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Abstract 
Traditional host-based anomaly detection systems model 
normal behavior of applications by analyzing system call 
sequences. Current sequence is then examined (using the 
model) for anomalous behavior, which could correspond to 
attacks. Though these techniques have been shown to be 
quite effective, a key element seems to be missing – the 
inclusion and utilization of the system call arguments.  
Recent research shows that sequence-based systems are 
prone to evasion. We propose an idea of learning different 
representations for system call arguments. Results indicate 
that this information can be effectively used for detecting 
more attacks with reasonable space and time overhead. 

Introduction  

Intrusion detection systems (IDSs) are generally 
categorized as signature-based and anomaly-based. In 
signature detection, systems are modeled upon known 
attack patterns and the test data is checked for the 
occurrence of these patterns. Such systems have a high 
degree of accuracy but suffer from the inability to detect 
novel attacks. Anomaly detection complements signature 
detection by modeling normal behavior of applications. 
Significant deviations from this behavior are considered 
anomalous. Such systems can detect novel attacks, but 
generate false alarms since not all anomalies are necessarily 
hostile. Intrusion detection systems can also be categorized 
as network-based, which deals with network traffic; and 
host-based, where operating system events are monitored. 
 Most of the traditional host-based anomaly detection 
systems focus on system call sequences, the assumption 
being that a malicious activity results in an abnormal 
(novel) sequence of system calls. Recent research has 
shown that sequence-based systems can be compromised 
by conducting mimicry attacks. Such attacks are possible 
by inserting dummy system calls with invalid arguments 
such that they form a legitimate sequence of events. 
 A drawback of sequence-based approaches lies in their 
non-utilization of other key attributes, namely the system 
call arguments. The efficacy of such systems might be 
improved upon if a richer set of attributes (return value, 
error status and other arguments) associated with a system 
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call is used to create the model. In this paper we present a 
host-based anomaly detection system that is based upon 
system call arguments. We learn the important attributes 
using a variant of a rule learning algorithm called LERAD. 
We also present various argument-based representations 
and compare their performance with some of the well-
known sequence-based techniques.  
 Our main contributions are: (1) we incorporate various 
system call attributes (return value, error status and other 
arguments) for better application modeling; (2) we propose 
enriched representations using system call sequences and 
arguments; (3) we use a variant of a rule learning algorithm 
to learn the important attributes from the feature space; (4) 
we demonstrate the effectiveness of our models (in terms of 
number of attack detections, time and space overhead) by 
performing experiments on three different data sets; and (5) 
we  present an analysis of the anomalies detected. Our 
sequence-based model detects more attacks than traditional 
techniques, indicating that the rule learning technique is 
able to generalize well. Our argument-based systems are 
able to detect more attacks than their sequence-based 
counterparts. The time and space requirements for our 
models are reasonable for online detection. 
 

Related Work 
Time-delay embedding (tide) records executions of normal 
application executions using look-ahead pairs (Forrest et al. 
1996). UNIX command sequences were also examined to 
capture user profiles and compute sequence similarity using 
adjacent events in a sliding window (Lane and Brodley 
1997). Sequence time-delay embedding (stide) memorizes 
all contiguous sequences of predetermined, fixed lengths 
during training (Warrender, Forrest, and Pearlmutter 1999). 
A further extension, called sequence time-delay embedding 
with (frequency) threshold (t-stide), was similar to stide 
with the exception that the frequencies of these fixed length 
sequences were also taken into account. Rare sequences 
were ignored from the normal sequence database in this 
approach. All these techniques modeled normal behavior 
by using fixed length patterns of training sequences. A 
scheme to generate variable length patterns by using 
Teiresias (Rigoutsos and Floratos 1998), a pattern-
discovery algorithm in biological sequences, was proposed 
in (Wespi, Dacier, and Debar 1999, 2000). These 
techniques improved upon the fixed length methods. 
Though all the above approaches use system call 



sequences, none of them make use of the system call 
arguments. Given some knowledge about the IDS, attackers 
can devise some methodologies to evade such intrusion 
detection systems (Tan, Killourhy, and Maxion 2002; 
Wagner and Soto 2002). Such attacks might be detected if 
the system call arguments are also evaluated (Kruegel et al. 
2003), and this motivates our current work. Our technique 
models only the important characteristics and generalizes 
from it; previous work emphasizes on the structure of all 
the arguments. 
 

