of weight increase for conforming rules is thus dependent on the
amount of weight decreased for violated rules. Following the example above, if
the violated rule r3 has weight 0.6, weights for conformed rules r1 and r2 are
incremented by the same amount (0.15), resulting in weights 1.15 and 0.65
respectively. On the other hand, if a higher trust rule is violated, say rule r4

with weight 1.0, it provides greater boost to the conforming rules r1 and r2 by
incrementing their weights by 0.25 each. In the event that no rule is violated,
weight for conforming rule remains unchanged.

Weight of Evidence

Weight of evidence is defined as the measure of evidence provided by an
observation in favor of a target attribute value as opposed to other values
for the same target attribute. This measure is based on information theory
and has been applied in classification tasks based on event associations [37].
Mathematically, it is the difference in the mutual information when the target
attribute Y takes a certain value y and when it doesn’t, given some observed
value x for the attribute X:

W (Y = y/Y 6= y | X = x) = I(Y = y;X = x)− I(Y 6= y;X = x), (14)

where I(a; b) is the mutual information of a and b and is computed as:

I(a; b) = P (a, b)log
P (a, b)

P (a)P (b)
. (15)

We cannot apply Eq. 14 directly to our problem since we are not trying to
predict a single target value. Rather, we want to measure the gain provided
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by an observation for the target value to be from a finite set of values. The
weight of evidence for the kth rule is reformulated as:

wk(Y ∈ {y1, y2, . . . , yn}/Y 6∈ {y1, y2, . . . , yn} | X¯)

= I(Y ∈ {y1, y2, . . . , yn}; X¯)− I(Y 6∈ {y1, y2, . . . , yn}; X¯)
(16)

where {y1, y2, . . . , yn} is the set of values for the target attribute Y of the rule
rk; and X

¯
corresponds to the conditions in the antecedent.

We used this scheme to associate weights with the rules in the rule set.
The weight is computed for each rule rk ∈ R based on the evidence in Dv.
Contrary to the previous two incremental weighting techniques, this involves
batch weighting where evidence is consolidated from Dv as a whole. Moreover,
weight of evidence can be positive, negative or zero. A positive value reflects
high trust in the rule whereas a negative or zero value implies otherwise. Only
rules with positive weights are kept and the remaining may be eliminated.
One can also scale the values by a linear shift of the axis such that all weights
are positive. Now the high belief (positive weight of evidence) rules have high
positive weights, whereas the low (negative/zero weight of evidence) trust
rules have low positive weights. Due to its simplicity and intuitiveness, we
used the former approach for our experiments.

4.3 Scoring Anomalies

Each rule assigns an anomaly score to a test instance d ∈ DT , a higher score
implying more critical aberration. Different algorithms adopt different scoring
schemes, the simplest being incrementing the anomaly score by unity. The
anomaly score for the test instance is aggregated over all the rules in the rule
set. A rule may abstain from assigning a score if it is not applicable (i.e. the
antecedent does not hold true). We incorporate the weight representing rule
trust to compute the anomaly score:

AnomalyScore(d) =
∑

rk∈R′
(wk × Scorek), (17)

where Scorek is due to violation of rule rk and wk is the weight of the violated
rule. Thus, each rule assigns an anomaly score proportional to its weight, and
all the scores are aggregated to compute the total anomaly score. Modified
anomaly score for LERAD follows from Eqs. 7, 17:

AnomalyScore(d) =
∑

rk∈R′

wktk
pk

. (18)

Thus, anomaly score in Weighting incorporates both the predictiveness and
belief aspects of rule quality.
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5 Rule Replacement

Weighting introduces the additional aspect of rule belief and increases rule
coverage over training data by retaining previously pruned rules. Alterna-
tively, one can revisit rules rejected during coverage test (Step 2 in Fig. 1). In
this section, we present the Replacement technique that substitutes pruned
rules with new rules to increase coverage over training data. Replacement
increases coverage in two ways:

• by considering rules with lower predictiveness that were rejected during
coverage test, and

• by generating new candidate rules from instances in the training data set
with attribute values not covered.

The main steps of Replacement are presented in Fig. 3. Steps 1-4 are same
as Pruning with the exception of Step 2b, where rules that do not increase
coverage are retained in a rule pool Rpool, instead of eliminating them. The
validation phase (Step 4) may prune rules with high predictiveness, resulting
in significant loss of coverage. Rules from Rpool can then be re-evaluated to
increase coverage over training data (Step 5). Rules that increase the coverage
are added to the rule set in Step 5a. It can be noted that such rules will
have lower predictivess than the rules in Rule Pruning. Step 5b validating
the new rules against Dv. Rules causing false alarms are eliminated, and
remaining rules from Rpool are considered in the subsequent iteration. This
loop terminates when no rules remain the pool, or all attribute values are
covered, or the entire rule set conforms to the validation data set. At the end of
each iteration, coverage increases or remains the same. To maximize coverage,

