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Abstract 
The normal operation of a device can be characterized in different temporal states.  To identify these states, 
we introduce a segmentation algorithm called Gecko that can determine a reasonable number of segments 
using our proposed L method.  We then use the RIPPER classification algorithm to describe these states in 
logical rules.  Finally, transitional logic between the states is added to create a finite state automaton. Our 
empirical results, on data obtained from the NASA shuttle program, indicate that the Gecko segmentation 
algorithm is comparable to a human expert in identifying states, and our L method performs better than the 
existing permutation tests method when determining the number of segments to return in segmentation 
algorithms.  Empirical results have also shown that our overall system can track normal behavior and detect 
anomalies. 
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1 Introduction 

Expert (knowledge-based) systems are often used to help humans monitor and control critical systems in 

real-time.  For example, NASA uses expert systems to monitor various devices on the space shuttle.  

However, populating an expert system’s knowledge base by hand is a time-consuming process.  In this 

paper, we investigate machine learning techniques for generating knowledge that can monitor the 

operation of devices or systems.  Specifically, we study methods for generating models that can detect 

anomalies in time series data.  

The normal operation of a device can be characterized in different temporal states.  Segmentation or 

clustering techniques can help identify the various states.  However, most methods directly or indirectly 

require a parameter to specify the number of segments/clusters in the time series data.  The output of 



 

these algorithms is also not in a logical rule format, which is commonly used in expert systems for its 

ease of comprehension and modification.  Furthermore, the relationship between these states needs to be 

determined to allow tracking from one state to another and to detect anomalies. 

Given a time series depicting a system’s normal operation, we desire to learn a model that can detect 

anomalies and can be easily read and modified by human users.  We investigate a few issues in this 

paper.  First, we want a segmentation algorithm that can dynamically determine a reasonable number of 

segments, and hence the number of states for our purposes.  These states, collected from a device, should 

be comparable to those identified by human experts.  Second, we would like to characterize these states 

in logical rules so that they can be read and modified with relative ease by humans.  Third, given the 

knowledge of the different states, we wish to describe the relationship among them for tracking normal 

behavior and detecting anomalies. 

To identify states, we introduce Gecko, which is able to segment time series data and determine a 

reasonable number of segments (states).  Gecko consists of a top-down partitioning phase to find initial 

sub-clusters and a bottom-up phase which merges them back together.  The appropriate number of 

segments is determined by what we call the L method.  To characterize the states as logical rules, we use 

the RIPPER classification rule learning algorithm [1].  Since different states often overlap in the one-

dimensional input space, additional attributes are derived to help characterize the states.  To track 

normal behavior and detect anomalies, we construct a finite state automaton (FSA) with the identified 

states. 

Our main contributions are:  (1) we demonstrate a way to perform time series anomaly detection via 

generated states and rules that can easily be understood and modified by humans; (2) we introduce an 

algorithm named Gecko for segmenting time series data into important phases or states; (3) we propose 

the L method for dynamically finding a reasonable number of clusters–the L method is general enough to 

be used with either hierarchical clustering or segmentation algorithms [2]; (4) we integrate RIPPER and 

state transition logic to generate a complete anomaly detection system; (5) our empirical evaluations, 

with data from NASA, indicate that Gecko performs comparably with a NASA expert and the overall 

system can track normal behavior and detect anomalies. 

The next section gives an overview of related work.  Section 3 provides a detailed explanation of our 

system, which includes the components:  Gecko (clustering), RIPPER (rule generation), and state 



 

transition logic.  Section 4 contains experimental evaluations of the component algorithms as well as the 

overall anomaly detection system, and Section 5 summarizes our study 

2 Related Work 

2.1 Clustering Algorithms 

Clustering algorithms take spatial data (2 or more dimensions) as input and return a set of clusters such 

that all points in a cluster are similar to each other and dissimilar to points in other clusters.  There are 

four main categories of clustering algorithms:  partitioning, hierarchical, density-based, and grid-based.  

Partitioning algorithms, for example K-means, and PAM [3], iteratively refine a set of k clusters and do 

not scale well for larger data sets.  Density-based algorithms, e.g., DBSCAN [4] and DENCLUE [5], are 

able to efficiently produce clusters of arbitrary shape and are also able to handle noise.  If the density of a 

region is above a specified threshold, it is assigned to a cluster; otherwise it is considered to be noise.  

However, sharp spikes in time series data are sometimes important features and could be incorrectly 

determined to be noise by a density-based clustering algorithm.  Hierarchical algorithms can be 

agglomerative and/or divisive.  The agglomerative (bottom-up) approach repeatedly merges two clusters, 

while the divisive (top-down) approach repeatedly splits a cluster into two.  ROCK [6] and Chameleon 

[7] are hierarchical algorithms that differ mostly in their similarity functions, which favor spherical and 

non-spherical clusters (respectively).  Grid-based algorithms, such as WaveCluster [8], reduce the 

clustering space into a grid of cells which enables efficient clustering of very large datasets.  This is 

useful for clustering a large amount of very concentrated data, but not for one-dimensional time series 

data.  Existing clustering algorithms are not designed to cluster time series data.  Our Gecko algorithm is 

similar to a hierarchical clustering algorithm that is able to cluster time series data by adding constraints 

to the merging and splitting of clusters.  The main constraint added to our Gecko algorithm is that 

clusters must be divided cleanly along the time dimension, which makes the Gecko behave like a 

segmentation algorithm. 

2.2 Segmentation Algorithms 

Segmentation algorithms usually take time series data as input and produce a Piecewise Linear 

Representation (PLR) as output.  PLR is a set of consecutive line segments that tightly fit the original 

data points.  Segmentation algorithms are somewhat related to clustering algorithms in that each segment 



 

can be thought of as a cluster.  However, due to their linear representation bias, segmentation algorithms 

are more effective at producing fine grain partitioning, rather than a smaller set of segments that 

represent natural clusters. 

