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Grounded Spoken Language Acquisition:
Experiments in Word Learning

Deb Roy

Abstract| Language is grounded in sensory-motor expe-

rience. Grounding connects concepts to the physical world

enabling humans to acquire and use words and sentences

in context. Currently most machines which process lan-

guage are not grounded. Instead, semantic representations

are abstract, pre-speci�ed, and have meaning only when

interpreted by humans. We are interested in developing

computational systems which represent words, utterances,

and underlying concepts in terms of sensory-motor expe-

riences leading to richer levels of machine understanding.

A key element of this work is the development of e�ec-

tive architectures for processing multisensory data. Inspired

by theories of infant cognition, we present a computational

model which learns words from untranscribed acoustic and

video input. Channels of input derived from di�erent sen-

sors are integrated in an information-theoretic framework.

Acquired words are represented in terms of associations be-

tween acoustic and visual sensory experience. The model

has been implemented in a real-time robotic system which

performs interactive language learning and understanding.

Successful learning has also been demonstrated using infant-

directed speech and images.

Keywords| Language Learning, Semantic Grounding,

Cross-modal, Multimodal

I. Introduction

L
ANGUAGE is grounded in experience. Unlike dictio-
nary de�nitions in which words are de�ned in terms of

other words, humans understand basic concepts in terms
of associations with sensory-motor experiences (cf. [1], [2],
[3], [4]). To grasp the concepts underlying words such as
red, heavy and above requires interaction with the physi-
cal world. This link to the body and the environment is a
fundamental aspect of language which enables humans to
acquire and use words and sentences in context.
Although many aspects of human cognition and language

processing are not clearly understood, we can nonetheless
draw lessons from human processing to guide the design of
intelligent machines. Infants learn their �rst words by as-
sociating speech patterns with objects, actions, and people
[5]. The primitive meanings of words and utterances are
inferred by observing the world through multiple senses.
Multisensory grounding of early words forms the founda-
tion for more complex concepts and corresponding linguis-
tic capacities. Syntax emerges as children begin to com-
bine words to refer to relations between concepts. As the
language learner's linguistic abilities mature, their speech
refers to increasingly abstract notions. However, all words
and utterances fundamentally have meaning for humans
because of their grounding in multimodal and embodied
experience. The sensory-motor basis of semantics provides
common ground for people to understand each another.
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In contrast, currently most automatic spoken language
processing systems are not grounded. Machine training is
based on recordings of spoken utterances paired with man-
ually generated transcriptions and semantic labels. De-
pending on the task, the transcriptions may vary in level
of abstraction ranging from low level phonetic labels to
high level semantic labels. Various statistical methods in-
cluding hidden Markov models (HMMs) and neural net-
works are employed to model acoustic-to-label mappings.
In this paper we refer to the general approach of modeling
mappings from speech signals to human speci�ed labels as
\ungrounded speech understanding" since the semantics of
the speech signal are only represented abstractly in the
machine. The use of abstract labels isolates the machine
from the physical world. The ungrounded approach has
lead to many practical applications in transcription and
telephony. There exist, however, fundamental limits to the
ungrounded approach.
We can anticipate the limitations of ungrounded speech

understanding by comparison with human counterparts.
At least two interrelated advantages can be identi�ed with
the grounded approach. First, the learning problem may
be solved without labeled data since the function of la-
bels may be replaced by contextual cues available in the
learner's environment. Language does not occur in a vac-
uum. Infants observe spoken language in rich physical and
social contexts. Furthermore, infant-directed speech usu-
ally refers to the immediate context [6]; caregivers rarely
refer to events occurring in another time or place. This
connection of speech to the immediate surroundings pre-
sumably helps the infant to glean the meaning of salient
words and phrases by observing contexts in which speech
occurs. The advantage to this approach is that the learner
acquires knowledge from observations of the world without
reliance on labeled data. Similar advantages are antici-
pated for machines.
A second advantage of the grounded approach is that

speech understanding can leverage context to disambiguate
words and utterances at multiple levels ranging from acous-
tic to semantic ambiguity. The tight binding of language to
the world enables people to integrate non-linguistic infor-
mation into the language understanding process. Acous-
tically and semantically ambiguous utterances can be dis-
ambiguated by the context in which they are heard. We
use extra-linguistic information so often and so naturally
that it is easy to forget how vital its role is in language
processing. Similar advantages can be expected for ma-
chines which are able to e�ectively use context when pro-
cessing language. These advantages motivate us to inves-
tigate grounded speech acquisition.
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It is illuminating to examine the di�erences between
learning procedures for speech systems and infants. Tradi-
tionally, speech understanding systems are trained by pro-
viding speech and corresponding transcriptions (which may
include semantic labels in addition to phonetic and word la-
bels). This constitutes drastically impoverished input when
compared with infants. With such a handicap, infants
would be unlikely to acquire much language at all. Train-
ing with labeled data does have its advantages. The recog-
nition task is well de�ned, and mature techniques of su-
pervised machine learning may be employed for parameter
estimation of classi�ers. We propose new methods which
explore more human-like learning from multiple channels
of unlabeled data. Although the learning problem becomes
more challenging, the potential payo�s are great. Our goal
is to build multimodal understanding systems which lever-
age cross-channel information, leading to more intelligent
and robust systems, and which can be trained from untran-
scribed data.

