
Learning Useful System Call Attributes for Anomaly Detection

Gaurav Tandon and Philip K. Chan

Department of Computer Sciences
Florida Institute of Technology

 Melbourne, FL 32901
{gtandon, pkc}@cs.fit.edu

Abstract
Traditional host-based anomaly detection systems model
normal behavior of applications by analyzing system call
sequences. Current sequence is then examined (using the
model) for anomalous behavior, which could correspond to
attacks. Though these techniques have been shown to be
quite effective, a key element seems to be missing – the
inclusion and utilization of the system call arguments.
Recent research shows that sequence-based systems are
prone to evasion. We propose an idea of learning different
representations for system call arguments. Results indicate
that this information can be effectively used for detecting
more attacks with reasonable space and time overhead.

Introduction

Intrusion detection systems (IDSs) are generally
categorized as signature-based and anomaly-based. In
signature detection, systems are modeled upon known
attack patterns and the test data is checked for the
occurrence of these patterns. Such systems have a high
degree of accuracy but suffer from the inability to detect
novel attacks. Anomaly detection complements signature
detection by modeling normal behavior of applications.
Significant deviations from this behavior are considered
anomalous. Such systems can detect novel attacks, but
generate false alarms since not all anomalies are necessarily
hostile. Intrusion detection systems can also be categorized
as network-based, which deals with network traffic; and
host-based, where operating system events are monitored.
 Most of the traditional host-based anomaly detection
systems focus on system call sequences, the assumption
being that a malicious activity results in an abnormal
(novel) sequence of system calls. Recent research has
shown that sequence-based systems can be compromised
by conducting mimicry attacks. Such attacks are possible
by inserting dummy system calls with invalid arguments
such that they form a legitimate sequence of events.
 A drawback of sequence-based approaches lies in their
non-utilization of other key attributes, namely the system
call arguments. The efficacy of such systems might be
improved upon if a richer set of attributes (return value,
error status and other arguments) associated with a system

Copyright © 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

call is used to create the model. In this paper we present a
host-based anomaly detection system that is based upon
system call arguments. We learn the important attributes
using a variant of a rule learning algorithm called LERAD.
We also present various argument-based representations
and compare their performance with some of the well-
known sequence-based techniques.
 Our main contributions are: (1) we incorporate various
system call attributes (return value, error status and other
arguments) for better application modeling; (2) we propose
enriched representations using system call sequences and
arguments; (3) we use a variant of a rule learning algorithm
to learn the important attributes from the feature space; (4)
we demonstrate the effectiveness of our models (in terms of
number of attack detections, time and space overhead) by
performing experiments on three different data sets; and (5)
we present an analysis of the anomalies detected. Our
sequence-based model detects more attacks than traditional
techniques, indicating that the rule learning technique is
able to generalize well. Our argument-based systems are
able to detect more attacks than their sequence-based
counterparts. The time and space requirements for our
models are reasonable for online detection.

Related Work
Time-delay embedding (tide) records executions of normal
application executions using look-ahead pairs (Forrest et al.
1996). UNIX command sequences were also examined to
capture user profiles and compute sequence similarity using
adjacent events in a sliding window (Lane and Brodley
1997). Sequence time-delay embedding (stide) memorizes
all contiguous sequences of predetermined, fixed lengths
during training (Warrender, Forrest, and Pearlmutter 1999).
A further extension, called sequence time-delay embedding
with (frequency) threshold (t-stide), was similar to stide
with the exception that the frequencies of these fixed length
sequences were also taken into account. Rare sequences
were ignored from the normal sequence database in this
approach. All these techniques modeled normal behavior
by using fixed length patterns of training sequences. A
scheme to generate variable length patterns by using
Teiresias (Rigoutsos and Floratos 1998), a pattern-
discovery algorithm in biological sequences, was proposed
in (Wespi, Dacier, and Debar 1999, 2000). These
techniques improved upon the fixed length methods.
Though all the above approaches use system call

sequences, none of them make use of the system call
arguments. Given some knowledge about the IDS, attackers
can devise some methodologies to evade such intrusion
detection systems (Tan, Killourhy, and Maxion 2002;
Wagner and Soto 2002). Such attacks might be detected if
the system call arguments are also evaluated (Kruegel et al.
2003), and this motivates our current work. Our technique
models only the important characteristics and generalizes
from it; previous work emphasizes on the structure of all
the arguments.