 There are three common approaches to time series segmentation [9].  First, in the Sliding Window 

approach, a segment is grown until the error of the line is above a specified threshold, then a new 

segment is started.  Second, in the Top-down approach, the entire time series is recursively split until the 

desired number of segments is reached, or an error threshold is reached.  Third, the Bottom-up approach 

starts off with n/2 segments, the 2 most similar adjacent segments are repeatedly joined until either the 

desired number of segments, or an error threshold is reached.  The sliding window approach creates 

poorest linear approximations but runs the quickest.  Top-Down segmentation creates the best PLR but 

runs much slower than the other two methods.  Bottom-up segmentation creates PLRs that are nearly as 

good as those of the top-down method, but has a much smaller time complexity than top-down 

segmentation. 

2.3 Determining the Number of Segments/Clusters 

Five common approaches to estimating the dimension of a model (such as the number of clusters or 

segments) are:  cross-validation, penalized likelihood estimation, permutation tests, resampling, and 

finding the knee of an error curve. 

Cross-validation techniques create models that attempt to fit the data as accurately as possible.  

Monte Carlo cross-validation [10] has been successfully used to prevent over-fitting (too many 

clusters/segments).  Penalized likelihood estimation also attempts to find a model that fits the data as 

accurately as possible, but also attempts to minimize the complexity of the model.  Specific methods to 

penalize models based on their complexity are:  MML [11], MDL [12], BIC [13], AIC, and SIC [14].  

Permutation tests [15] are able to prevent segmentation algorithms from creating a PLR that over-fits the 

data.  Resampling [16] and Consensus Clustering [17] attempt to find the correct number of clusters by 

repeatedly clustering samples of the data set, and determining at what number of clusters the clusterings 

of the various samples are the most “stable.” 

Locating the “knee” of an error curve, in order to determine an appropriate number of clusters or 

segments, is well known, but it is not a particularly well-studied method.  There are methods that 

statistically evaluate each point in the error curve, and use the point that either minimizes or maximizes 



 

some function as the number of clusters/segments to return.  Such methods include the Gap statistic [18] 

and prediction strength [18].  The knee of a curve is loosely defined as the point of maximum curvature.  

The knee in a “# of clusters vs. classification error” graph can be used to determine the number of 

clusters to return.  Various methods to find the knee of a curve are: 

1. The largest magnitude difference between two points. 

2. The largest ratio difference between two points [20]. 

3. The first data point with a second derivative above some threshold value [21]. 

4. The data point with the largest second derivative [22]. 

5. The point on the curve that is furthest from a line fitted to the entire curve. 

6. Our L-method, which finds the boundary between the pair of straight lines that most closely fit 
the curve. 

This list is ordered from the methods that locate the knee locally, to the methods that locate the knee 

globally by considering more points of the curve.  The first two methods use only single pairs of adjacent 

points to determine where the knee is.  The third and fourth methods uses more than one pair of points, 

but still only consider local trends in the graph.  The last two methods consider all data points at the 

same time.  Local methods may work well for smooth, monotonically increasing/decreasing curves.  

However, they are very sensitive to outliers and local trends, which may not be globally significant.  The 

fifth method takes every point into account, but only works well for smooth, continuous functions, and 

not curves where the knee is a sharp jump.  Our L Method considers all points to keep local trends or 

outliers from preventing the true knee to be located, and is able to find knees that exist as sharp jumps in 

the curve. 

2.4 Anomaly Detection 

Nearly all of the work in time series anomaly detection relies on models that are not easily readable and 

hence cannot be modified by a human for tuning purposes.  Examples include a set of normal sequences 

[23] and adaptive resonance theory [24].  However, Langley et al. [25] propose a method that uses 

process models to model a time series and predict future data.  These process models are concise and are 

easily read and modified by humans, but their generation requires parameters to be set by a human that 

must have knowledge of the underlying processes that produce the time series. 



 

3 Approach 

The input to our overall anomaly detection system is “normal” time series data (like the graph at the top 

left corner of Figure 1). 

 
Figure 1. Main steps in time series anomaly detection. 

The output of the overall system is a set of rules that implement state transition logic on an expert 

system, and are able to determine if other time series signatures deviate significantly from the learned 

signature.  Any deviation from the learned “normal” model is considered to be an anomaly.  The overall 

architecture of the anomaly detection system, depicted in Figure 1, consists of three components:  

segmentation, rule generation (characterization), and state-transition logic.  The segmentation phase is 

performed by our newly-developed segmentation algorithm “Gecko,” which is designed to identify 

distinct states (or clusters) in a time series.  Next, rules are created for each state by the RIPPER 

algorithm [1].  Finally, rules are added for the transitions between states to create a finite state 

automaton.  The three steps in our approach are detailed in the next three subsections. 

3.1 Gecko – Identifying States  

While segmentation algorithms typically create only a fine linear approximation of time series data, 

Gecko divides a time series into a smaller number of segments that are analogous to clusters or states in 

the time series.  This number of clusters is determined automatically by the algorithm. 
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Figure 2. Overview of the Gecko Algorithm. 

The Gecko algorithm consists of three phases, as depicted in Figure 2.  The first phase creates many 

small sub-clusters.  The second phase repeatedly merges the two most similar clusters.  Phase 3 

determines the number of clusters to return. 