This paper presents a model of grounded language learn-
ing called CELL (Cross-Channel Early Lexical Learning).
CELL leverages cross-modal structure to segment and dis-
cover words in continuous speech, and to learn visual asso-
ciations for those words. Rather than rely on transcriptions
or labels, speech provides noisy and ambiguous labels for
video, and vice versa. We describe new algorithms which
have been developed to implement this model in a real-time
audio-visual processing system. The system has been em-
bedded into a robotic embodiment enabling language learn-
ing and understanding in \face-to-face" interactions. We
also present experimental evaluations with infant-directed
speech and co-occurring video in which word learning was
achieved in the face of highly spontaneous speech.

II. Grounding: Connecting Meaning to the

World

Grounding in its most concrete form is achieved by giving
machines the capacity to sense and act upon the physical
world. Since humans also sense and act upon the same
world, this shared physical context provides a common
ground which mediates communication between humans
and machines. Figure 1 illustrates how abstract concepts
can emerge from sensory-motor experience through layers
of analysis. At the left side of the �gure, interactions with
the physical world give rise to sensory and motor (or ac-
tion) categories. Structures which represent relations be-
tween these categories are inferred at increasing levels of
abstraction to the right. Ultimately, causal and logical re-
lations may be inferred if appropriate types of structured
learning are employed. Our current work is restricted to
the �rst two levels shown in the �gure but the framework
leads naturally to higher levels of conceptual and linguistic
learning. Based on this philosophy, we have built commu-
nication systems which ground all input in physical sensors.

Humans are endowed with similar sensory and motor ca-
pacities. This shared endowment results in similar seman-
tic representations at least at the lowest levels of abstrac-
tion. No person is able to perceive infrared or ultraviolet
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Fig. 1. Levels of conceptual abstraction grounded in sensory-motor
experience. Language is acquired by forming concepts, and learning
associations from words and utterances to conceptual structures.

rays, and thus no young child will naturally acquire words
grounded in these referents. Young children's �rst nouns
label small objects [7], probably since those are the objects
they are able to manipulate with their hands and thus build
up suÆciently accurate models. Names of larger objects are
only acquired in later stages of development. The design
of sensors and manipulators regulates the type of concepts
which a machine can acquire. We argue that machines
must at a functional level share the abilities and limits of
our physiology if they are to acquire human-like semantics.

An emphasis is placed on grounding all learning in sen-
sors, avoiding any reliance on human-generated labels or
transcriptions. This ensures that the machine will develop
representations which capture the richness inherent in con-
tinuous variations of the physical world. From an engi-
neering perspective, sensory grounding forces us to adopt
statistical approaches which are robust to various types of
noise encountered in sensory signals.

Although this paper focuses on grounding language in
the physical world, in many situations it may also be use-
ful to ground semantics in virtual worlds [8], [9], [10], [11].
For example in [11] we created a video game in which a
synthetic character could \see" objects in a virtual world
using synthetic vision. The semantics of spoken words were
grounded in attributes of virtual objects enabling speech-
based human-machine interaction in the course of playing
the video game. In many situations, the level of semantic
abstraction required in a communication task might ren-
der direct physical grounding impractical. In such cases,
a virtual representation of the task may serve as a use-
ful proxy to ground human-machine communication. The
common denominator across virtual and physical ground-
ing is that both humans and machines have perceptual ac-
cess to shared non-linguistic referents.

III. Learning Cross-Channel Structure

The world does not provide infants with transcribed
data. Instead, the environment provides rich streams of
continuously varying information through multiple modes
of input. Infants learn by combining information from mul-
tiple modalities. A promising path of research is to build
machines which similarly integrate evidence across modal-
ities to learn from naturally occurring data without super-
vision [12], [13]. The key advantage to this approach is
that potentially unlimited new sources of untapped train-
ing data may be utilized to develop robust recognition tech-
nologies. Ultimately we envision machines which actively
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Fig. 2. Framework for learning from untranscribed sensory data.
Feature detectors extract channels of input from sensors. The input
channels are divided into two sets. The �rst carries symbolic infor-
mation such as words and signed gestures. The second set carries
representations of referents which may be associated with symbols.
For example, visual channels may represent the shape or color of
objects which are associated with shape and color symbolic terms.

explore their world and acquire knowledge from sensory-
motor interactions.