Approach
Since our goal is to detect host-based intrusions, system
calls are instrumental in our system. We incorporate the
system calls with its arguments to generate a richer model.
Then we present different representations for modeling a
system using LERAD, which is discussed next.

Learning Rules for Anomaly Detection (LERAD)
Algorithms for finding association rules, such as Apriori
(Agrawal, Imielinski, and Swami 1993), generate a large
number of rules. This incurs a large overhead and may not
be appropriate for online detection. We would like to have
a minimal set of rules describing the normal training data.
LERAD is a conditional rule-learning algorithm that forms
a small set of rules. It is briefly described here; more details
can be obtained from (Mahoney and Chan 2003). LERAD
learns rules of the form:
 },,{,, 21 KK xxXbBaA ∈⇒== (1)
where A, B, and X are attributes and a, b, x1, x2 are values
for the corresponding attributes. The learned rules
represent the patterns present in the normal training data.
The set {x1, x2, …} in the consequent constitutes all unique
values of X when the antecedent occurs in the training data.
 During the detection phase, records (or tuples) that
match the antecedent but not the consequent of a rule are
considered anomalous and an anomaly score is associated
with every rule violation. The degree of anomaly is based
on a probabilistic model. For each rule, from the training
data, the probability, p, of observing a value not in the
consequent is estimated by:
 nrp /= (2)
where r is the cardinality of the set, {x1, x2, …}, in the
consequent and n is the number of records (tuples) that
satisfy the rule during training. This probability estimation
of novel (zero frequency) events is from (Witten and Bell
1991). Since p estimates the probability of a novel event,
the larger p is, the less anomalous a novel event is. Hence,
during detection, when a novel event is observed, the
degree of anomaly (anomaly score) is estimated by:
 rnpScoreAnomaly //1 == (3)
A non-stationary model is assumed for LERAD – only the
last occurrence of an event is assumed important. Since
novel events are bursty in conjunction with attacks, a factor
t is introduced – it is the time interval since the last novel
(anomalous) attribute value. When a novel event occurred
recently (small value of t), a novel event is more likely to
occur at the present moment. Hence, the anomaly score is

measured by t/p. Since a record can deviate from the
consequent of more than one rule, the total anomaly score
of a record is aggregated over all the rules violated by the
tuple to combine the effect from violation of multiple rules:
 ∑ ∑== rntptScoreAnomalyTotal // (4)
The more the violations, more significant the anomaly is,
and the higher the anomaly score should be. An alarm is
raised if the total anomaly score is above a threshold.
 The rule generation phase of LERAD comprises of 4
main steps:
(i) Generate initial rule set: Training samples are picked up
at random from a random subset S of training examples.
Candidate rules (as depicted in Equation 1) are generated
from these samples.
(ii) Coverage test: The rule set is filtered by removing rules
that do not cover/describe all the training examples in S.
Rules with lower rate of anomalies (lower r/n) are kept.
(iii) Update rule set beyond S: Extend the rules over the
remaining training data by adding values for the attribute in
the consequent when the antecedent is true.
(iv) Validate the rule set: Rules are removed if they are
violated by any tuple in the validation set.

 Since system call is the key (pivotal) attribute in a host
based system, we modified LERAD such that the rules
were forced to have a system call as a condition in the
antecedent. The only exception we made was the
generation of rules with no antecedent.

System call and argument based representations
We now present the different representations for LERAD.