3.1.1 Phase 1: Create Sub-Clusters 

In the first phase, many small sub-clusters are created by a method that is very similar to the one used by 

Chameleon [7], with the exception that Gecko forces cluster boundaries to be non-overlapping in the 

time dimension.  The sub-clusters are created by initially placing all of the data points in a cluster, and 

repeatedly splitting the largest cluster until all of the clusters are too small to be split again without 

violating the minimum possible cluster size s. 

To determine how to split the largest cluster, a k-nearest neighbor graph is built in which each node 

in the graph is a time series data point (measurements taken at a time-interval), and each edge is the 

similarity between two data points.  Only the slopes of the original values (original sensor readings) are 

used to determine similarity, and not the original values themselves.  Using only the slope will tend to 

produce sub-clusters that have constant slope, which produces sub-clusters that are as close to straight 

lines as possible.  The k-nearest neighbor graph is constructed by creating an edge from every vertex to 

each of its k nearest (most similar) neighbors.  The parameter k is not an input parameter.  It is derived 

The Gecko Algorithm (overview) 
Input:  D         // time series data 
  s          // the minimum cluster size 
Output:  c*  clusters   
 
 
Phase 1: 
1. build a k-nearest neighbor graph of  D 

(k=2*s) 
2. recursively bisect the graph until no 

bisections can be made without creating a 
cluster smaller than s 

 
Phase 2: 
3. recursively merge the sub-clusters 

together until only one cluster remains - a 
dendrogram is created 

 
Phase 3: 
4. find c*, an appropriate number of clusters 

to return, by using the L method. 
5. extract c* clusters from the dendrogram 

and return them 



 

from s (smallest possible cluster size), and is defined to be 2*s.  Due to the importance of time, the k 

nearest points in the graph are the k/2 points on each size of a point according to the time axis.  By using 

this graph the similarity between groups of points (clusters) can be determined by computing the edge 

cut (sum of the edges) between the two groups.  Similarity between two points is defined to be 

ln(1.0/distance+1), where distance is the Euclidean distance (or any other distance method) between the 

two points.  However any reasonable inverse mapping between distance and similarity can be used.  If 

the graph is split where the edge-cut is the smallest, then the two newly separated clusters will be 

dissimilar to each other and have high internal similarity. 

Since all boundaries between clusters are cut cleanly by the time axis with no overlap, the typically 

NP-hard problem of graph bisection is trivialized, and the optimal min-cut partitioning of a cluster can 

be quickly determined in fewer than clusterSize-1 edge-cut checks (where clusterSize is the number of 

data points contained in the cluster).  There is no need for heuristics, because all possible edge-cut 

possibilities can be quickly computed with efficient data structures. 

3.1.2 Phase 2: Repeatedly Merge Clusters 

In phase 2, the most similar pair of adjacent (in time) clusters is repeatedly merged until only one cluster 

remains.  To determine which adjacent pair of clusters are the most similar, representative points are 

generated for each cluster and the two adjacent clusters with the closest representative points are merged.  

A single representative point is able to accurately represent every point in a cluster because each cluster 

is internally homogeneous.  The representative point of a cluster contains a slope value for every 

dimension in the time series data other than time.  Clustering by the slope values causes the time series 

to be divided into flat regions.  Segmentation also relies exclusively on slope:  if a minimum-error line 

(segment) is well fitted to a set of points, it means that the segment has a consistent slope. 

If raw slope values are used in the representative points that summarize a cluster, then the  

Euclidean distance between a pair of representative points with single slope values 100 and 101 

(distance = 101-100=1) would be the same as the distance between a pair of representative points with 

slope values 0 and 1 (distance = 1-0=1).  Differences in slopes that are near zero need to be emphasized, 

because the same absolute change in slope can triple a small value, but be an insignificant increase for a 

large value.  Relative differences between slopes cannot be measured by the percentage increase because 



 

in the preceding example, the percentage increase from 0 to 1 is undefined.  Gecko uses representative 

values of slopes to determine the “distance” between two slopes by using the equation:  

   

                                       Representative Slope = 

 

This equation emphasizes changes of slopes near zero and decreases the effect of changes in slope 

when the slope values are large.  Whenever a slope value is squared, its representative slope value 

(approximately) doubles.  In the preceding example of comparing 2 pairs of clusters with slopes {100, 

101} and {0, 1} the representative values of their slopes are {4.615, 4.625} and {0, 0.693}.  This 

accurately reflects the relative difference between raw slopes and not the absolute difference. 

3.1.3 Phase 3: Determine the Best Clustering Level 

Evaluation Graphs.  The information required to determine an appropriate number of clusters/segments 

to return is contained in an evaluation graph that is created by the clustering/segmentation algorithm.  

The evaluation graph is a two-dimensional plot where the x-axis is the number of clusters, and the y-axis 

is a measure of the quality or error of a clustering consisting of x clusters.  Some approaches use similar 

graphs, but they are often generated by re-running the entire clustering or segmentation algorithm for 

every value on the x-axis.  Since hierarchical algorithms repeatedly split or merge a pair of clusters, 

many sets of clusters containing ‘1’ to ‘the number of clusters in the finest-grain clustering’ clusters can 

be produced in only a single run of the algorithm. 

The y-axis values in the evaluation graph can be any evaluation metric, such as: distance, similarity, 

error, or quality.  These metrics can be computed globally or greedily.  Global measurements compute 

the evaluation metric based on the entire set of clusters.  A common example is the average of all the 

pairwise distances between points in each cluster.  Most global evaluation metrics are computed in 

O(N2) time.  Thus, in many cases, it takes longer to evaluate a single set of clusters than it takes to create 

them.  The alternative is to use greedy measurements.  The greedy method works in hierarchical 

algorithms by evaluating only the two clusters that are involved in the current merge or split, rather than 

the entire data set.   