Approach 
Since our goal is to detect host-based intrusions, system 
calls are instrumental in our system. We incorporate the 
system calls with its arguments to generate a richer model. 
Then we present different representations for modeling a 
system using LERAD, which is discussed next. 

Learning Rules for Anomaly Detection (LERAD) 
Algorithms for finding association rules, such as Apriori 
(Agrawal, Imielinski, and Swami 1993), generate a large 
number of rules. This incurs a large overhead and may not 
be appropriate for online detection. We would like to have 
a minimal set of rules describing the normal training data. 
LERAD is a conditional rule-learning algorithm that forms 
a small set of rules. It is briefly described here; more details 
can be obtained from (Mahoney and Chan 2003).  LERAD 
learns rules of the form:       
      },,{,, 21 KK xxXbBaA ∈⇒==             (1) 
where A, B, and X are attributes and a, b, x1, x2 are values 
for the corresponding attributes.  The learned rules 
represent the patterns present in the normal training data.  
The set {x1, x2, …} in the consequent constitutes all unique 
values of X when the antecedent occurs in the training data. 
  During the detection phase, records (or tuples) that 
match the antecedent but not the consequent of a rule are 
considered anomalous and an anomaly score is associated 
with every rule violation.  The degree of anomaly is based 
on a probabilistic model.   For each rule, from the training 
data, the probability, p, of observing a value not in the 
consequent is estimated by: 
         nrp /=                 (2) 
where r is the cardinality of the set, {x1, x2, …}, in the 
consequent and n is the number of records (tuples) that 
satisfy the rule during training.  This probability estimation 
of novel (zero frequency) events is from (Witten and Bell 
1991). Since p estimates the probability of a novel event, 
the larger p is, the less anomalous a novel event is.  Hence, 
during detection, when a novel event is observed, the 
degree of anomaly (anomaly score) is estimated by:  
                      rnpScoreAnomaly //1 ==          (3) 
A non-stationary model is assumed for LERAD – only the 
last occurrence of an event is assumed important. Since 
novel events are bursty in conjunction with attacks, a factor 
t is introduced – it is the time interval since the last novel 
(anomalous) attribute value.  When a novel event occurred 
recently (small value of t), a novel event is more likely to 
occur at the present moment. Hence, the anomaly score is 

measured by t/p.  Since a record can deviate from the 
consequent of more than one rule, the total anomaly score 
of a record is aggregated over all the rules violated by the 
tuple to combine the effect from violation of multiple rules:  
    ∑ ∑== rntptScoreAnomalyTotal //        (4) 
The more the violations, more significant the anomaly is, 
and the higher the anomaly score should be. An alarm is 
raised if the total anomaly score is above a threshold. 
 The rule generation phase of LERAD comprises of 4 
main steps:  
(i) Generate initial rule set: Training samples are picked up 
at random from a random subset S of training examples. 
Candidate rules (as depicted in Equation 1) are generated 
from these samples.  
(ii) Coverage test: The rule set is filtered by removing rules 
that do not cover/describe all the training examples in S. 
Rules with lower rate of anomalies (lower r/n) are kept. 
(iii) Update rule set beyond S: Extend the rules over the 
remaining training data by adding values for the attribute in 
the consequent when the antecedent is true. 
(iv) Validate the rule set: Rules are removed if they are 
violated by any tuple in the validation set. 

 Since system call is the key (pivotal) attribute in a host 
based system, we modified LERAD such that the rules 
were forced to have a system call as a condition in the 
antecedent. The only exception we made was the 
generation of rules with no antecedent.  

System call and argument based representations 
We now present the different representations for LERAD. 

Sequence of system calls: S-LERAD. Using sequence of 
system calls is a very popular approach for anomaly 
detection. We used a window of fixed length 6 (as this is 
claimed to give best results in stide and t-stide) and fed 
these sequences of six system call tokens as input tuples to 
LERAD. This representation is selected to explore whether 
LERAD would be able to capture the correlations among 
system calls in a sequence. Also, this experiment would 
assist us in comparing results by using the same algorithm 
for system call sequences as well as their arguments. A 
sample rule learned in a particular run of S-LERAD is: 

}{,, 3621 munmapSCopenSCmmapSCcloseSC ∈⇒===  
 (1/p value = 455/1) 
This rule is analogous to encountering close as the first 
system call (represented as SC1), followed by mmap and 
munmap, and open as the sixth system call (SC6) in a 
window of size 6 sliding across the audit trail. Each rule is 
associated with an n/r value. The number 455 in the 
numerator refers to the number of training instances that 
comply with the rule (n in Equation 3). The number 1 in the 
denominator implies that there exists just one distinct value 
of the consequent (munmap in this case) when all the 
conditions in the premise hold true (r in Equation 3).  