Figure 2 shows our framework for learning frommultisen-
sory input. A set of sensors provides input. Feature detec-
tors extract channels of input from the sensors. In general
the number of input channels is greater than the number
of sensors. For example, shape, color, texture, and motion
channels might be extracted from a camera. Phonemes,
speaker identity, and prosody (e.g., pitch, loudness) are ex-
amples of channels which might be extracted from acoustic
input. A subset of the input channels are assumed to rep-
resent symbolic information (words and phrases). The re-
maining channels represent the referents of these symbols.
The goal of learning is to appropriately segment and clus-
ter incoming data in the input channels in order to identify
and build associations between symbols and referents.

Recent models of language acquisition include models of
speech segmentation based on minimum description length
encoding of acoustic representations [14], [15], and cross-
situational learning from text coupled with line drawings
representing simple visual semantics [8], [9], [10]. Algo-
rithms for acquiring syntactic structure and semantic as-
sociations for acoustic words based on semantic transcrip-
tions have been demonstrated [16]. This work has lead to
tabula rasa learning of acoustic vocabularies and higher
level language structures from speech recordings tran-
scribed at only the semantic level [17]. Physical grounding
of concepts has been explored in the context of robotics as
an alternative to the symbol processing view of arti�cial
intelligence [18], [19]. The model presented in this paper
departs from previous work in language learning in that
both words and their semantics are acquired from sensor
input without any human-assisted transcription or labeling
of data.

IV. CELL: Cross-Channel Early Lexical

Learning

To explore issues of grounded language, we have created
a system which learns spoken words and their visual se-
mantics by integrating visual and acoustic input [20]. The
system learns to segment continuous speech without an

a priori lexicon and forms associations between acoustic
words and their visual semantics. This e�ort represents a
step towards introducing grounded semantics in machines.
The system does not represent words as abstract symbols.
Instead, words are represented in terms of audio-visual as-
sociations. This allows the machine to represent and use
relations between words and their physical referents. An
important feature of the word learning system is that it is
trained solely from untranscribed microphone and camera
input. Similar to human learning, the presence of multi-
ple channels of sensory input obviates the need for manual
annotations during the training process. In the remainder
of this paper we present the model of word learning and
describe experiments in testing the model with interactive
robotics and infant-directed speech.

We have developed a model of Cross-channel Early Lex-
ical Learning (CELL), summarized in Figure 3 [20], [21].
This model discovers words by searching for segments of
speech which reliably predict the presence of co-occurring
visual categories. Input consists of spoken utterances
paired with images of objects. In experiments presented
later in this paper, we present results using spoken ut-
terances recorded from mothers as they played with their
infants in natural settings. The play centered around ev-
eryday objects such as shoes, balls, and toy cars. Images
of those objects were paired with the spontaneous speech
recordings to provide multisensory input to the system.
Our goal was to approximate the input that an infant might
receive when listening to a caregiver and simultaneously at-
tending to objects in the environment. The output from
CELL consists of a lexicon of audio-visual items. Each
lexical item includes a statistical model (based on Hidden
Markov Models) of an acquired spoken word, and a statis-
tical visual model of either a shape or color category. To
acquire lexical items, the system must (1) segment continu-
ous speech at word boundaries, (2) form visual categories,
and (3) form appropriate correspondences between word
and visual models.

The correspondence between speech and visual streams
is extremely noisy. In experiments with infant-directed
speech described in Section IX, the majority of spoken ut-
terances in our corpus contained no direct reference to the
co-occurring visual context. Thus the learning problem
CELL faces is extremely challenging since the system must
\�sh out" salient cross-channel associations from noisy in-
put.

Camera images of objects are converted to statistical rep-
resentations of shapes. Spoken utterances captured by a
microphone are mapped onto sequences of phoneme proba-
bilities. A short term memory (STM) bu�ers phonetic rep-
resentations of recent spoken utterances paired with repre-
sentations of co-occurring visual input. A short-term recur-
rence �lter searches the STM for repeated sub-sequences of
speech which occur in matching visual contexts. The re-
sulting pairs of speech segment and shape representations
are placed in a long term memory (LTM). A �lter based on
mutual information searches the LTM for speech-shape or
speech-color pairs which usually occur together, and rarely
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Fig. 3. The CELL model. A layered memory architecture combined
with recurrence and mutual information �lters (see text) are used to
acquire an audio-visual lexicon from unlabelled input.

occur apart within the LTM. These pairings are retained in
the LTM, and rejected pairings are periodically discarded
by a garbage collection process.