 <+−−
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Many “external” evaluation methods attempt to determine a reasonable number of clusters by 

evaluating the output of an arbitrary clustering algorithm.  Each evaluation method has its own notion of 

cluster similarity.  Most external methods use distance functions that are heavily biased towards 

spherical clusters.  Such methods would be unsuitable for a clustering algorithm that has a different 

notion of cluster distance/similarity.  For example, Chameleon uses a complex similarity function that 

can produce interesting non-spherical clusters, and even clusters within clusters.  Therefore, the 

L Method is integrated into the clustering algorithm and the metric used in the evaluation graph is the 

same metric used in the clustering algorithm. 

 
Figure 3. A sample evaluation graph. 

An example of an evaluation graph produced by Gecko is shown in Figure 3.  The y-axis values are 

the distances between the two clusters that are most similar at x clusters.  The curve in Figure 3 has three 

distinctive areas:  a rather flat region to the right, a sharply-sloping region to the left, and a curved 

transition area in the middle.   

In Figure 3, starting from the right, where the merging process begins at the initial fine grain 

clustering, there are many very similar clusters to be merged and the trend continues to the left in a rather 

straight line for some time.  In this region, many clusters are similar to each other and should be merged.  

Another distinctive area of the graph is on the far left side where the merge distances grow very rapidly 

(moving right to left).  This rapid increase in merge distances indicate that very dissimilar clusters are 

being merged together, and that the quality of the clustering is becoming poor because clusters are no 

longer internally homogeneous.  If the best available remaining merges start becoming increasingly poor, 

it means that too many merges have already been performed.  A reasonable number of clusters is 

therefore in the curved area, or the “knee” of the graph.  This knee region is between the low distance 



 

merges that form a nearly straight line on the right side of the graph, and the quickly increasing region on 

the left side.  Clusterings in this knee region contain a balance of clusters that are both internally 

homogeneous, and also dissimilar to each other. 

Locating the exact location of the knee, and along with it the number of clusters, seems problematic 

when the knee is a smooth curve.  In such an instance, the knee could be anywhere on this smooth curve, 

and thus the number of clusters to be returned seems imprecise.  Such an evaluation graph is often 

created for time series data because a time series is a continuous function and a set of well-separated 

clusters usually does not exist in the time series.  In such instances, there is no single correct answer and 

all of the values along the knee region are likely to be reasonable estimates of the number of clusters.  

Thus, an ambiguous knee indicates that there is most likely a range of acceptable answers. 

Finding the Knee via the L Method.  In order to determine the location of the transition area or knee of 

the evaluation graph, we take advantage of a property that exists in these evaluation graphs.  The regions 

to both the right and the left of the knee (see Figure 4) are often approximately linear.  If a line is fitted 

to the right side and another line is fitted to the left side, then the intersection of the two lines will be in 

the same region as the knee.  The value of the x-axis at the knee can then be used as the number of 

clusters to return.  Figure 4 depicts an example. 

 

Figure 4. Finding the number of clusters using the L Method. 

To create these two lines that intersect at the knee, we will find the pair of lines that most closely fit 

the curve.  Figure 5 shows all possible pairs of best-fit lines for a graph that contains seven data points 

(eight clusters were repeatedly merged into a single cluster).  Each line must contain at least two points, 



 

and must start at either end of the data.  Both lines together cover all of the data points, so if one line is 

small, the other is large to cover the rest of the remaining data points.  The lines cover sequential sets of 

points, so the total number of line pairs is numOfInitialClusters – 4.  Of the four possible line pairs in 

Figure 5, the third pair fits the data points with the smallest amount of error. 

 

Figure 5. All four possible pairs of best-fit lines for a small evaluation graph. 

Consider a ‘# of clusters vs. evaluation metric' graph with values on the x-axis up to x=b.  The x-axis 

varies from 2 to b, hence there are b-1 data points in the graph.  Let Lc and Rc be the left and right 

sequences of data points partitioned at x=c; that is, Lc has points with x=2...c, and Rc has points with 

x=c+1…b, where c=3…b-2.  Equation 1 defines the total root mean squared error RMSEc, when the 

partition of Lc and Rc is at x=c, 

  )(
1

)(
1

1
ccc RRMSE

b

cb
LRMSE

b

c
RMSE ×

−
−+×

−
−=                             [1] 

where RMSE(Lc) is the root mean squared error of the best-fit line for the sequence of points in Lc (and 

similarly for Rc).  The weights are proportional to the lengths of Lc (c-1) and Rc (b-c).  We seek the value 

of c, c^, such that RMSEc is minimized, that is 

cc RMSEc minarg^ =                                                           [2] 

where location of the knee at x=c^ is used as the number of clusters to return.  The L method can be 

implemented with a linear time complexity [26] and runs in less than 0.01 seconds for evaluation graphs 

containing fewer than 10,000 points. 

The L method is general and has no parameters.  The number of points along the x-axis of the 

evaluation graph is not a parameter.  It is a result of the clustering algorithm used to generate those 

points.  The maximum x value in the evaluation graph is either the number of clusters at the initial fine 

grain clustering in a bottom-up algorithm, or the number of clusters in the final clustering in a top-down 

algorithm. 



 

Refinements for Segmentation Algorithms.  Evaluation graphs for segmentation algorithms can often 

be very jumpy and contain a number of points that do not smoothly fit the curve.  This is common for 

non-greedy algorithms that look several merges ahead and may make a seemingly poor merge to be able 

to make a very good merge at the next step.  These stray points can prevent the L Method from 

accurately locating the knee.  However, because they do not usually occur consecutively, the curve can 

be smoothed by only using the highest valued point of every consecutive pair when computing the best-

fit lines of the curve. 