Input: sample set (Ds), training set (Dt), and validation set (Dv)
Output: LERAD rule set R
1. generate candidate rules from Ds and evaluate them
2. select a “minimal” set of candidate rules that covers Ds (i.e. coverage test):

a) sort candidate rules in increasing order of probability of being violated
b) Rpool = rules that do not cover any consequent attribute values
c) select remaining rules as candidate rules

3. train the selected candidate rules on Dt

4. eliminate the rules that cause false alarms on Dv

5. while (rule violations in Dv ∧ Rpool 6= ∅ ∧ candidate rules ∈ Rpool ∧ coverage
< 1.0)
a) if (candidate rule increases coverage in Dt)

add candidate rule to R and remove it from Rpool

b) validate the rule set on Dv and eliminate rules violated
6. generate new candidate rules from Du, which are instances in Ds with attribute

values not covered
7. select a “minimal” set of candidate rules that covers Du

8. eliminate violating rules on Dv and add remaining rules to R

Fig. 3. Rule Replacement in LERAD
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Table 3. Example training data subset Du = di i = 4, 5, representing attribute
values not covered for DestPort.

di SrcPort DestPort SrcIp DestIp

d4 25 80 128.1.2.3 128.7.8.9
d5 25 80 128.1.2.3 128.0.3.5

all candidate rules are considered in each iteration, except those already in
the rule set or pruned in validation in previous iterations. Additionally, new
candidate rules are learned from instances with attribute values that are not
covered (Step 6). Only data instances with not yet covered values are used
in this step to generate new candidate rules, which are constrained to have
those values in the rule consequent. Generalizations and rules with higher
predictiveness are preferred to keep the rule set small (Step 7). Step 8 involves
pruning rules that cause false alarms on the validation data set. Anomalies
are scored as shown in Eq. 8 for the Pruning strategy.

Consider the synthetic data and rules from Table 2. Coverage test removes
r3 (SrcIp = 128.1.2.3 ∧ DestIp = 128.4.5.6 ⇒ DestPort ∈ {80}[p = 1/2]),
which is now added to the rule pool Rpool. Assume rule r2 (SrcIp =
128.1.2.3 ⇒ DestPort ∈ {80}[p = 1/2]) is pruned during validation step.
This reduces the cover value of attribute DestPort from three to one in-
stance. Replacement allows rules from the pool to substitute for pruned rules
in order to increase coverage. Thus, r3 is added to the rule set, increasing
the attribute Cover back to three instances in Table 2. In addition, assume
a couple more data instances of Table 3 that lose coverage due to pruned
rules r2. Note that r3 does not apply to these data instances. New rules are
generated from these samples (Step 6 in Fig. 3) by constraining the rule conse-
quent to include DestPort values of d4 and d5 and generating the antecedent
through matching attributes such that the rule is satisfied by these instances.
An example rule that covers the two data instances is:

SrcIp = 128.1.2.3 ∧ SrcPort = 25 ⇒ DestPort ∈ {80}[p = 1/2]. (19)

If the new candidate rule conforms to Dv, it is added to the final rule set R.

6 Hybrid Approach

In the previous sections, we presented Weighting and Replacement for in-
creasing rule coverage. In this section, we present the Hybrid approach that
chooses among the two techniques based on which one has higher coverage
on the training data. Weighting rule set comprises of rules with high predic-
tiveness but can have low belief. Replacement may constitute many rules with
low predictiveness. Combining the two approaches can result in rules with low
predictiveness and low belief, and thus avoided. Thus, Hybrid picks one or the
other based on coverage.
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Input: sample set (Ds), training set (Dt), and validation set
(Dv)
Output: LERAD rule set R
1. generate rule set Rw using Weighting steps of Fig. 2
2. generate rule set Rr using Replacement steps of Fig. 3
3. compute cw = attribute value coverage of Rw over Dt

4. compute cr = attribute value coverage of Rr over Dt

5. if (cw ≥ cr)
R ← Rw

else
R ← Rr

Fig. 4. Hybrid approach in LERAD

The main steps of the hybrid approach are presented in Fig. 4. Rule sets
Rw and Rr are generated in Steps 1 and 2 using algorithms of Figs. 2 and 3
respectively. Let cw be the coverage of weighting rule set and ci be the cov-
erage of ith iteration in Replacement (cr after all iterations). Thus, coverage
for pruning is c1. It can be noted that cw ≥ c1 and ci+1 ≥ ci. But the relation
between cw and cr depends on the data set, as depicted in Figs. 5a-b. Fig. 5a
shows coverage over all iterations for UNIV TCP data set (data set details
presented in Section 7.1). Rule weighting has higher coverage than Replace-
ment. On the other hand, Replacement betters the coverage of Weighting in
the fourth iteration for UNIV PKT data set, as evident from Fig. 5b. As-
suming higher coverage leads to higher accuracy, the Hybrid approach selects
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the technique with the higher coverage. Anomalies are scored using Eq. 8 for
Replacement or Eq. 18 if Weighting is selected. For Replacement, a jump in
coverage can be noted during the last iteration in Fig. 5. This increase is due
to new candidate rules learned from attribute values that were previously not
covered (Steps 6-8 in Fig. 5).