V. Representing and Comparing Spoken

Utterances

Motivated by the fact that infants at the age of 6-
months1 possess language-speci�c phonemic discrimination
capabilities [22], [23], the system is \endowed" with pre-
trained English phoneme feature extraction. Spoken ut-
terances are represented as arrays of phoneme probabili-
ties. A recurrent neural network similar to [24] processes
RASTA-PLP coeÆcients [25] to estimate phoneme and
speech/silence probabilities. The RNN has 12 input units,
176 hidden units, and 40 output units. The 176 hidden
units are connected through a time delay and concate-
nated with the RASTA input coeÆcients. The RNN was
trained o�-line using back-propagation in time [26] with the
TIMIT database of phonetically transcribed speech record-
ings [27]2. The RNN recognizes phonemes with 69.4% accu-
racy using the standard TIMIT training and test datasets.
Session recordings are segmented into utterances by detect-
ing contiguous segments of speech in which the probability
of silence estimated by the RNN are low.
Spoken utterances are segmented in time along phoneme

boundaries, providing hypotheses of word boundaries. To
locate phoneme boundaries, the RNN outputs are treated
as state emission probabilities in a Hidden Markov Model
(HMM) framework. The Viterbi dynamic programming

1As with any learning system, certain structures must be made
\innate" to support data-driven learning. Given our goal of word
learning, we chose to start at the \six-month-old" stage, a point at
which infants are able to discern phonemic speech sound di�erences
but have not begun word learning. To model di�erent stages of lan-
guage acquisition such as phonological or syntactic learning, di�erent
choices of what to make innate would have been made.
2Note that the use of transcribed data was strictly for the purpose

of training the RNN to serve as a feature detector for generating
phoneme probabilities. Word learning was performed by CELL on
our new experimental database without transcriptions.

search [28] is used to obtain the most likely phoneme
sequence for a given phoneme probability array. After
Viterbi decoding of an utterance, the system obtains: (1) A
phoneme sequence: the most likely sequence of phonemes
in the utterance, and (2) the location of each phoneme
boundary for the sequence (this information is recovered
from the Viterbi search). Each phoneme boundary can
serve as a speech segment start or end point. Any subse-
quence within an utterance terminated at phoneme bound-
aries can form a word hypothesis.
We de�ne a distance metric, dA(), which measures the

similarity between two speech segments. One possibility
is to treat the phoneme sequence of each speech segment
as a string and use string comparison techniques. This
method has been applied to the problem of �nding recur-
rent speech segments in continuous speech [29]. A limi-
tation of this method is that it relies on only the single
most likely phoneme sequence. A sequence of RNN output
is equivalent to an unpruned phoneme lattice from which
multiple phoneme sequences may be derived. To make use
of this additional information, we developed the following
distance metric.

Let Q = fq1; q2; : : : ; qNg be the best-path sequence of
N phonemes observed in a speech segment. This sequence
may be used to generate a HMM model � by assigning an
HMM state for each phoneme in Q and connecting each
state in a strict left-to-right con�guration. State transition
probabilities within the states of a phoneme are inherited
from a context-independent set of phoneme models trained
from the TIMIT training set. Consider two speech seg-
ments, �i and �j decoded as phoneme sequences Qi and
Qj . From these sequences, we can generate HMMs �i and
�j . We wish to test the hypothesis that �i generated �j
(and vice versa).

The Forward algorithm [28] can be used to compute
P (�ij�j) and P (�j j�i), the probability that the HMM de-
rived from speech segment �i generated speech segment �j
and vice versa. However, these probabilities are not an ef-
fective measure for our purposes since they represent the
joint probability of a phoneme sequence and a given speech
segment. An improvement is to use a likelihood ratio test
to generate a con�dence metric [30]. In this method, each
likelihood estimate is scaled by the likelihood of a default
alternate hypothesis, �A:

L(�; �; �A) =
P (�j�)

P (�j�A)

The alternative hypothesis is the HMM derived from the
speech sequence itself, i.e. �Ai = �j and �Aj = �i. The
symmetric distance between two speech segments is de�ned
in terms of logarithms of these scaled likelihoods:

dA(�i; �j) = �
1

2

�
log

�
P (�ij�j)

P (�ij�i)

�
+ log

�
P (�j j�i)

P (�j j�j)

��

(1)

In practice, we have found this metric to robustly detect
phonetically similar speech segments embedded in sponta-
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neous speech. It is used as the basis for determining acous-
tic matches between segments in the recurrence �lter used
by the STM, and by the mutual information �lter used to
build lexical items from LTM (see Section 7).

VI. Visual Processing

Motivated again by the visual abilities of pre-verbal in-
fants [31], [32], the system is \endowed" with color and
shape feature extractors. Three-dimensional objects are
represented using a view-based approach in which multiple
two-dimensional images of an object captured from mul-
tiple viewpoints collectively form a model of the object.
The two-dimensional representations were designed to be
invariant to transformations in position, scale and in-plane
rotation. The representation of color is invariant under
changes in illumination. Figure 4 shows the stages of vi-
sual processing used to extract representations of object
shapes and colors.

object mask

masked
color image

mask-edge
spatial derivative

analysis

color image

foreground bitmap

foreground
segmentation

CCD
camera

Grounding Channel 1: 
Shape

Grounding Channel 2: 
Color

connected
regions analysis

Fig. 4. Extraction of object shape and color channels from a CCD
camera.