Another potential problem is that sometimes the evaluation graph will reach a maximum (moving 

from right to left) and then start to decrease.  This can be seen in Figure 4, where the distance between 

the closest segments reaches a maximum at x=4.  This can prevent an “L” shaped curve from existing in 

the evaluation graph.  The data points to the left of the maximum value (the ‘worst’ merge) can be 

ignored.  This occurs in some algorithms that have distance functions that become undefined when the 

remaining clusters are extremely dissimilar to each other. 

3.2 RIPPER – Rule Generation 

We have adapted RIPPER [1] to generate human readable rules that characterize the states identified by 

the Gecko algorithm.  The RIPPER algorithm is based on the Incremental Reduced Error Pruning (IREP) 

[27] over-fit-and-prune strategy.  The IREP algorithm is a 2-class approach, where the data set must first 

be divided into two subsets.  The first subset contains examples of the class whose characteristics are 

desired (the positive example set) and the other subset contains all other data samples (the negative 

example set).  Our implementation of RIPPER acts as an outer loop for the IREP rule construction.  

The input to RIPPER is the data produced by Gecko which contains time series data classified into 

c* states.  RIPPER will execute the IREP algorithm c* times, once for each state.  At each execution of 

IREP, a different state is considered to be the positive example set and the rest of the states form the 

negative example set.  This creates a set of rules for each state.  To describe the relationship among these 

states, state transition logic is identified as discussed in the following section. 



 

3.3 State Transition Logic 

The upper right-hand quadrant of Figure 1 depicts a simplified state transition diagram for a time series 

containing just three states.  The state transition logic is described by three rules for each state 

corresponding to each of the three possible state transition conditions on each input data point: 

• IF input matches current state THEN remain in current state. 

• IF input matches the next state THEN transition to the next state. 

• IF input matches neither the current state nor the next state THEN transition to an anomaly state. 

The antecedent condition for each state is obtained from the RIPPER rule generation process.  The 

state transition logic simply needs to glue together the proper antecedents to formulate the above three 

transition rules for each state.   

Before an anomaly state is entered, one of two additional criteria must be satisfied:  either (1) the 

number of consecutively observed anomalous values must exceed a specified threshold; or (2) the total 

number of anomalous values observed has exceeded another threshold.  Thus, an anomalous condition is 

not annunciated unless the observed values have been improper for some length of time.  Similar logic is 

provided for the transition from a normal state to its normal successor to prevent premature state 

transitions. 

This simple sequential model will get “stuck” in a state if it misses a state transition due to an 

anomaly.  The first anomaly is correctly identified, but no future data can be tracked because the state 

machine is stuck in an old state.  A solution we have found that performs well is to use a non-

deterministic state machine model rather than a deterministic model.  When an anomaly is detected, we 

create several state machines, each starting in a different state.  All of the state machines run in parallel 

until they converge to a single state.  This method allows the system to recover from a short sequence of 

anomalous data and to determine the current state of the input data.  If a state machine contains many 

states and running individual state machines for each state is impractical, states can be searched starting 

with ones near where the anomaly was detected and increasing the number of states to search if the state 

machines continue to get “stuck”.  In our tests, the correct state is determined very quickly.  

4 Empirical Evaluation 

The goal of this evaluation is to demonstrate the ability of the Gecko algorithm to identify states (or 

clusters) in real time series data, and also to show that our overall system is able to detect anomalies. The 



 

data used to evaluate Gecko and the overall anomaly detection system is 10 time series data sets 

obtained from NASA.  The data sets are signatures of a valve from the space shuttle.     

 
Figure 6. A data set after being clustered by Gecko (16 clusters). 

Each data set contains between 1,000 and 20,000 equally spaced measurements of current.  These 10 

data sets contain signatures of valves that are operating normally, and also signatures of valves that have 

been damaged.  The current method used to test these valves requires a human expert to compare a 

valve’s signature to a known normal signature, and determine if there is any significant variation.  We 

would like to demonstrate that Gecko is able to identify important phases/states in a time series, and that 

our anomaly detection system is able to determine if a valve is operating normally. 

4.1 Determining the Number of Segments with the L Method 

Procedures and Criteria.  The experimental procedure for evaluating the L method in segmentation 

algorithms consists of running two different segmentation algorithms on seven different data sets and 

determining if a ‘reasonable’ number of segments is suggested by the L method.  This number of 

segments suggested will then be compared to the ‘correct’ number of segments, and also the number 

suggested by the existing permutation tests method [15].  The permutation tests algorithm attempts to 

prevent segmentation algorithms from creating a PLR that over-fits the data by comparing the relative 

change in approximation error to the relative change of a ‘random’ time series.  If the relative change in 

error begins to be similar between the time series and a random time series as more segments are added, 

it means that extra segments are fitting noise and not any underlying structure in the time series. 



 

 

 

Figure 7. Data sets 1, 3, 4, 5, 6, and 7 for evaluating the L method in segmentation algorithms.  

The time series data sets used to evaluate the L method for hierarchical segmentation algorithms are 

a combination of both real and synthetic data.  The seven time series data sets used for this evaluation 

(shown in Figure 7) are: 

1. A synthetic data set consisting of 20 straight line segments (2,000 pts). 

2. The same as #1, but with a moderate amount of random noise added (2,000 pts, not in Figure 7). 

3. The same as #1, but with a substantial amount of random noise added (2,000 pts). 

4. An ECG of a pregnant woman from the Time Series Data Mining Archive [28].  It contains a 

recurring pattern (a heart beat) that is repeated 13 times (2,500 pts). 

5. Measurements from a sensor in an industrial dryer (from the Time Series Data Mining Archive 

[28].  The time series appears similar to random walk data (876 pts). 