Sequence of system calls: S-LERAD. Using sequence of
system calls is a very popular approach for anomaly
detection. We used a window of fixed length 6 (as this is
claimed to give best results in stide and t-stide) and fed
these sequences of six system call tokens as input tuples to
LERAD. This representation is selected to explore whether
LERAD would be able to capture the correlations among
system calls in a sequence. Also, this experiment would
assist us in comparing results by using the same algorithm
for system call sequences as well as their arguments. A
sample rule learned in a particular run of S-LERAD is:

}{,, 3621 munmapSCopenSCmmapSCcloseSC ∈⇒===
 (1/p value = 455/1)
This rule is analogous to encountering close as the first
system call (represented as SC1), followed by mmap and
munmap, and open as the sixth system call (SC6) in a
window of size 6 sliding across the audit trail. Each rule is
associated with an n/r value. The number 455 in the
numerator refers to the number of training instances that
comply with the rule (n in Equation 3). The number 1 in the
denominator implies that there exists just one distinct value
of the consequent (munmap in this case) when all the
conditions in the premise hold true (r in Equation 3).

Argument-based model: A-LERAD. We propose that
argument and other key attribute information is integral to
modeling a good host-based anomaly detection system. We

extracted arguments, return value and error status of system
calls from the audit logs and examined the effects of
learning rules based upon system calls along with these
attributes. Any value for the other arguments (given the
system call) that was never encountered in the training
period for a long time would raise an alarm.

We performed experiments on the training data to
measure the maximum number of attributes (MAX) for
every unique system call. We did not use the test data for
these experiments so that we do not get any information
about it before our model is built. Since LERAD accepts
the same (fixed) number of attributes for every tuple, we
had to insert a NULL value for an attribute that was absent
in a particular system call. The order of the attributes
within the tuple was made system call dependent. Since we
modified LERAD to form rules based upon the system
calls, there is consistency amongst the attributes for any
specific system across all models. By including all
attributes we utilized the maximum amount of information
possible.

Merging system call sequence and argument
information of the current system call: M-LERAD. The
first representation we discussed is based upon sequence of
system calls; the second one takes into consideration other
relevant attributes, whose efficacy we claim in this paper;
so fusing the two to study the effects was an obvious
choice. Merging is accomplished by adding more attributes
in each tuple before input to LERAD. Each tuple now
comprises of the system call, MAX number of attributes for
the current system call, and the previous five system calls.
The n/r values obtained from the all rules violated are
aggregated into an anomaly score, which is then used to
generate an alarm based upon the threshold.

Merging system call sequence and argument
information for all system calls in the sequence: M*-
LERAD. All the proposed variants, namely S-LERAD, A-
LERAD and M-LERAD, consider a sequence of 6 system
calls and/or take into the arguments for the current system
call. We propose another variant called multiple argument
LERAD (M*-LERAD) – in addition to using the system call
sequence and the arguments for the current system call, the
tuples now also comprise the arguments for all system calls
within the fixed length sequence of size 6. Each tuple now
comprises of the current system call, MAX attributes for the
current system call, 5 previous system calls and MAX
attributes for each of those system calls.

Experimental Evaluation
Our goal is to study if LERAD can be modified to detect
attack-based anomalies with feature spaces comprising
system calls and their arguments.

Data sets and experimental procedure
We used the following data sets for our experiments:
 (i) The 1999 DARPA intrusion detection evaluation data
set: Developed at the MIT Lincoln Lab, we selected the