Argument-based model: A-LERAD. We propose that 
argument and other key attribute information is integral to 
modeling a good host-based anomaly detection system. We 



extracted arguments, return value and error status of system 
calls from the audit logs and examined the effects of 
learning rules based upon system calls along with these 
attributes. Any value for the other arguments (given the 
system call) that was never encountered in the training 
period for a long time would raise an alarm. 

We performed experiments on the training data to 
measure the maximum number of attributes (MAX) for 
every unique system call. We did not use the test data for 
these experiments so that we do not get any information 
about it before our model is built. Since LERAD accepts 
the same (fixed) number of attributes for every tuple, we 
had to insert a NULL value for an attribute that was absent 
in a particular system call. The order of the attributes 
within the tuple was made system call dependent. Since we 
modified LERAD to form rules based upon the system 
calls, there is consistency amongst the attributes for any 
specific system across all models. By including all 
attributes we utilized the maximum amount of information 
possible.  

Merging system call sequence and argument 
information of the current system call: M-LERAD. The 
first representation we discussed is based upon sequence of 
system calls; the second one takes into consideration other 
relevant attributes, whose efficacy we claim in this paper; 
so fusing the two to study the effects was an obvious 
choice. Merging is accomplished by adding more attributes 
in each tuple before input to LERAD. Each tuple now 
comprises of the system call, MAX number of attributes for 
the current system call, and the previous five system calls. 
The n/r values obtained from the all rules violated are 
aggregated into an anomaly score, which is then used to 
generate an alarm based upon the threshold.  

Merging system call sequence and argument 
information for all system calls in the sequence: M*-
LERAD. All the proposed variants, namely S-LERAD, A-
LERAD and M-LERAD, consider a sequence of 6 system 
calls and/or take into the arguments for the current system 
call. We propose another variant called multiple argument 
LERAD (M*-LERAD) – in addition to using the system call 
sequence and the arguments for the current system call, the 
tuples now also comprise the arguments for all system calls 
within the fixed length sequence of size 6. Each tuple now 
comprises of the current system call, MAX attributes for the 
current system call, 5 previous system calls and MAX 
attributes for each of those system calls. 

 

Experimental Evaluation 
Our goal is to study if LERAD can be modified to detect 
attack-based anomalies with feature spaces comprising 
system calls and their arguments.  
 
Data sets and experimental procedure 
We used the following data sets for our experiments: 
 (i) The 1999 DARPA intrusion detection evaluation data 
set: Developed at the MIT Lincoln Lab, we selected the 

BSM logs from Solaris host tracing system calls that 
contains 33 attacks. Attack classification is provided in 
(Kendell 1999). The following applications were chosen: 
ftpd, telnetd, sendmail, tcsh, login, ps, eject, fdformat, sh, 
quota and ufsdump, due to their varied sizes (1500 – over 1 
million system calls). We expected to find a good mix of 
benign and malicious behavior in these applications. 
Training was performed on week 3 data and testing on 
weeks 4 and 5. An attack is considered to be detected if an 
alarm is raised within 60 seconds of its occurrence (same as 
the DARPA evaluation). 
(ii) lpr, login and ps applications from the University of 
New Mexico (UNM): The lpr application comprised of 
2703 normal traces collected from 77 hosts running 
SUNOS 4.1.4 at the MIT AI Lab. Another 1001 traces 
result from the execution of the lprcp attack script. Traces 
from the login and ps applications were obtained from 
Linux machines running kernel 2.0.35. Homegrown Trojan 
programs were used for the attack traces.  
(iii) Microsoft excel macros executions (FIT-UTK data): 
Normal excel macro executions are logged in 36 distinct 
traces. 2 malicious traces modify registry settings and 
execute some other application. Such a behavior is 
exhibited by the ILOVEYOU worm which opens the web 
browser to a specified website and executes a program, 
modifying registry keys and corrupting user files, resulting 
in a distributed denial of service (DDoS) attack.  
 The input tuples for S-LERAD were 6 contiguous system 
calls; for A-LERAD they were system calls with their return 
value, error status and arguments; The inputs for M-
LERAD were sequences of system calls with arguments of 
the current system call; whereas in M*-LERAD, they were 
system call sequences with arguments for all the 6 system 
calls. For tide, the inputs were all the pairs of system calls 
within a window of fixed size 6; stide and t-stide comprised 
all contiguous sequences of length 6. For all the techniques, 
alarms were merged in decreasing order of the anomaly 
scores and evaluated at varied false alarm rates. 