6. A data set depicting sunspot activity over time (from the Time Series Data Mining Archive [28].  

This time series contains 22 roughly evenly spaced sunspot cycles, however the intensity of each 

cycle can vary significantly (2,900 pts). 

7. A time series of a space shuttle valve energizing and de-energizing (1,000 pts). 

The synthetic data sets have a single correct value for k.  The real sets have no single correct answer, 

but rather a range of reasonable values.  A PLA is considered “reasonable” if no adjacent segments are 

nearly identical to each other and all segments are internally homogeneous (segments have small error).  

The “reasonable range” for the number of segments for a data set and a segmentation algorithm is 

obtained by running the algorithm with various values of k (controls the number of segments returned), 

and determining the range of values that produce a 'reasonable' PLA.  A single 'reasonable range' cannot 



 

be used for all of the segmentation algorithms because one value for k that produces a reasonable set of 

segments for one algorithm may produce a poor set of segments for another on the same data set. 

The segmentation algorithms used in this evaluation were Gecko and bottom-up segmentation 

(BUS).  BUS (bottom-up segmentation) is a hierarchical algorithm that initially creates many small 

segments and repeatedly joins adjacent segments together.  More specifically, BUS evaluates every pair 

of adjacent segments and merges the pair that causes the smallest increase in error when they are merged 

together.  BUS was tested with the L method using two different values on the y-axis of the evaluation 

graph.  The two variants are named BUS-greedy and BUS-global.  BUS-greedy’s y-axis in the evaluation 

graph is the increase in error of the two most similar segments when they are merged, and BUS-global’s 

y-axis is the error of the entire linear approximation when there are x segments (absolute error).  The 

existing ‘permutation tests’ method was also evaluated using BUS. 

Both Gecko and BUS made use of an initial top-down pass to create the initial fine-grain segments.  

The minimum size of each initial segment generated in the top down pass was 10.  For the permutation 

test algorithm, p was set to 0.05, and 1,000 permutations were created.  To determine when to stop 

creating more segments, the parameter p sets the percentage of permutated time series that must have a 

relative reduction (between k-1 and k segments) in linear approximation quality larger than the original 

time series to return k segments [15].   

Results and Analysis.  A summary of the results of the L method’s and permutation tests’ ability to 

automatically determine the number of segments to return from segmentation algorithms is contained in 

Table 1.  For both Gecko and BUS, the ‘reasonable’ range of correct answers is listed.  These ranges 

may vary between the two algorithms because BUS and Gecko do not merge segments in exactly the 

same sequence.  However, BUS-greedy, BUS-global, and permutation tests all produce identical PLRs 

for k segments, and therefore have identical ‘reasonable’ answers.  The first three data sets are synthetic 

and have a single correct answer, but the other data sets have a range of “reasonable” answers.  Data set 

#5 is similar to random walk data, and any number of segments seemed reasonable because there was no 

underlying structure in the time series.   



 

 Gecko Bottom-up Segmentation 

 
Gecko                               

w/ L method  
BUS- greedy 
w/ L method 

BUS- global 
w/ L method 

BUS             w/ 
permutation 

Tests 

Data Set 
Reasonable 

# of 
segments 

Number  
of 

segments 
found 

Reasonable 
# of 

segments 

Number  of 
segments 

found 

Num of 
segments 

found 

Number  of 
segments found 

1 20 20 20 20 20 25 

2 20 20 20 20 20 34 

3 20 N/A 20 20 19 25 

4 42-123 92 42-123 46 106 2 

5 ? 32 ? 14 39 15 

6 44-57 45 45-53 48 39 6 

7 9-20    17 14-21  9 13 65 

Reasonable-
Range 

Matches 
 5 of 5  5 of 6 3 of 6 0 of 6 

Table 1. Results of using the L method with three hierarchical segmentation algorithms. 

The L method worked very well for both BUS-greedy and Gecko.  It correctly identified a 

number of segments for BUS-greedy that was within the reasonable range in 5 out of the 6 applicable 

data sets.  Gecko, which also uses a greedy evaluation metric (but uses slope rather than segment error), 

had the L method suggest a number of segments within the reasonable range for all 5 applicable data 

sets.  Gecko was unable to correctly segment data set #3 (indicated by “N/A” in Table 1) because it 

contained too much noise.  In all but one test case (10 of 11), the L method was able to correctly 

determine that the three synthetic data sets contained exactly twenty segments.  BUS-global did not 

perform quite as well.  The L method was only able to return a reasonable number of segments for BUS-

global in half of its test cases, however all of its incorrect answers were close to being correct. 

Permutation tests did not perform well and never determined a reasonable number of segments.  

The reason that permutation tests did poorly varied depending on the data set.  Data set #1 is synthetic 

and contains no noise, which allows a PLR to approximate it with virtually zero error. However, 

measuring a relative increase in error when the error is near zero causes unexpected results because 

relative increases are either very large or undefined when the error is at or near zero.  For data set #4 and 

#6, the relative change in approximation error is rather constant regardless of the number of segments.  



 

On data set #4, the PLR between 2 and 3 segments has nearly zero relative change in error, which causes 

permutation tests to incorrectly assume that the data has been over-fitted and stop producing segments 

prematurely.  An example of far too many segments being returned occurs on data set #7, where the 

relative error of the time series never falls below the relative error of the permutations until far too many 

segments are produced. 