Figure-ground segmentation is accomplished by assum-
ing that the background has uniform color. A Gaussian
model of the illumination-normalized background is esti-
mated from a set of 20 images. Given a new image, the
Gaussian model is evaluated at each pixel and thresholded
(using an empirically determined threshold value) to clas-
sify pixels as either background or foreground. Large con-
nected regions of pixels classi�ed as foreground indicate the
presence of an object.
The three-dimensional shape of an object is represented

using a set of histograms, each of which represents the sil-
houette of the object from a di�erent viewpoint3. We as-
sume that with suÆcient stored viewpoints, a novel view-
point of an object may be matched by interpolation. Given
the pixels of an image which correspond to an object us-
ing �gure-ground segmentation, the follow steps are used
to build a representation of the object's silhouette:

3Schiele and Crowley have shown that histograms of local images
features are a powerful representation for object recognition [33].

Locate all outer edge points of the object by �nding all
foreground pixels adjacent to background pixels. Edge
points in the interior of the object are ignored.
For each pair of edge points, compute two values: (1)
the Euclidean distance between the points, normalized by
the largest distance between any two edge points of that
silhouette, and (2) the angle between the tangents to the
edge of the object at the two edge points.
Accumulate a two-dimensional histogram of all distance-
angle measurements.
The resulting histogram representation of the object sil-

houette is invariant under rotation (since all angles are
relative) and object size (since all distances are normal-
ized). Using multidimensional histograms to represent
object shapes enables the use of information theoretical
or statistical divergence functions for the comparison of
silhouettes. Through experimentation we found the �2{
divergence to be most e�ective:

dV (X;Y ) = �2(X;Y ) =
X

i

(xi � yi)
2

xi + yi

(2)

where X = [ixi and Y = [iyi are two histograms indexed
by i and xi and yi are the values of a histogram cell.
The representation of three dimensional shapes is based

on a collection of two-dimensional shape histograms, each
corresponding to a particular view of the object. For all
results reported in this paper, each three dimensional ob-
ject is represented by 15 histograms. The 15 viewpoints are
chosen at random. We found that for simple objects, 15
views are suÆcient to capture basic shape characteristics.
We refer to a set of histograms as a view-set. View-sets
are compared by summing the divergences of the four best
matches between individual histograms.
The color of objects is also represented using histograms.

To compensate for lighting changes, the red (R), green (G),
and blue (B) components of each pixel are divided by the
sum of all three components (R+G+B) resulting in a set
of \illumination-normalized" values. Since all triplets of
illumination-normalized values must add to 1.0, there are
only two free parameters for each pixel. For this reason,
the normalized blue value of all pixels are not stored (any
one of the three colors could have been dropped). For each
image, a two-dimensional color histogram is generated by
accumulating illumination-normalized red and green values
for each foreground pixel in the object. The normalized red
and green values are divided into 8 bins leading to and 8x8
histogram. Similar to the representation of shape, 15 color
histograms are recorded for each image to capture color
di�erence from di�erent viewpoints. Also similar to shape
comparisons, the sum of the �2{divergences of the four best
matching views is used to compare the color of object.

VII. Audio-Visual Lexical Acquisition

The heart of the CELL model is a cross-channel learn-
ing algorithm which simultaneously solves the problems of
speech segmentation, visual categorization, and speech-to-
vision association. A key problem in clustering across dif-
ferent representations is the question of how to combine
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distance metrics which operate on distinct representations.
In CELL, mutual information is used to quantify cross-
channel structure. This section describes CELL's cross-
channel lexical learning architecture; the following two sec-
tions provide results of using this algorithm for learning
from robot-directed and infant-directed speech and images
of objects.
Input to CELL consists of a series of spoken utterances

paired with view-sets. We refer to an futterance, view-
setg pair as an audio-visual event, or AV-event. AV-events
are generated when an object is in view while an spoken
utterance is detected.
Lexical acquisition is comprised of two steps. In the �rst

step, AV-events are passed through a �rst-in-�rst-out short
term memory (STM) bu�er. The bu�er has a capacity of
�ve AV-events4. When a new event is inserted into the
bu�er, a recurrence �lter searches for approximately re-
peating audio and visual patterns within the bu�er. If a
speaker repeats a word or phrase at least twice within a �ve
contiguous utterances while playing with similar shaped
objects, the recurrence �lter would select that recurrent
sound-shape pair as a potential lexical item. The recur-
rence �lter uses the audio and visual distance metrics pre-
sented earlier to determine matches. The distance metrics
are applied independently to the visual and acoustic com-
ponents of AV-events. When matches are found simulta-
neously using both metrics, a recurrence is detected. The
recurrence �lter performs an exhaustive search over all pos-
sible image sets and speech segments (at phoneme bound-
aries) in the �ve most recent AV-events. To summarize,
output from the recurrence �lters consists of a reduced set
of speech segments and their hypothesized visual referents.
In the second step, the hypotheses generated by the re-