BSM logs from Solaris host tracing system calls that
contains 33 attacks. Attack classification is provided in
(Kendell 1999). The following applications were chosen:
ftpd, telnetd, sendmail, tcsh, login, ps, eject, fdformat, sh,
quota and ufsdump, due to their varied sizes (1500 – over 1
million system calls). We expected to find a good mix of
benign and malicious behavior in these applications.
Training was performed on week 3 data and testing on
weeks 4 and 5. An attack is considered to be detected if an
alarm is raised within 60 seconds of its occurrence (same as
the DARPA evaluation).
(ii) lpr, login and ps applications from the University of
New Mexico (UNM): The lpr application comprised of
2703 normal traces collected from 77 hosts running
SUNOS 4.1.4 at the MIT AI Lab. Another 1001 traces
result from the execution of the lprcp attack script. Traces
from the login and ps applications were obtained from
Linux machines running kernel 2.0.35. Homegrown Trojan
programs were used for the attack traces.
(iii) Microsoft excel macros executions (FIT-UTK data):
Normal excel macro executions are logged in 36 distinct
traces. 2 malicious traces modify registry settings and
execute some other application. Such a behavior is
exhibited by the ILOVEYOU worm which opens the web
browser to a specified website and executes a program,
modifying registry keys and corrupting user files, resulting
in a distributed denial of service (DDoS) attack.
 The input tuples for S-LERAD were 6 contiguous system
calls; for A-LERAD they were system calls with their return
value, error status and arguments; The inputs for M-
LERAD were sequences of system calls with arguments of
the current system call; whereas in M*-LERAD, they were
system call sequences with arguments for all the 6 system
calls. For tide, the inputs were all the pairs of system calls
within a window of fixed size 6; stide and t-stide comprised
all contiguous sequences of length 6. For all the techniques,
alarms were merged in decreasing order of the anomaly
scores and evaluated at varied false alarm rates.

Results
Since t-stide is supposed to give best results among the
sequence-based techniques, we compared its performance
with S-LERAD on the UNM and FIT-UTK data sets.

Table 1: t-stide vs. S-LERAD (UNM, FIT-UTK data).

Number of attacks
detected (Number of

false alarms)

Program
name

Number of
training

sequences

Number of
test

sequences

t-stide S-LERAD

lpr 1000 2704 1 (0) 1 (1)

ps 12 27 2 (58) 2 (2)

login 8 8 1 (0) 1 (1)

excel 32 6 2 (92) 2 (0)

0

4

8

12

16

20

0 0.25 0.5 1 2.5
False alarms (x10-3% per day)

N
um

be
r

of
 d

et
ec

ti
on

s

tide stide t-stide
S-LERAD A-LERAD M-LERAD
M*-LERAD

0

1

2

3

4

5

6

7

DoS U2R R2L
Attack types

N
um

be
r

of
 d

et
ec

ti
on

s

tide stide t-stide S-LERAD

A-LERAD M-LERAD M*-LERAD
Figure 1. Number of detections (DARPA/LL data). Figure 2. Number of detections at 10 false alarms per day for

different attack categories (DARPA/LL data).

 Results from Table 1 show that both the techniques were
able to detect all the attacks. However, t-stide generated
more false alarms for ps and excel. We also performed
experiments on the DARPA/LL data sets to evaluate all the
techniques. Figure 1 illustrates the total attacks detected
(Y-axis) at varied false alarms rates (X- axis). At zero false
alarms, tide, stide and t-stide detected the most attacks,
suggesting that maximum deviations in temporal sequences
are true representations of actual attacks. But as the
threshold is relaxed, S-LERAD outperformed all the 3
sequence-based techniques. This can be attributed to the
fact that S-LERAD is able to generalize well and learns the
important correlations.
 The UNM and FIT-UTK data sets do not have complete
argument information to evaluate LERAD variants that
involve arguments. For the DARPA/LL data set, A-
LERAD fared better than S-LERAD and the other
sequence-based techniques (Figure 1), suggesting that
argument information is more useful than sequence
information. Using arguments could also make a system
robust against mimicry attacks which evade sequence-
based systems. It can also be seen that the A-LERAD curve
closely follows the curve for M-LERAD. This implies that
the sequence information is redundant; it does not add
substantial information to what is already gathered from
arguments. M*-LERAD performed the worst among all the
techniques at false alarms rate lower than 0.5 x 10-3 % per
day. The reason for such a performance is that M*-LERAD
generated alarms for both sequence and argument based
anomalies. An anomalous argument in one system call
raised an alarm in six different tuples, leading to a higher
false alarm rate. As the alarm threshold was relaxed, the
detection rate improved.
 The better performance of LERAD variants can be
attributed to its anomaly scoring function. It associates a