Some of the evaluation graphs used by the L method for Gecko, BUS-greedy, and BUS-global 

are shown in Figure 8.  The lower left portion of Figure 8 contains the L method’s evaluation graph for 

Gecko on data set #1, the noise-free synthetic data set.  The x-axis is the number of segments, and the y-

axis is Gecko’s evaluation metric at x segments (distance between two closest adjacent segments when 

there are x segments).  The evaluation graph is created right to left as segments are merged together.  In 

this case, the correct number of segments is easily determined by the L method because there is a very 

large jump at x=20.  In the lower right corner of Figure 8, the range of correct answers lies between the 

two long lines.  The range is larger than for data set #1 because the segments have less ‘separation’ and 

there is no sharp knee.  Instead, there is a range of good answers.  However, the L method suggests a 

number of segmetns that just misses the reasonable range. 

 

Figure 8. The reasonable range for the number of segments and the number returned by the L 
method. (axes:  x=# of segments, y=evaluation metric – short dashed line=# of segments determined 

by the L method, long solid lines=the boundaries of the reasonable range for the # of segments. 

In the evaluation graph at the upper-left of Figure 8(data set #4 BUS-greedy),  the L method 

returned a number of segments that was at the low end of the reasonable range.  Remember, that for 

segmentation algorithms, all data ponits to the left of the data point with the maximum value are ignored 



 

(discussed in the last section of 3.1).  The best number of segments is 42.  At 42 segments each heart 

beat contains approximately 3 segments.  If there are fewer than 42 segments, they are no longer 

homogeneous.  However, PLAs with significantly more segments (up to 123) are still reasonable 

because each new segment still significantly reduces the error.  However, if there are more than 

approximately 123 segments, adjacent segments start to become too similar to each other. 

The evaluation graph shown in the upper-right portion of Figure 8 also has ‘better’ PLRs when 

the number of segments is near the low end of the reasonable range (fewer segments).  This is common 

because the best set of segments is often the minimal set of segments that adequately represents the data.  

Even though there is apparently no significant knee in this evaluation graph, a good number of segments 

can still be found by the L method.  This is because the knee found by the L method does not necessarily 

have to be the point of maxium curvature.  It may also be the location between the two regions that have 

relatively steady trends.  Thus, the L method is able to determine the location where there is a significant 

change in the evaluation graph and it becomes erratic (x<44).  In this case it indicates that too many 

segments have been merged together and the distance function is no longer as well-defined. 

The poorer performance of BUS-global (compared to Gecko and BUS-greedy) is due to a lack of 

prominence in the knee of the curve compared to greedy methods (see lower-right graph in Figure 8).  

Greedy evaluation metrics increase more sharply at the knee, while global metrics have larger more 

ambiguous knees in their evaluation graph.  A potential problem occurs when more than one knee exists 

in the evaluation graph.  This is typically not a problem if one knee is significantly more prominent than 

the others.  If there are two equally prominent knees, the L method is likely to return a number of 

segments that falls somewhere between those two knees.  This is acceptable if all of the values between 

the two knees are reasonable.  If not, a poor number of segments will most likely be returned by the L 

method. 

The L method took less than 0.01 seconds to determine the number of segments in every test case, 

while the segmentation algorithms took 9-30 seconds to execute.  The L method never required more 

than 0.1% of the total execution time to determine the number of segments.  In stark contrast, 

permutation tests required up to 5 hours because each permutation of the original time series had to be 

segmented. 



 

4.2 Identifying States with Gecko 

Procedures and Criteria.  The quality of the segments produced by Gecko and an existing algorithm 

will be evaluating by having a domain expert blindly evaluate the output of each algorithm.  A high 

quality set of segments has each segment corresponding to an important phase or state in the time series.  

The experimental procedure is as follows:  Gecko and an existing algorithm, bottom-up segmentation 

(BUS), segment the 10 data sets.  Without knowing which output is from which algorithm, a NASA 

valve expert will then rate the quality of each set of segments from 1 to 10.  The number of segments 

returned by BUS is set to be the same number that Gecko returns.  Finally, the valve expert is asked to 

go over all of the Gecko data sets that he rated in the second step, and explain his evaluation.  Gecko was 

run with the default parameter for each data set:  minimum cluster size clusterSize=10. 

Results and Analysis.   

Table 2 contains the scores for Gecko and BUS given by the domain expert.  Gecko’s average score was 

9.5, while the bottom-up segmentation algorithm’s average score was only 4.3.  Gecko often receives a 

perfect score (which signifies a set of segments as good as the human expert’s) even though it returns 

more segments than what the human expert previously considered to be the ‘ideal’ number.  For 

example, Gecko produced nearly twice as many segments as the human expert for data set 5 (13 vs. 7), 

and Gecko still got a perfect rating.  This suggests that there is often a range of “very good” numbers of 

segments to return, rather than a single correct number. 

Table 2. Quality of segments produced by Gecko and BUS. 
 

 

 

The final part of Gecko’s evaluation was a discussion with the NASA engineer about why he gave 

each score.  According to the engineer, BUS divides regions of high slope into too many segments.  BUS 

merges segments together by keeping the root-mean squared error of the best-fit lines to a minimum.  

This method measures error vertically, and as a consequence, lines that are nearly vertical may seem 

visually to be a nearly perfect fit, but the vertical distances from the points to the line can be very large. 

Data Set 1 2 3 4 5 6 7 8 9 10 Avg 

Gecko 10 10 9 10 10 10 8 9 9 10 9.5 

BUS 2 3 3 3 3 3 8 5 7 6 4.3 



 

4.3 Overall System (FSA) 

Procedures and Criteria.  In order to test whether the anomaly detection system works correctly we 

performed three kinds of tests:  (1) Self-tracking:  Use 90% of the data points to create rules, and then 

use 100% of the data fed into the expert system to see if the state transitions occur correctly, without 

detecting any anomalies. (2) Normal operation:  Use all of a normal valve’s data to learn its signature, 

and then monitor another valve that is also operating normally.  This case should also not trigger any 

anomalies. (3) Detecting anomalies:  Use all of a properly functioning valve’s data to learn its normal 

signature, and then take signatures of valves that are damaged slightly and run them through the anomaly 

detection system.  The damaged valves should trigger anomalies. 