7 Empirical Evaluation

In this section, we evaluate and compare the Pruning, Weighting, Replace-
ment, and Hybrid schemes for anomaly detection.

7.1 Experimental Data

We evaluated the techniques on five different data sets:

1. The DARPA/Lincoln Laboratory intrusion detection evaluation network
data set (IDEVAL) [19] contains 201 labeled instances of 58 attacks. Since
one day of inside traffic is missing, and there are one queso and four
snmpget attacks against the router which are not visible from inside the
local network, the total number of detectable attacks is 185. Refer to
Kendell’s thesis [17] for attack taxonomy.

2. Over 600 hours of network traffic collected on a university departmen-
tal server (UNIV) over 10 weeks, comprising of six labeled attacks -
port/security scan from inside the firewall, an external HTTP proxy scan,
an external DNS version probe, Nimda HTTP worm, Code Red II HTTP
worm, and the Scalper worm. The port/security scan has two parts; first
an attempt to retrieve the password file by a cgi-bin/htsearch exploit,
followed by a port scan, with open ports probed further to test for vul-
nerabilities.

3. The BSM audit log from the DARPA evaluation obtained from a Solaris
host (BSM data set). Data corresponding to 11 different applications is
extracted to get a good mix of benign and malicious behavior. The total
number of distinct attacks is 33.

4. Florida Tech and University of Tennessee at Knoxville (FIT-UTK) macro
execution traces comprise 36 normal and 2 malicious traces that corre-
spond to a distributed denial of service (DDoS) attack, modifying registry
settings and execute some other application. The behavior is similar to
that exhibited by the “Love bug” worm which opens up the web browser
to a specified website and executes a program, modifying registry keys
and corrupting user files.

5. University of New Mexico (UNM) data set, comprising of lpr, login and
ps applications contains 3 distinct attacks. lpr comprises of 2703 normal
and 1001 attack traces from hosts running SUNOS 4.1.4. Traces from the
login and ps applications were obtained from Linux machines.
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7.2 Experimental Procedures

We considered three attribute sets for each of the two network data sets: re-
assembled TCP streams (TCP) which reads attributes of the inbound side
of unsolicited (client to server) reassembled TCP sessions; inbound client IP
packets (PKT) which uses the first 32 pairs of bytes in each IP packet as
attributes. The data sets will hereafter be referred to as IDEVAL TCP, IDE-
VAL PKT, UNIV TCP, and UNIV PKT respectively. For the IDEVAL data,
we performed training on week 3, which contains no attacks, and testing on
weeks 4 and 5. For UNIV data, we tested on weeks 2 through 10, using the
previous week as training. By chance, there are no known attacks in week 1.
However, there are generally attacks in the training data which could mask
detections in the test data.

For host based data sets, we used system calls and related attributes to
create application-based models, consisting of return value, error status and
other arguments. Only BSM data set had complete argument information. For
the UNM and FIT-UTK datasets, the sliding window of contiguous system
calls was used, with a window size of 6, as this is claimed to give best results
[38].

7.3 Evaluation Criteria

We evaluate and provide comparison for accuracy of models, computational
and storage overheads.

Accuracy. For IDEVAL data set (both network and host), an attack is
counted as detected if one or more alarms identifies the target address within
60 seconds of any portion of the attack (same as the 1999 DARPA evaluation
criterion). Any other alarm is a false alarm. For the UNIV network traffic, we
use the criterion that the technique must exactly identify at least one of the
packets or TCP sessions involved in the attack. For the UNM and FIT-UTK
host data sets, flagging an anomaly anywhere within the attack trace was used
to be consistent with previous evaluations.

A Receiver Operating Characteristic (ROC) curve is an effective represen-
tation for model evaluation. We use ROC curves for studying the trend in
percentage of attacks detected at different false alarm rates. This is achieved
by varying the anomaly threshold in our techniques. We also list the areas
under the ROC curve, where higher area implies better performance [11]. The
area under the curve is normalized for the false alarm rate. Since the drawback
of anomaly detection is the generation of false alarms, we focus on small false
alarm rates (up to 1%).

Storage and Computational Overhead. To evaluate the viability of
our technique for online usage, we measure its space and computational re-
quirements. The storage overhead includes the size of the stored model, i.e.
rules learned. We also measure the CPU time during the training and testing
phases to determine the effectiveness of the techniques.
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Fig. 6. ROC curves (up to 1% false alarm rates) for Pruning, Weighting, Replace-
ment and Hybrid strategies for LERAD on network data sets.
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7.4 Accuracy of Weighting, Replacement and Hybrid

The ROC curves for the Pruning, Weighting, Replacement and Hybrid variants
of LERAD are presented in Figs. 6, 7. The respective areas under ROC curve
are listed in Table 4 - values greater than that of Pruning are highlighted.
The values in the table are not the Y axis (detection rate) on the ROC curve,
but represent the percentage of the maximum area under the curve up to the
respective false alarm rate. The random detector has the same false alarm rate
and true positive rate for any threshold (x=y line for ROC). Since Weight of
Evidence had the highest accuracy in weighting, it was used in conjunction
with Replacement for Hybrid.