probabilistic score with every rule. Instead of a binary
(present/absent) value (as in the case of stide and t-stide),
this probability value is used to compute the degree of
anomalousness. It also incorporates a parameter for the
time elapsed since a novel value was seen for an attribute.
The advantage is twofold: (i) it assists in detecting long
term anomalies; (ii) suppresses the generation of multiple
alarms for novel attribute values in a sudden burst of data.
 Figure 2 plots the result at 10 false alarms per day,
making a total of 100 false alarms for the 10 days of testing
(criterion used in the 1999 DARPA evaluation). Different
attack types are represented along the X-axis and the Y-
axis denoted the total attacks detected in each attack
category. M-LERAD was able to detect the largest number
of attacks – 5 DoS, 3 U2R and 6 R2L attacks. An
interesting observation is that the sequence-based
techniques generally detected the U2R attacks whereas the
R2L and DoS attacks were better detected by the argument-
based techniques. Our techniques were able to detect some
poorly detected attacks quoted in (Lippmann et al. 1999),
warezclient being one of them. Our models also detected 3
stealthy ps attacks.

Table 2. A-LERAD vs. AC-LERAD (DARPA/LL).

Number of detections

False alarms per day A-LERAD AC-LERAD

5 10 9

10 13 11

20 17 16

 Experiments were performed to see if NULL attributes
help in detecting anomalies or if they formed meaningless
rules. We added a constraint that the NULL values could

not be added to the attribute values in the rules. We call
this variant AC-LERAD (A-LERAD with constraint). Table
2 summarizes the results. A-LERAD was able to detect
more attacks than the constrained counterpart, suggesting
that rules with NULL valued attributes are beneficial to the
detection of anomalies corresponding to attacks.

Analysis of anomalies
An anomaly is a deviation from normalcy and, by
definition, does not necessarily identify the nature of an
attack. Anomaly detection serves as an early warning
system; humans need to investigate if an anomaly actually
corresponds to a malicious activity. The anomalies that led
to the attacks detected by argument-based variants of
LERAD, in many cases, do not represent the true nature of
the attacks. Instead, it may be representative of behavioral
patterns resulting from the execution of some other
program after the intruder successfully gained access to the
host. For example, an instance of guest attack is detected
by A-LERAD not by observing attempts by the hacker
trying to gain access, but by encountering novel arguments
to the ioctl system call which was executed by the hacker
trying to perform a control function on a particular device.
A stealthy ps attack was detected by our system when the
intruder tried to change owner using a novel group id.
 Even if the anomaly is related to the attack itself, it may
reflect very little information about the attack. Our system
is able to learn only a partial signature of the attack.
Guessftp is detected by a bad password for an illegitimate
user trying to gain access. However, the attacker could
have made interspersed attempts to evade the system.
Attacks were also detected by capturing errors committed
by the intruder, possibly to evade the IDS. Ftpwrite is a
vulnerability that exploits a configuration error wherein a
remote ftp user is able to successfully create and add files
(such as .rhost) and gain access to the system. This attack is
detected by monitoring the subsequent actions of the
intruder, wherein he attempts to set the audit state using an
invalid preselection mask. This anomaly would go
unnoticed in a system monitoring only system calls.