Results 
Since t-stide is supposed to give best results among the 
sequence-based techniques, we compared its performance 
with S-LERAD on the UNM and FIT-UTK data sets. 

 
Table 1: t-stide vs. S-LERAD (UNM, FIT-UTK data). 

Number of  attacks 
detected (Number of 

false alarms) 

Program 
name 

Number of 
training 

sequences 

Number of 
test 

sequences 

t-stide S-LERAD 

lpr 1000 2704 1 (0) 1 (1) 

ps 12 27 2 (58) 2 (2) 

login 8 8 1 (0) 1 (1) 

excel 32 6 2 (92) 2 (0) 
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Figure 1. Number of detections (DARPA/LL data). Figure 2. Number of detections at 10 false alarms per day for 

different attack categories (DARPA/LL data). 
 
 Results from Table 1 show that both the techniques were 
able to detect all the attacks. However, t-stide generated 
more false alarms for ps and excel. We also performed 
experiments on the DARPA/LL data sets to evaluate all the 
techniques. Figure 1 illustrates the total attacks detected 
(Y-axis) at varied false alarms rates (X- axis). At zero false 
alarms, tide, stide and t-stide detected the most attacks, 
suggesting that maximum deviations in temporal sequences 
are true representations of actual attacks. But as the 
threshold is relaxed, S-LERAD outperformed all the 3 
sequence-based techniques. This can be attributed to the 
fact that S-LERAD is able to generalize well and learns the 
important correlations. 
 The UNM and FIT-UTK data sets do not have complete 
argument information to evaluate LERAD variants that 
involve arguments. For the DARPA/LL data set, A-
LERAD fared better than S-LERAD and the other 
sequence-based techniques (Figure 1), suggesting that 
argument information is more useful than sequence 
information. Using arguments could also make a system 
robust against mimicry attacks which evade sequence-
based systems. It can also be seen that the A-LERAD curve 
closely follows the curve for M-LERAD. This implies that 
the sequence information is redundant; it does not add 
substantial information to what is already gathered from 
arguments. M*-LERAD performed the worst among all the 
techniques at false alarms rate lower than 0.5 x 10-3 % per 
day. The reason for such a performance is that M*-LERAD 
generated alarms for both sequence and argument based 
anomalies. An anomalous argument in one system call 
raised an alarm in six different tuples, leading to a higher 
false alarm rate. As the alarm threshold was relaxed, the 
detection rate improved. 
 The better performance of LERAD variants can be 
attributed to its anomaly scoring function. It associates a 

probabilistic score with every rule. Instead of a binary 
(present/absent) value (as in the case of stide and t-stide), 
this probability value is used to compute the degree of 
anomalousness. It also incorporates a parameter for the 
time elapsed since a novel value was seen for an attribute. 
The advantage is twofold: (i) it assists in detecting long 
term anomalies; (ii) suppresses the generation of multiple 
alarms for novel attribute values in a sudden burst of data. 
 Figure 2 plots the result at 10 false alarms per day, 
making a total of 100 false alarms for the 10 days of testing 
(criterion used in the 1999 DARPA evaluation). Different 
attack types are represented along the X-axis and the Y-
axis denoted the total attacks detected in each attack 
category. M-LERAD was able to detect the largest number 
of attacks – 5 DoS, 3 U2R and 6 R2L attacks. An 
interesting observation is that the sequence-based 
techniques generally detected the U2R attacks whereas the 
R2L and DoS attacks were better detected by the argument-
based techniques. Our techniques were able to detect some 
poorly detected attacks quoted in (Lippmann et al. 1999), 
warezclient being one of them. Our models also detected 3 
stealthy ps attacks. 