Figs. 6a-b present the ROC curves for the IDEVAL network data. Fig. 6a
suggests that all techniques generally detect same number of attacks for IDE-
VAL TCP. Even their area under ROC curves are close to each other. But
looking at the actual number of detections at 1% false alarm rate, Weighting
and Hybrid variants detected 7 new attacks for IDEVAL TCP; whereas six
extra attacks were detected by Replacement. For IDEVAL PKT, Replacement
and Hybrid improved the AUC of Pruning by 33%.

For the UNIV data set (Figs. 6c-d), Weight of Evidence generally outper-
formed Pruning in all cases. Replacement had higher AUC than Pruning and
all weighted variants at 1% false alarm rate. Hybrid selected Weighting for
UNIV TCP and Replacement for UNIV PKT because of higher coverage on
the resepective data sets. Weighting, Replacement and Hybrid schemes de-
tected one more attack than Pruning for both UNIV data sets - the Code Red
II worm was detected using tcp streams whereas the packet data detected
the DNS version probe. An interesting observation for all LERAD variants
on IDEVAL and UNIV network data sets was that PKT data detected more
attacks than TCP data for all false alarm rates ≤ 1%. Evaluating the attacks
detected by TCP and PKT, we saw a significant overlap between the two with
some attacks being detected by only one of the attribute set.

The ROC curves for the host datasets are presented in Figs. 7. For the
BSM data, Weight of Evidence detected most attacks at 0.1% false alarm rate
(approx. 50% more attacks than Pruning) whereas Winnow-Specialist had
maximum area under curve at 1% false alarm rate, detecting 60% additional
attacks than Pruning. Replacement did marginally better than Pruning, with
only one additional attack detection. Hybrid had same accuracy as Weighting
and a total of 12 new attacks were detected (at 1% false alarm rate), in-
cluding fdformat, ffbconfig, guest, syslogd, httptunnel, 4 distinct secret attacks,
portsweep, eject and selfping exploits. On the FIT-UTK data, Weighting, Re-
placement and Hybrid had greater area under ROC curve than Pruning at
0.1% and 1% false alarm rates, though all techniques successfully captured
the 2 malicious macro executions at 1% false alarm rate. Accuracy was the
same for the UNM data set, where all techniques detected 3 attacks.

The second last row of Table 4 lists the number of times the respective
strategy did better, same and worse than Pruning. Results indicate that
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Table 4. Area under ROC curve (in %) up to 0.1% and 1% false alarm rates. Results
better than Pruning are in bold-face. Random detector has area = 0.05% (at 0.1%
false alarm rate), 0.5% (at 1% false alarm rate).

Data set 0.1% False Alarm Rate

Pruning Winnow Equal Reward Weight of Replacement Hybrid
Specialist Apportioning Evidence

IDEVAL TCP 27.2 26.2 26.5 25.8 17.5 25.8
IDEVAL PKT 38.6 44.2 38.9 37.5 39.9 39.9
UNIV TCP 15.9 4.3 4.3 15.9 8.3 15.9
UNIV PKT 23.1 21.0 35.0 28.2 31.6 31.6
BSM 56.5 78.3 63.9 84.7 59.1 84.7
FIT-UTK 50.0 95.0 95.0 95.0 95.0 95.0
UNM 100.0 100.0 100.0 100.0 100.0 100.0

Number of times
better/tie/worse — 3/1/3 4/1/2 3/2/2 4/1/2 4/2/1
than Pruning

Average improvement
(%) over Pruning — 9.6 13.3 25.7 8.6 29.2
[excluding UNM]

Data set 1% False Alarm Rate

Pruning Winnow Equal Reward Weight of Replacement Hybrid
Specialist Apportioning Evidence

IDEVAL TCP 57.5 55.8 57.5 57.3 54.1 57.3
IDEVAL PKT 61.1 62.1 61.8 61.0 81.1 81.1
UNIV TCP 59.3 57.0 57.0 65.3 68.6 65.3
UNIV PKT 60.1 66.5 75.7 73.8 76.7 76.7
BSM 60.6 92.7 71.6 92.5 63.5 92.5
FIT-UTK 62.5 96.3 96.3 96.3 96.3 96.3
UNM 100.0 100.0 100.0 100.0 100.0 100.0

Number of times
better/tie/worse — 4/1/2 4/2/1 4/1/2 5/1/1 5/1/1
than Pruning

Average improvement
(%) over Pruning — 18.8 15.9 23.3 21.5 29.0
[excluding UNM]

Weighting, Replacement and Hybrid generally have greater accuracy than
Pruning. This suggests that the rules discarded by LERAD might be effective
in detecting attack based anomalies. At 0.1% false alarm rate, Hybrid outper-
formed Pruning four times and was worse once. Equal Reward Apportioning
and Replacement also had higher AUC on four data sets but lower AUC on 2
data sets. At 1% false alarm rate, Equal Reward Apportioning, Replacement
and Hybrid had same or better accuracy than Pruning on six occassions, and
were worse only once; whereas Weight of Evidence and Winnow-specialist had
higher AUC five times and lower AUC for two data sets. Overall, Hybrid had
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better accuracy than Pruning on most data sets at both 0.1% and 1% false
alarm rates.