currence �lter are clustered using an information-theoretic
measure, and the most reliable clusters are used to generate
a lexicon. Let us assume that there are N sound-shape hy-
potheses in LTM. For simplicity we ignore the color channel
in this example, but the same process is repeated across
both input channels. The clustering process would pro-
ceed by considering each hypothesis as a reference point,
in turn. Let us assume one of these hypotheses, X , has
been chosen as a reference point. Each remaining N � 1
hypotheses may be compared to X using dV () and dA().
Let us further assume that two thresholds, tV and tA are
de�ned (we show how their values are determined below).
Two indicator variables are de�ned with respect to X :

A =

�
0 if dA(X;hi) > tA
1 if dA(X;hi) � tA

(3)

V =

�
0 if dV (X;hi) > tV
1 if dV (X;hi) � tV

(4)

where hi is the i
th hypothesis, for i = 1 : : :N � 1. For a

4The size of the STM was determined experimentally and represents
a balance between learning performance and speed. Smaller STMs
lead to poor learning performance; larger STMs did not signi�cantly
improve learning, but dramatically increased learning speed.

given setting of thresholds, the A and V variables indicate
whether each hypothesis matches the reference X acous-
tically and visually, respectively. The mutual information
between A and V is de�ned as [34]:

I(A;V ) =
X
i

X
j

P (A = i; V = j) log

�
P (A = i; V = j)

P (A = i)P (V = j)

�

(5)
The probabilities required to calculate I(A;V ) are esti-

mated from frequency counts. To avoid noisy estimates,
events which occur less than four times are disregarded.
Note that I(A;V ) is a function of the thresholds tA and
tV . To determine tV and tA, the system searches for the
settings of these thresholds which maximizes the mutual
information between A and V . Smoothing of frequencies
avoids the collapse of thresholds to zero.
Each hypothesis is taken as a reference point and its

point of maximum mutual information (MMI) is found.
The hypotheses which result in the highest MMI are se-
lected as output of the system. For each selected hypoth-
esis, all other hypotheses which match both visually and
acoustically are removed from further processing. In ef-
fect, this strategy leads to a greedy algorithm in which the
hypotheses with best MMI scores are extracted �rst.
The process we have described e�ectively combines

acoustic and visual similarity metrics via the MMI search
procedure. The mutual information metric is used to de-
termine the goodness of a hypothesis. If knowledge of the
presence of one cluster (acoustic or visual) greatly reduces
uncertainty about the presence of the other cluster (visual
or acoustic), then the hypothesis is given a high goodness
rating and is more likely to be selected as output by the
system.
An interesting aspect of using MMI to combine similarity

metrics is the invariance to scale factors of each similarity
metric. Each metric organizes sound-shape hypotheses in-
dependently of the other. The MMI search �nds structural
correlations between the modalities without directly com-
bining similarity scores. As a result, the clusters which
are identi�ed by this method can locally and dynamically
adjust allowable variances in each modality. Locally ad-
justed variances cannot be achieved by any �xed scheme of
combining similarity metrics.
A �nal step is to threshold the MMI score of each hy-

pothesis and select those which exceed the threshold. Auto-
matic determination of this MMI threshold is not addressed
in this work. In current experiments, it is set manually to
optimize performance.

VIII. An Interactive Robotic Implementation

To support human-machine interactions, CELL has been
incorporated into a real-time speech and vision interface
embodied in a robotic system. Input consists of contin-
uous multiword spoken utterances and images of objects
acquired from a video camera mounted on the robot. The
visual system extracts color and shape representations of
objects to ground the visual semantics of acquired words.
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To teach the system, a person places objects in front of
the robot and describes them. Once a lexicon is acquired,
the robot can be engaged in an object labeling task (i.e.,
speech generation), or an object selection task (i.e., speech
understanding).

A. Robotic Embodiment

A four degree-of-freedom robotic armature has been con-
structed to enable active control of the orientation of a
small video camera mounted on the end of the device (Fig-
ure 5). An animated face has been designed to give the
robot the appearance of a synthetic character. Facial fea-
tures including eyelids, mouth and feathers are used to con-
vey information about the state of the system to the user
in a natural manner:

Color CCD
Camera

Fig. 5. A robot with four degrees of freedom used to capture images
of objects. A small CCD camera is mounted in the right eyeball.
A turntable provides a �fth degree of freedom for viewing objects
from various perspectives. The turntable was only used for collecting
images for the infant-directed speech experiments described in Section
IX.