Self-tracking Results.  The baseline test of the anomaly detection system is to train the model with 90% 

of the data, and seeing if 100% of the data can be tracked without triggering an anomaly.  The results of 

this test are shown in Table 3.  An error point in Table 3 is any point that is unexpected in the state 

transition logic.  This means that the point is neither in the current state or the following state.  Time 

series data often contains noise and minor variations.  For this reason, anomalies must not be triggered 

by only a single data point that does not agree with the model contained in the FSA.  By using a 

threshold counter, an anomaly will only be reported after a certain number of consecutive error points.  

The last column in Table 3 shows what the minimum consecutive error threshold (CE) must be set to for 

the anomaly detection system to not report an anomaly.  A value of 1 in this last column means that the 

anomaly detection system will correctly not report an anomaly as long as CE ≥ 1.   

Table 3. Self-tracking of a time series. 

Data Set 1 2 3 4 5 6 7 8 9 10 Avg 

Error Pts (%) 1.1 0.8 0.7 0.5 0.0 0.4 0.3 0.2 0.4 1.1 0.6 

Min. Error 
Threshold 

2 2 1 1 0 1 1 1 1 21 4.0 

In this experiment, both the “consecutive transition” (CT) and the “consecutive error” (CE) 

thresholds were set to zero.  This causes every possible state transition to be made and every error point 

to trigger an anomaly.  This enabled easy computation of the number of error points.  Data set number 10 

performs poorly in this test because the FSA transitions prematurely near the end of its signature and 

starts reporting many anomalies, the results for this data set can be improved by increasing CT to prevent 

it from transitioning too early on a single spurious data point. 



 

Normal Operation Results.  This test is to show that the anomaly detection system’s model of the 

normal signature is general enough to recognize that an untrained normal time series contains no 

anomalies.  In this test, the anomaly detection system trained on data set 1, and then tested on data set 2.  

Both of these data sets are of normally operating valves that contain minor (but visible) differences.  The 

“consecutive transition” threshold (CT) parameter was set to 2, and the “consecutive error” threshold 

(CE) was set to 10 (minimum possible cluster size clusterSize=10).  This means that two consecutive 

points believed to be in the next state are needed to perform a state transition and ten consecutive points 

believed to be errors are needed to declare that the time series contains anomalies.   

The system was able to successfully transition through the states, without detecting any anomalies.  

Of 979 data points, 61 (2.6%) were error points–they were not believed to belong to the current state, nor 

to be transition points belonging to the following state.  However, since a consecutive number of errors 

greater than CE was never encountered, an anomaly was never triggered. 

Detecting Anomalies Results.  This final test is to show that our system is capable of detecting when a 

time series differs significantly from the learned model.  In this test, two data sets containing time series 

signatures of valves operating normally (data sets 1 and 2) were used to develop the normal models.  

Each normal model was then run against the remaining anomalous data sets (data sets 3…10). 

For each of the 16 tests, the anomaly detection system correctly determined that the signatures 

contained anomalies.  Additionally, the system was able to inform the user of the state number where the 

signature differs from the model.  Thus, the system does not only give a yes/no answer to whether a time 

series contains anomalies, but it is also able to explain to the user where the anomaly occurred.  Also, 

because the rules generated by RIPPER are in a human-readable format, the user can look at the rule for 

the state where the error occurred and understand exactly why the system reported the anomaly. 

5 Concluding Remarks 

We have detailed our approach to time series anomaly detection by discovering and characterizing the 

states of a time series, and performing transition logic between these states to construct a finite state 

automaton.  This finite state automaton can be run on an expert system and used to track normal 

behavior and detect anomalies.  The proposed Gecko segmentation algorithm is designed to cluster time 

series data (finds a small number of segments mapping to unique phases rather than a fine approximation 

of many segments), and uses our proposed L method to determine a reasonable number of segments 



 

efficiently.  The rules generated for each state by the RIPPER algorithm can be easily understood and 

modified by humans.  (Moreover, the generated rules can be in a format used by the SCL expert system 

shell at ICS, which is our collaborator on this NASA project.) 

Our empirical evaluations have shown that the L method used by the Gecko algorithm returns a 

number of segments that is similar to the number that is generated by a human expert.  When the human 

expert was asked to rate Gecko’s output with a score from 1-10, Gecko was given perfect ratings on 6 of 

10 data sets.  A perfect rating signifies that the set of segments, or clusters, produced by Gecko is equally 

as good as that of the human expert.  For comparison, the bottom-up segmentation algorithm was also 

tested, and was only given an average rating of 4.3.  The overall anomaly detection system was able to 

detect anomalies in every signature that was from a ‘damaged’ valve, and was also able to monitor a 

second normal valve without detecting any anomalies. 

Future work will evaluate our approach with more datasets from NASA.  Work is currently being 

done to learn a normal model from multiple data sets by using Dynamic Time Warping (DTW).  

Multiple time series will be warped together into a single time series which will them be clustered by 

Gecko.  After the merged time series is clustered by Gecko, the cluster membership of the points in 

every normal time series can be determined and fed into the RIPPER algorithm to generate rules.  We 

have also continued to study how the L method performs with other hierarchical clustering algorithms 

and different data sets [2].  To dynamically set the thresholds used in the state transition logic, we can 

investigate holding out part of the training data and find thresholds that prevent errors on the unseen 

portion of the data. 
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