Though the second last row of the table gives us the number of times
our techniques better, same or worse than Pruning, it fails to capture the
magnitude of gain or loss in accuracy. This is captured in the last row of the
table, which denotes the average percentage of improvement in the AUC over
Pruning, and is defined as:

1
|datasets|

∑

|datasets|
(
AUCx −AUCPruning

AUCPruning
)× 100, (20)

where x ∈ {Weighting, Replacement, Hybrid}. The UNM data set is ex-
cluded from calculating the average improvement in Table 4 because improve-
ment over Pruning ’s 100% AUC is not possible and all the methods have 100%
AUC (no loss in accuracy). Among the weighted variants, Weight of Evidence
had the best accuracy among all weighting techniques - an improvement of
25.7% and 23.3% over Pruning at 0.1% and 1% false alarm rate respectively.
Replacement had a gain of 8.6% at 0.1% false alarm rate, compared to an im-
provement of 21.5% at 1% false alarm rate. But Hybrid performed the best,
with the most average improvement in accuracy of about 29%.

We also applied the paired t-test to check if the improvements in accu-
racy were statistically significant. We paired each of Weighting, Replacement,
Hybrid with Pruning to obtain the confidence intervals. The seven data sets
result in six degrees of freedom. We consider accuracy improvement with con-
fidence level lower than 90% as not statistically significant. Since Weight of
Evidence had the maximum improvement in accuracy, it was chosen among
the three Weighting techniques. Results show that at 0.1% false alarm rates,
improvement in accuracy for Weighting and Hybrid over Pruning is statis-
tically significant at the 90% level but that of Replacement is not. At 1%
false alarm rates, there is a statistically significant increase in accuracy for
Weighting and Replacement at the 95% level, and 97.5% level for Hybrid over
Pruning. Comparing the change in accuracy of Hybrid over Weighting and
Replacement, we found that the result is statistically significant at 90% level
at 1% false alarm rate but not significant at 0.1% false alarm rate.

7.5 Coverage vs. Accuracy

We measured the coverage of Weighting and Replacement techniques on the
various data sets. The results are compiled in Table 5, where bold values are
better. Results show that Weighting has higher or same coverage except for
IDEVAL and UNIV PKT data sets, where Replacement had higher coverage.

The Hybrid approach selects Weighting or Replacement based on coverage
on training data. It assumes higher coverage yields higher accuracy (AUC).
Is this assumption supported? Which data sets have higher accuracy with
higher coverage at 0.1% and 1% false alarm rates, and how does that explain
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Table 5. Coverage comparison of Weighting and Replacement

Data set Weighting Replacement

IDEVAL TCP 0.91 0.86
IDEVAL PKT 0.43 0.64
UNIV TCP 0.90 0.77
UNIV PKT 0.39 0.58
BSM 0.87 0.85
FIT-UTK 0.87 0.85
UNM 0.88 0.88

the performance of Hybrid? Results are depicted in Fig. 8. The X-axis, de-
noted as ∆Coverage, represents the difference in coverage of Weighting and
Replacement :

∆Coverage = Coverageweighting − Coveragereplacement (21)

The Y-axis (∆AUC) represents the difference in accuracy for the two tech-
niques:

∆AUC = AUCweighting −AUCreplacement (22)

The correlation between accuracy and coverage is positive if increasing (de-
creasing) coverage increases (decreases) accuracy. The correlation is negative
when increased (decreased) coverage leads to decreased (increased) accuracy.
In Figs. 8a-b, positive correlations are represented by data points in quadrants
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I and III, whereas negative correlations are denoted by points on quadrants II
and IV. Both techniques were identical for the UNM data set, hence marked
as origin in Figs. 8a-b. IDEVAL TCP and BSM data sets are represented by
data points in Quadrant I, where Weighting had higher coverage and accu-
racy than Replacement. Replacement did better (in terms of accuracy) than
Weighting with increased coverage for IDEVAL PKT and UNIV PKT, and
are represented by data points in Quadrant III. The only data set showing
a negative correlation was UNIV TCP at 1% false alarm rate Fig. 8b. This
is due to the fact that rule weighting had higher coverage than Replacement
(0.90 vs. 0.77 - Table 5), but lower accuracy. Table 4 depicts accuracy of 15.9%
for Weighting and 8.3% for replacement at 0.1% false alarm rate, and 65.3%
and 68.6% respectively at 1% false alarm rate. Hybrid picks the less accurate
model for UNIV TCP at 1% false alarm rate. For the data set, Weighting has
higher coverage over Replacement, but Hybrid has AUC of Replacement and
not Weighting, as seen in Tables 4 and 5. But for all other cases, the higher
coverage selection by Hybrid yields higher accuracy. In our experiments, there
is only one instance of negative correlation between coverage and accuracy,
indicating that increased coverage generally increases accuracy. This supports
our motivation for Hybrid, that for a given data set, algorithm with higher
coverage yields higher accuracy.