 
Table 2. A-LERAD vs. AC-LERAD (DARPA/LL). 

Number of detections  

False alarms per day A-LERAD AC-LERAD 

5 10 9 

10 13 11 

20 17 16 

 
 Experiments were performed to see if NULL attributes 
help in detecting anomalies or if they formed meaningless 
rules. We added a constraint that the NULL values could 



not be added to the attribute values in the rules. We call 
this variant AC-LERAD (A-LERAD with constraint). Table 
2 summarizes the results. A-LERAD was able to detect 
more attacks than the constrained counterpart, suggesting 
that rules with NULL valued attributes are beneficial to the 
detection of anomalies corresponding to attacks. 

Analysis of anomalies 
An anomaly is a deviation from normalcy and, by 
definition, does not necessarily identify the nature of an 
attack. Anomaly detection serves as an early warning 
system; humans need to investigate if an anomaly actually 
corresponds to a malicious activity. The anomalies that led 
to the attacks detected by argument-based variants of 
LERAD, in many cases, do not represent the true nature of 
the attacks. Instead, it may be representative of behavioral 
patterns resulting from the execution of some other 
program after the intruder successfully gained access to the 
host. For example, an instance of guest attack is detected 
by A-LERAD not by observing attempts by the hacker 
trying to gain access, but by encountering novel arguments 
to the ioctl system call which was executed by the hacker 
trying to perform a control function on a particular device. 
A stealthy ps attack was detected by our system when the 
intruder tried to change owner using a novel group id.  
 Even if the anomaly is related to the attack itself, it may 
reflect very little information about the attack. Our system 
is able to learn only a partial signature of the attack. 
Guessftp is detected by a bad password for an illegitimate 
user trying to gain access. However, the attacker could 
have made interspersed attempts to evade the system. 
Attacks were also detected by capturing errors committed 
by the intruder, possibly to evade the IDS. Ftpwrite is a 
vulnerability that exploits a configuration error wherein a 
remote ftp user is able to successfully create and add files 
(such as .rhost) and gain access to the system. This attack is 
detected by monitoring the subsequent actions of the 
intruder, wherein he attempts to set the audit state using an 
invalid preselection mask. This anomaly would go 
unnoticed in a system monitoring only system calls. 
  

Table 3. Top anomalous attributes for A-LERAD. 
Attribute causing false 
alarm 

Whether some attack was 
detected by the same 
attribute 

ioctl argument Yes 

ioctl return value Yes 

setegid mask Yes 

open return value No 

open error status No 

fcntl error status No 

setpgrp return value No 

 

 We re-emphasize that our goal is to detect anomalies, the 
underlying assumption being that anomalies generally 
correspond to attacks. Since not all anomalous events are 
malicious, we expect false alarms to be generated. Table 3 
lists the attributes responsible for the generation of alarms 
and whether these resulted in actual detections or not. It is 
observed that some anomalies were part of benign 
application behavior. At other instances, the anomalous 
value for the same attribute was responsible for detecting 
actual malicious execution of processes. As an example, 
many attacks were detected by observing novel arguments 
for the ioctl system call, but many false alarms were also 
generated by this attribute. Even though not all novel 
values correspond to any illegitimate activity, argument-
based anomalies were instrumental in detecting the attacks. 
 