Direction of gaze A miniature camera is embedded in the
right \eyeball" of the robot. The direction of the camera's
focus is apparent from the physical orientation of the robot
and provides a mechanism for establishing joint attention.
Facial Expressions Several servo-controlled facial features
are used to convey information about the internal state of
CELL. The eyes are kept open when the vision system is
in use. Feathers mounted on the head are extended to an
attentive pose when the audio processing system detects
the start of an utterance. The robot's mouth (beak) moves
in synch with output speech.
Spoken Output A phoneme-based speech synthesizer5 is
used to convey internal representations of speech segments.
The Viterbi decoder is used to extract the most likely
phoneme sequence for a given segment of speech. This
phoneme sequence is resynthesized using the phoneme syn-
thesizer. Naturalness of output is improved by controlling
the duration of individual phonemes based on observed du-
rations in the Viterbi decoding.

B. Acquiring a Lexicon

The robot has three modes of operation: acquisition,
generation, and understanding. The mode is toggled man-
ually through a software switch. In acquisition mode, the

5The TrueTalk speech synthesizer made by Entropic Research Lab-
oratory, Inc. 600 Pennsylvania Ave. SE, Suite 202, Washington, DC
20003.

robot searches for the presence of objects on a viewing sur-
face. When an object is detected, the system gathers mul-
tiple images to build a view-set of the object. If a spoken
utterance is detected while the view-set is being gathered,
an AV-event is generated and processed by CELL.
To teach the system, the user might, for example, place

a cup in front of the robot and say, \Here's my co�ee cup".
To verify that the system received contextualized spoken
input, it \parrots" back the user's speech based on the rec-
ognized phoneme sequence. This provides a natural feed-
back mechanism for the user to understand the nature of
internal representations being created by the system.

C. Acquiring Lexical Order: A First Step Towards Syntax

To learn word order, a language learner must have some
method of clustering words into syntactic categories. A
syntax can then be used to specify rules for ordering
word classes. In CELL, acquired lexicons are divided into
two natural classes: words grounded in shape, and words
grounded in color. Distributional analysis is used to track
the ordering of word classes in utterances that contain both
color and shape words in adjacent position (i.e. spoken
with no intervening words).
In a pilot experiment, a single user provided the robot

with 100 spoken utterances describing eight objects of vary-
ing shapes and colors. Approximately equal numbers of ut-
terances were produced to describe each object. The speech
was gathered in a spontaneous \face-to-face" setting with
the robot running in its acquisition mode. From this small
data set, the system learned that color terms precede shape
terms in English. This information was encoded by a single
statistic: a higher probability of shape-color compared to
color-shape word pairs. This statistic was used to deter-
mine the sequence of words for speech generation, and to
build a simple language model for speech understanding.
This experiment in word order learning represents a

�rst step towards semantically grounded syntax acquisi-
tion. This method of linking early lexical learning to syntax
acquisition is closely related to the semantic bootstrapping
hypothesis which posits that language learners use seman-
tic categories to seed syntactic categories [35], [36]. Accord-
ing to this theory, perceptually accessible categories such as
objects and actions seed the syntactic classes of nouns and
verbs. Once these seed categories have been established,
input utterances are used to deduce phrase structure in
combination with constraints from other innate biases and
structures. In turn, the phrase structure can be used to in-
terpret input utterances with novel words. Distributional
analysis can be used to expand syntactic classes beyond ini-
tial semantically bootstrapped categories. In future work
we plan to expand CELL to enable more complex aspects
of grounded syntax learning.

D. Speech Generation

Once lexical items are acquired, the system can gener-
ate spoken descriptions of objects. In this mode, the robot
searches for objects on the viewing surface. When an ob-
ject is detected, the system builds a view-set of the object
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and compares it to each lexical item in LTM. The acoustic
prototype of the best matching item is used to generate a
spoken response. The spoken output may describe either
shape or color depending on the best match.
To use word order statistics, a second generation mode

�nds the best matching LTM item for the color and shape
of the object. The system generates speech to describe
both features of the object. The order of concatenation is
determined by the acquired word order statistics. When
presented with an apple, the robot might say \red ball"
(as opposed to \ball red") assuming it has already learned
the words \red" and \ball", even if it had never seen an
apple or heard that speci�c word sequence before.

E. Speech Understanding

When in the speech understanding mode, input utter-
ances are matched to existing speech models in LTM. A
simple grammar allows either single words or word pairs to
be recognized. The transition probabilities between word
pairs are determined by the acquired word order statistics.
In response to speech, the system �nds all objects on the

viewing surface and compares each to the visual models of
the recognized lexical item(s). In a forced choice, it selects
the best match and returns the robot's gaze to that object.
In e�ect, the person can speak a phrase such as \brown
dog", or \brown", or \dog" and the robot will �nd the
object best matching the visual semantics of the spoken
word or phrase.
To provide additional feedback, the selected object is

used to index into LTM and generate a spoken description.
This feedback leads to revealing behaviors when an incor-
rect or incomplete lexicon had been acquired. The nature
of the errors provides the user with guidance for subsequent
training interactions.