But how does coverage affect accuracy across data sets, for the same al-
gorithm? From Tables 4 - 5 and Figs 8a-b, note that for Hybrid, the two
TCP data sets have the highest coverage (≥ 90%), but they have the least
accuracy. This can be explained by the fundamental aspects that affect ac-
curacy: (i) data representation, i.e. the features used; (ii) knowledge/model
representation; and (iii) the learning algorithm, which finds the best model to
fit the data. Since the knowledge/model representation (LERAD rules) and
the learning algorithm (LERAD) are the same, the data representation at-
tributes to lower AUC for TCP. Results indicate that TCP header doesn’t
model network data as well as PKT for intrusion detection. Since the exploits
are not detectable at the TCP header level, any increase in coverage does
not affect the accuracy. Thus, data sets with higher coverage might not have
higher accuracy for a given algorithm. Our claim for Hybrid yielding higher
accuracy with higher coverage is only applicable across techniques on the same
data set.

7.6 Additional Attacks Detected by Weighting and Replacement
beyond Pruning

Both Weighting and Replacement inherently differ on how the rule set cover-
age is increased over the training data. We conjecture that increased coverage
can result in higher attack detections. In this section, we analyze additional
attack detections and study if the additional rules are main contributors to
new attack detections.
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Table 6. New attacks detected by weighting schemes at 1% false alarm rate.

Factor contributing Data set: attack(s) detected
to attack detection

Conformed rule(s) with IDEVAL TCP: yaga, sechole
increased rule belief

IDEVAL TCP: arppoison, syslogd, perl, crashiis, secret
Violated rule(s) with UNIV TCP: codered
reduced rule belief UNIV PKT: bindver

BSM: fdformat, ffbconfig,guest, syslogd, httptunnel,
secret, portsweep, eject, selfping

The increase in detections for all weighted variants (Winnow-specialist,
Equal Reward Apportioning and Weight of Evidence) is caused by an increase
in the anomaly score, which could result from: (a) increased belief for con-
formed rules, and/or (b) scores from rules discarded by Pruning but retained
(with reduced belief) by the weighted variants. We analyzed the attacks de-
tected using the 3 weighting schemes that were missed by Pruning at 1%
false alarm rate. The results are listed in Table 6. Most of the new attacks
detected are due to rules that were eliminated by Pruning, and support our
claim for retaining the rules but reducing their belief in Weighting. The Perl
attack was detected in IDEVAL TCP due to an anomalous payload attribute
that was part of the exploit. Syslogd is a Denial of Service attack that was
flagged due to an invalid source whereas crashiis involved an unusual request.
The Code Red II HTTP requests for /default.ida (GET /default.ida?NNNN...)
in the UNIV TCP data set are captured by anomaly in the application pay-
load. fdformat and ffbconfig vulnerabilities are buffer overflow attacks that are
detected by encountering unusual arguments in the BSM data. The syslogd
exploit violated a rule due to syslog segmentation fault.

Two attacks were detected by increasing the weight of existing rules: yaga
is detected by long duration times due to the TCP connection not being closed
after crashing and rebooting the target; whereas the sechole exploit is detected
by an anomaly in the application payload. Rule weighting also reinforced the
detection of attacks already detected by Pruning. This was attributed to large
rule weights for some rules, resulting in further increase of the anomaly score.
Also, there were multiple alarms for the same attack due to violation of rules
introduced by the weighted variants but absent in Pruning.

Replacement substitutes violated rules with low predictiveness rules. Ad-
ditional rules are also generated from attribute values previously not covered,
as shown in Steps 6-8 of Fig. 3. The increase in attack detections for Replace-
ment is thus attributed to (a) candidate rules replacing pruned rules, and (b)
new candidate rules learned from attribute values that were not covered. We
analyzed the attacks detected by the replacement scheme that were missed
by Pruning at 1% false alarm rate. Table 7 lists all the new attacks detected
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Table 7. New attacks detected by Replacement at 1% false alarm rate.

Factor contributing Data set: attack(s) detected
to attack detection

Existing candidate IDEVAL TCP: ppmacro, xsnoop, fdformat, xterm
rule(s) from rule pool IDEVAL PKT: netcat breakin, warez, sshtrojan,

warezclient, portsweep, phf, tcpreset, sendmail, ipsweep,
eject, processtable, perl, crashiis, apache2, guest, anypw,
xterm, guest, snmpget, back, yaga, sqlattack, syslogd,
guesspop
UNIV TCP: codered
UNIV PKT: bindver
BSM: fdformat

New rule(s) from IDEVAL TCP: selfping
attribute values IDEVAL PKT: mailbomb, casesen, insidesniffer, dosnuke,
not covered earlier xterm, perl, ncftp, selfping, loadmodule, ppmacro

in each of the two categories. As seen from the table, existing candidate rules
that replace pruned rules are able to detect most new attacks.