Time and space requirements 
Compared to sequence-based methods, our techniques 
extract and utilize more information (system call arguments 
and other attributes), making it imperative to study the 
feasibility of our techniques for online usage. For t-stide, 
all contiguous system call sequences of length 6 are stored 
during training. For A-LERAD, system call sequences and 
other attributes are stored. In both the cases, space 
complexity is of the order of O(n), where n is the total 
number of  system calls, though the A-LERAD requirement 
is more by a constant factor k since it stores additional 
argument information.  
 During detection, A-LERAD uses only a small set of 
rules (in the range 14-25 for the applications used in our 
experiments). t-stide, on the other hand, still requires the 
entire database of fixed length sequences during testing, 
which incur larger space overhead during detection. We 
conducted experiments on the tcsh application, which 
comprises of over 2 million system calls in training and has 
over 7 million system calls in test data. The rules formed 
by A-LERAD require around 1 KB space, apart from a 
mapping table to map strings and integers. The memory 
requirements for storing a system call sequence database 
for t-stide were over 5 KB plus a mapping table between 
strings and integers. The results suggest that A-LERAD has 
better memory requirements during the detection phase. 
We reiterate that the training can be done offline. Once the 
rules are generated, A-LERAD can be used to do online 
testing with lower memory requirements. 
 The time overhead incurred by A-LERAD and t-stide in 
our experiments is given in Table 4. The CPU times have 
been obtained on a Sun Ultra 5 workstation with 256 MB 
RAM and 400 MHz processor speed. It can be inferred 
from the results that A-LERAD is slower than t-stide. 
During training, t-stide is a much simpler algorithm and 
processes less data than A-LERAD for building a model 
and hence t-stide has a much shorter training time.  During 
detection, t-stide just needs to check if a sequence is 
present in the database, which can be efficiently 
implemented with a hash table.  On the other hand, A-
LERAD needs to check if a record matches any of the 
learned rules.  Also, A-LERAD has to process additional 



argument information.  Run-time performance of A-
LERAD can be improved with more efficient rule matching 
algorithm. Also, t-stide will incur significantly larger time 
overhead when the stored sequences exceed the memory 
capacity and disk accesses become unavoidable – A-
LERAD does not encounter this problem as easily as t-stide 
since it will still use a small set of rules. Moreover, the run-
time overhead of A-LERAD is about tens of seconds for 
days of data, which is reasonable for practical purposes. 
 

Table 4. Execution time comparison. 
Application Training Time 

(seconds) [on 1 
week of data] 

Testing Time 
(seconds) [on 2 
weeks of data] 

 t-stide A-LERAD t-stide A-LERAD 

ftpd 0.19 0.90 0.19 0.89 
telnetd 0.96 7.12 1.05 9.79 
ufsdump 6.76 30.04 0.42 1.66 
tcsh 6.32 29.56 5.91 29.38 
login 2.41 15.12 2.45 15.97 
sendmail 2.73 14.79 3.23 19.63 
quota 0.20 3.04 0.20 3.01 
sh 0.21 2.98 0.40 3.93 

Conclusions 

In this paper, we portrayed the efficacy of incorporating 
system call argument information and used a rule-learning 
algorithm to model a host-based anomaly detection system. 
Based upon experiments on various data sets, we claim that 
our argument-based model, A-LERAD, detected more 
attacks than all the sequence-based techniques. Our 
sequence-based variant (S-LERAD) was also able to 
generalize better than the prevalent sequence based 
techniques, which rely on pure memorization.  
 Merging argument and sequence information creates a 
richer model for anomaly detection, as illustrated by the 
empirical results of M-LERAD. M*-LERAD detected 
lesser number of attacks at lower false alarm rates since 
every anomalous attribute results in alarms being raised in 
6 successive tuples, leading to either multiple detections of 
the same attack (counted as a single detection) or multiple 
false alarms (all separate entities). Results also indicated 
that sequence-based methods help detect U2R attacks 
whereas R2L and DoS attacks were better detected by 
argument-based models. Our argument-based techniques 
detected different types of anomalies. Some anomalies did 
not represent the true nature of the attack. Some attacks 
were detected by subsequent anomalous user behavior, like 
trying to change group ownership. Some other anomalies 
were detected by learning only a portion of the attack, 
while some were detected by capturing intruder errors. 
 Though our techniques incur higher time overhead due 
to the complexity of our techniques (since more 
information is processed) as compared to t-stide, they build 
more succinct models that incur much less space overhead 
– our techniques aim to generalize from the training data, 

rather than pure memorization. Moreover, 3 seconds per 
day (the most an application took during testing phase) is 
reasonable for online systems, even though it is 
significantly longer than t-stide.  
 Though our techniques did detect more attacks with 
fewer false alarms, there arises a need for more 
sophisticated attributes. Instead of having a fixed sequence, 
we could extend our models to incorporate variable length 
sub-sequences of system calls. Even the argument-based 
models are of fixed window size, creating a need for a 
model accepting varied argument information. Our 
techniques can be easily extended to monitor audit trails in 
continuum. Since we model each application separately, 
some degree of parallelism can also be achieved to test 
process sequences as they are being logged.  
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