Table 3. Top anomalous attributes for A-LERAD.
Attribute causing false
alarm

Whether some attack was
detected by the same
attribute

ioctl argument Yes

ioctl return value Yes

setegid mask Yes

open return value No

open error status No

fcntl error status No

setpgrp return value No

 We re-emphasize that our goal is to detect anomalies, the
underlying assumption being that anomalies generally
correspond to attacks. Since not all anomalous events are
malicious, we expect false alarms to be generated. Table 3
lists the attributes responsible for the generation of alarms
and whether these resulted in actual detections or not. It is
observed that some anomalies were part of benign
application behavior. At other instances, the anomalous
value for the same attribute was responsible for detecting
actual malicious execution of processes. As an example,
many attacks were detected by observing novel arguments
for the ioctl system call, but many false alarms were also
generated by this attribute. Even though not all novel
values correspond to any illegitimate activity, argument-
based anomalies were instrumental in detecting the attacks.

Time and space requirements
Compared to sequence-based methods, our techniques
extract and utilize more information (system call arguments
and other attributes), making it imperative to study the
feasibility of our techniques for online usage. For t-stide,
all contiguous system call sequences of length 6 are stored
during training. For A-LERAD, system call sequences and
other attributes are stored. In both the cases, space
complexity is of the order of O(n), where n is the total
number of system calls, though the A-LERAD requirement
is more by a constant factor k since it stores additional
argument information.
 During detection, A-LERAD uses only a small set of
rules (in the range 14-25 for the applications used in our
experiments). t-stide, on the other hand, still requires the
entire database of fixed length sequences during testing,
which incur larger space overhead during detection. We
conducted experiments on the tcsh application, which
comprises of over 2 million system calls in training and has
over 7 million system calls in test data. The rules formed
by A-LERAD require around 1 KB space, apart from a
mapping table to map strings and integers. The memory
requirements for storing a system call sequence database
for t-stide were over 5 KB plus a mapping table between
strings and integers. The results suggest that A-LERAD has
better memory requirements during the detection phase.
We reiterate that the training can be done offline. Once the
rules are generated, A-LERAD can be used to do online
testing with lower memory requirements.
 The time overhead incurred by A-LERAD and t-stide in
our experiments is given in Table 4. The CPU times have
been obtained on a Sun Ultra 5 workstation with 256 MB
RAM and 400 MHz processor speed. It can be inferred
from the results that A-LERAD is slower than t-stide.
During training, t-stide is a much simpler algorithm and
processes less data than A-LERAD for building a model
and hence t-stide has a much shorter training time. During
detection, t-stide just needs to check if a sequence is
present in the database, which can be efficiently
implemented with a hash table. On the other hand, A-
LERAD needs to check if a record matches any of the
learned rules. Also, A-LERAD has to process additional

argument information. Run-time performance of A-
LERAD can be improved with more efficient rule matching
algorithm. Also, t-stide will incur significantly larger time
overhead when the stored sequences exceed the memory
capacity and disk accesses become unavoidable – A-
LERAD does not encounter this problem as easily as t-stide
since it will still use a small set of rules. Moreover, the run-
time overhead of A-LERAD is about tens of seconds for
days of data, which is reasonable for practical purposes.

Table 4. Execution time comparison.
Application Training Time

(seconds) [on 1
week of data]

Testing Time
(seconds) [on 2
weeks of data]

 t-stide A-LERAD t-stide A-LERAD

ftpd 0.19 0.90 0.19 0.89
telnetd 0.96 7.12 1.05 9.79
ufsdump 6.76 30.04 0.42 1.66
tcsh 6.32 29.56 5.91 29.38
login 2.41 15.12 2.45 15.97
sendmail 2.73 14.79 3.23 19.63
quota 0.20 3.04 0.20 3.01
sh 0.21 2.98 0.40 3.93