7.7 Computational and Storage Overhead

Besides using different weight updation formulae, another distinction between
the three weighting schemes discussed in Section 4.2 is the number of rules
retained. Winnow Specialist and Equal Reward Apportioning schemes sug-
gest keeping all the rules that were previously discarded by Pruning, whereas
Weight of Evidence keeps a subset thereof. Replacement reintroduces candi-
date rules and generates new ones from data not covered by initial candidate
rules. This may result in larger rule sets and increased execution times for
Weighting, Replacement and Hybrid techniques. To check the viability of the
techniques for online usage, we studied the overhead involved with all the
above techniques, both in terms of storage (size of rule set) and the CPU
times for training and testing. Experiments were performed on a SUN Ultra
60 workstation with 450 MHz clock speed and 512 MB RAM.

The time requirements for training are listed in Table 8. Among the weight-
ing methods, most notable difference existed for IDEVAL PKT data set, where
Equal Reward Apportioning was twice and Weight of Evidence took thrice the
time than Pruning. Compared to Pruning and Weighting, Replacement has
significantly higher times, due to the high number of iterations for the algo-
rithm. Additional rules are also generated from data without rule set coverage.
Hybrid is even worse, since it needs to learn both weighting and replacement
models before selecting one based on higher coverage. In the worst case, the
time taken by Weighting was approx. 45 µsec/instance for Weight of Evidence
vs. 14 µsec/instance for Pruning in the case of IDEVAL PKT; Replacement
took 1773 µsec/instance for the same data set. Since training can be per-
formed offline, higher training times are acceptable. The time requirements
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Table 8. Computational overhead: training phase.

Data set Data set size Total training time
(number of (seconds)
instances)

Pruning Winnow Equal Reward Weight of Replacement Hybrid
Specialist Apportioning Evidence

IDEVAL TCP 35452 2.06 2.52 2.18 2.56 15.44 18.19
IDEVAL PKT 280281 3.98 6.27 7.86 12.60 496.89 514.92
UNIV TCP 141162 8.69 9.57 9.16 10.56 53.98 62.39
UNIV PKT 1305873 18.15 23.48 23.33 45.25 203.79 241.19
BSM 1261252 90.55 107.15 107.81 101.27 475.89 562.89
FIT-UTK 94759 0.91 0.95 0.98 1.27 1.08 1.45
UNM 3128 0.05 0.04 0.04 0.06 0.06 0.10

Table 9. Storage requirements: size of rule set.

Data set Number of rules

Pruning Winnow Equal Reward Weight of Replacement Hybrid
Specialist Apportioning Evidence

IDEVAL TCP 52 71 71 71 160 71
IDEVAL PKT 100 108 108 106 554 554
UNIV TCP 45 88 88 88 94 88
UNIV PKT 48 80 80 75 293 293
BSM 155 176 176 176 359 176
FIT-UTK 11 12 12 12 12 12
UNM 36 36 36 36 36 36

for training can be reduced further by terminating the loop (Step 5 in Fig. 3)
early, when there is no increase in coverage even though there might be rule
violations in validation phase.

Storage of the model is determined by the number of rules in the rule
set. Table 9 lists the number of rules generated for the various data sets. For
all data sets except FIT-UTK and UNM, the number of rules is based on per
week of data. Amongst the network data sets, the least overhead was obtained
for IDEVAL PKT where the increase was roughly 6-8% for various weighting
strategies. UNIV TCP presented the maximum overhead, where the number
of rules almost doubled for all weighted schemes, and six times for Replace-
ment. Hybrid selects Weighting or Replacement based on higher coverage on
training data. Thus, the rule set would be same as Weighting or Replacement,
depending upon the technique selected. Weighting is selected for all data sets
except IDEVAL PKT and UNIV PKT, resulting in a smaller rule set for Hy-
brid than Replacement. Considering the large amount of data used during
training (1-9 weeks) and the number of attributes involved, the size of the
weighted and replacement rule sets formed is fairly reasonable. For Weight-
ing, we could additionally limit the rule set size by eliminating a rule which
has been violated a certain number of times or with weight below a threshold.
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Table 10. Computational overhead: testing phase.

Data set Data set size Total testing time
(number of (seconds)
instances)

Pruning Winnow Equal Reward Weight of Replacement Hybrid
Specialist Apportioning Evidence

IDEVAL TCP 178099 7.72 8.76 8.26 8.65 9.56 8.74
IDEVAL PKT 534763 3.02 3.90 3.68 3.20 13.35 13.22
UNIV TCP 143403 7.64 8.50 8.21 8.41 8.97 8.65
UNIV PKT 1310493 7.70 8.64 8.21 8.18 16.61 16.37
BSM 1889680 113.93 121.34 121.63 120.97 187.31 120.66
FIT-UTK 13745 0.10 0.10 0.10 0.09 0.10 0.10
UNM 7283 0.06 0.06 0.06 0.06 0.06 0.06

For Replacement, rule set size can be reduced by terminating iterations earlier
and/or ignoring new rules below a certain predictiveness threshold. Host data
sets displayed lower storage overhead. For the BSM data, the weighted rule
set was over 13% larger than Pruning. Replacement produced 359 rules com-
pared to 155 for pruning. Since 11 different applications were modeled in BSM
data, this corresponds to an average of 16 rules/application for weighting and
33 rules/application for Replacement, which is small for one week of training
data. Number of rules were same for UNM data, whereas the weighted and
replacement rule set size exceeded by one rule for FIT-UTK data set.

The time taken during test phase is also dependent on the rule set size. The
more the rules, the higher is the number of sanity checks to be made for each
test instance. Typically, the time taken should be low for online detection.
The results obtained from our experiments are presented in Table 10. Due
to larger rule sets, Weighting, Replacement and Hybrid schemes have longer
execution times, making them computationally more expensive than Pruning.
The maximum overhead for Weighting was 5.99 µsec/instance on UNIV TCP
data set, and 19.32 µsec/instance for Replacement on IDEVAL PKT. Thus,
the overhead is only a fraction of a millisecond per instance, reasonable for
an online system.

8 Concluding Remarks

Machine learning research has been pursued to learn anomaly rules for intru-
sion detection. LERAD is one such algorithm that can characterize normal
behavior in logical rules by finding associations among nominal attributes. It
forms a small set of “easy to comprehend” rules that characterize the data.
The algorithm is very efficient and effective in capturing anomaly based at-
tacks. A separate held-out data is used to validate the rules. Any violations
result in the rule being eliminated. We conjecture that discarding rules with
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possibly high coverage can lead to missed detections. In this paper we pro-
pose three techniques to increase rule coverage: Weighting, Replacement and
Hybrid.

Weighting retains violated rules in the rule set and associates a belief value
with each rule. Weights are representative of rule belief in our strategy. A
conformed rule increases rule trust and hence the weight is increased. On the
other hand, weight is decreased upon rule violation. Three weighting schemes
are presented - Winnow-specialist-based weighting, Equal Reward Apportion-
ing and Weight of Evidence. Replacement collects rules ignored in coverage
test in a rule pool. These rules are reevaluated to replace pruned rules and
increase coverage. The steps of validation, pruning, and replacement are re-
peated until certain exit criterion is met. Furthermore, new rules are learned
from remaining attribute values that were not covered. We also present Hybrid
technique that selects between Weighting and Replacement based on higher
coverage on training data.

We evaluated Pruning, Weighting, Replacement and Hybrid LERAD vari-
ants on various network and host data sets. Empirical results show that
weighted and replacement rules detect more attack-based anomalies than
pruning at less than 1% false alarm rates. The weighted strategies accounted
for 7 more attack detections for IDEVAL TCP data set, whereas Replacement
detected 6 extra attacks than Pruning. For Weighting, the most significant
improvement was in the case of BSM data, where 12 new attacks (60% more
than Pruning) were detected. Replacement performed best on IDEVAL PKT
data set, where it detected 32% more attacks than pruning. At 0.1% false
alarm rate, Equal Reward Apportioning outperformed Pruning in 5 data sets
and generally performed the best. Replacement had the best accuracy on our
data sets at 1% false alarm rate, where it did better than Pruning on seven
data sets. Generally, all proposed techniques were better than Pruning in
terms of AUC as well as number of attack detections at 1% false alarm rate.

We studied the effect of coverage on accuracy. Results indicate that in-
creased coverage generally resulted in better accuracy. That is the reason why
Hybrid did better than Weighting and Replacement, as shown in Fig. 8. We
also analyzed the new attack detected by Weighting and Replacement based
LERAD variants. For Weighting, these were attributed to high anomaly scores
resulting from (a) violations of rules discarded by Pruning but retained by
weighted variants with reduced belief; and (b) increased belief for existing
rules due to the weight update functions. The former factor contributed to
most new attack anomalies. For Replacement, detections are attributed to (a)
candidate rules replacing pruned rules, and (b) new candidate rules learned
from attribute values that are not covered. Our analysis shows that most of
the new attack anomalies are detected by the first factor.

We also computed overheads incurred due to Weighting and Replacement.
Training times are generally higher for Replacement as it involves multiple it-
erations, the worst in our experiments being 1773 µsec/instance. For Weight-
ing, it was 30 µsec/instance. But training can be performed offline. Since pre-
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viously discarded rules are retained (for Weighting) and additional rules are
added (for Replacement), rule sets tend to be larger. This has direct effect on
the test phase - the larger the rule set, the higher is the testing overhead. But
this overhead is minimal, 6 µsec/instance for Weighting and 19 µsec/instance
for Replacement, making it reasonable for real-time usage.

For future work, we intend to limit the rule set size by eliminating a rule
which has been violated many times and its weight falls below a user-defined
threshold. We are also exploring other linear weight update functions. Addi-
tionally, we intend to incorporate our weighting schemes with other anomaly
detection algorithms. An alternate approach for learning is to minimize the
rule set after pruning the violated rules. This might reduce the training time,
but we suspect that it will also eliminate high coverage (more general) rules,
resulting in a larger rule set comprising more specific rules, thereby increas-
ing the test time. We intend to evaluate and compare the accuracy of such a
learner with the current technique.
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