Conclusions

In this paper, we portrayed the efficacy of incorporating
system call argument information and used a rule-learning
algorithm to model a host-based anomaly detection system.
Based upon experiments on various data sets, we claim that
our argument-based model, A-LERAD, detected more
attacks than all the sequence-based techniques. Our
sequence-based variant (S-LERAD) was also able to
generalize better than the prevalent sequence based
techniques, which rely on pure memorization.
 Merging argument and sequence information creates a
richer model for anomaly detection, as illustrated by the
empirical results of M-LERAD. M*-LERAD detected
lesser number of attacks at lower false alarm rates since
every anomalous attribute results in alarms being raised in
6 successive tuples, leading to either multiple detections of
the same attack (counted as a single detection) or multiple
false alarms (all separate entities). Results also indicated
that sequence-based methods help detect U2R attacks
whereas R2L and DoS attacks were better detected by
argument-based models. Our argument-based techniques
detected different types of anomalies. Some anomalies did
not represent the true nature of the attack. Some attacks
were detected by subsequent anomalous user behavior, like
trying to change group ownership. Some other anomalies
were detected by learning only a portion of the attack,
while some were detected by capturing intruder errors.
 Though our techniques incur higher time overhead due
to the complexity of our techniques (since more
information is processed) as compared to t-stide, they build
more succinct models that incur much less space overhead
– our techniques aim to generalize from the training data,

rather than pure memorization. Moreover, 3 seconds per
day (the most an application took during testing phase) is
reasonable for online systems, even though it is
significantly longer than t-stide.
 Though our techniques did detect more attacks with
fewer false alarms, there arises a need for more
sophisticated attributes. Instead of having a fixed sequence,
we could extend our models to incorporate variable length
sub-sequences of system calls. Even the argument-based
models are of fixed window size, creating a need for a
model accepting varied argument information. Our
techniques can be easily extended to monitor audit trails in
continuum. Since we model each application separately,
some degree of parallelism can also be achieved to test
process sequences as they are being logged.

References
Agrawal, R.; Imielinski, T.; and Swami A. 1993. Mining
association rules between sets of items in large databases. ACM
SIGMOD, 207-216.
Forrest, S.; Hofmeyr, S.; Somayaji, A.; and Longstaff, T. 1996. A
Sense of Self for UNIX Processes. IEEE Symposium on Security
and Privacy, 120-128.
Kendell, K. 1999. A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems. Masters Thesis, MIT.
Kruegel, C.; Mutz, D.; Valeur, F.; and Vigna, G. 2003. On the
Detection of Anomalous System Call Arguments, European
Symposium on Research in Computer Security, 326-343.
Lane, T., and Brodley C.E. 1997. Sequence Matching and
Learning in Anomaly Detection for Computer Security. AAAI
Workshop on AI Approaches to Fraud Detection and Risk
Management, 43-49.
Lippmann, R.; Haines, J.; Fried, D.; Korba, J.; and Das, K. 2000.
The 1999 DARPA Off-Line Intrusion Detection Evaluation.
Computer Networks, 34:579-595.
Mahoney, M., and Chan, P. 2003. Learning Rules for Anomaly
Detection of Hostile Network Traffic, IEEE International
Conference on Data Mining, 601-604.
Rigoutsos, I., and Floratos, A. 1998. Combinatorial pattern
discovery in biological sequences. Bioinformatics, 14(1):55-67.
Tan, K.M.C.; Killourhy, K.S.; and Maxion, R.A. 2002.
Undermining an Anomaly-based Intrusion Detection System
Using Common Exploits. RAID, 54-74.
Wagner, D., and Soto, P. 2002. Mimicry Attacks on Host-Based
Intrusion Detection Systems. ACM CCS, 255-264.
Warrender, C.; Forrest, S.; and Pearlmutter, B. 1999. Detecting
Intrusions Using System Calls: Alternative Data Models. IEEE
Symposium on Security and Privacy, 133-145.
Wespi, A.; Dacier, M.; and Debar, H. 1999. An Intrusion-
Detection System Based on the Teiresias Pattern-Discovery
Algorithm. EICAR Conference, 1-15.
Wespi, A.; Dacier, M.; and Debar, H. 2000. Intrusion detection
using variable-length audit trail patterns. RAID, 110-129.
Witten, I., and Bell, T. 1991. The zero-frequency problem:
estimating the probabilities of novel events in adaptive text
compression. IEEE Trans. on Information Theory, 37(4):1085-
1094.