IX. Experiments with Infant-Directed

Spontaneous Speech

To evaluate CELL on natural and spontaneous spoken
input, experiments were conducted with a corpus of audio-
visual data from infant-directed interactions [20]. Six care-
givers and their pre-linguistic (7-11 months) infants were
asked to play with objects while being recorded. We se-
lected 7 classes of objects commonly named by young in-
fants: balls, shoes, keys, toy cars, trucks, dog, horses [7]. A
total of 42 objects, six objects for each class, were obtained.
The objects of each class vary in color, size, texture, and
shape.
Each caregiver-infant pair participated in 6 sessions over

a course of two days. In each session, they played with 7
objects, one at a time. All caregiver speech was recorded
using a wireless headset microphone onto DAT. In total we
collected approximately 7,600 utterances comprising 37,000
words across all six speakers. Most utterances contained
multiple words with a mean utterance length of 4.6 words.
The robot described in Section 8 was used to gather

images of each object from various randomly determined
viewpoints. These images are a simple approximation of
the �rst-person perspective views of the object which the

Fig. 6. Objects used during play in the infant-caregiver interactions.

infants had during play. In total, 209 images were cap-
tured of each object resulting in a database of 8,778 images.
View-sets of objects were generated from these images as
described below. For these infant-directed speech evalua-
tions, only the shape channel was extracted from images,
so color terms were unlearnable (ungroundable).

To prepare the corpus for processing, we performed the
following steps: (1) Segment audio at utterance bound-
aries. This was done automatically by �nding contiguous
frames of speech detected by the recurrent neural network.
(2) For each utterance, generate a view-set of the object
in play by taking 15 randomly chosen images from the 209
available images of the object. Video recordings of the
caregiver-infant interactions were used to determine the
correct object for each utterance.

Each utterance-image set constituted an AV-event. In-
put to the learning system consists of a sequence of AV-
events, presented to the system in the same order that the
utterances were observed during infant interactions. The
audio-visual data corresponding to each of the six speak-
ers was processed separately. The top 15 items resulting
from the MMI maximization step were evaluated for each
speaker. As noted earlier, the learning problem posed by
this data set is extremely challenging: less than 30% of
the spoken utterances contain words which directly refer
to the object in play. For example, the caregiver often said
phrases such as \Look at it go!" while playing with a car
or ball. CELL had to identify reliable lexical items such as
\ball" or \car" despite such poor correspondences.

As described in Section 7, lexical hypotheses are ana-
lyzed by searching for maximum mutual information across
channels. Figure 7 presents two examples of mutual infor-
mation surfaces for two actual lexical hypotheses gener-
ated from one of the speakers in this experiment. In each
plot, the height of the surface shows mutual information
as a function of the thresholds tV and tA. On the left,
the speech segment corresponding to the word \yeah" was
paired with the images of a shoe. The resulting surface
is relatively low for all values of the thresholds. The lexi-
cal candidate on the right paired a speech segment of the
word \dog" with images of a dog. The result is a strongly
peaked surface form. The thresholds were selected at the
point where the surface height, and thus mutual informa-
tion, was maximized.
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TABLE I

Contents of LTM using CELL to process one participant's data.

Phonetic Text Shape Segment. Word Semantic

Rank Transcript Transcript Category Accuracy Disc. Accuracy

1 Mu shoe shoe E 1 1 1
2 fair � �re* truck D 0 1 1
3 r�k *truck truck C 0 1 1
4 d�g dog dog D 1 1 1
5 *8�M in the* shoe A 0 0 0
6 ki key key C 1 1 1
7 ki key key E 1 1 1
8 d�ggi doggie dog C 1 1 1
9 b�l ball ball C 1 1 1
10 b�l ball ball A 1 1 1
11 ki� key* key C 0 1 1
12 �Mu a shoe shoe B 0 1 1
13 �n�*s*z *and this is shoe B 0 0 0
14 (ono.) (engine) truck A - - -
15 (ono.) (barking) dog A - - -

Total 54% 85% 85%

and thus failed on Measure 3. Yet, there was some struc-
tural consistency between the word and the shape which
aided the system in producing these segmentations.

For Measure 2, word discovery, approximately three out
of four lexical items (72%) produced by CELL were single
words (with optional articles and inections). In contrast,
using the acoustic-only model, performance dropped to
31%. These results demonstrate the bene�t of incorporat-
ing cross-channel information into the word learning pro-
cess. The cross-channel structure lead to a 2.3-fold increase
in accuracy compared with analyzing structure within the
acoustic channel alone.

On Measure 3, the large di�erence in performance be-
tween CELL and the acoustic-only system is not surpris-
ing since visual input is not used during lexical formation
in the latter. CELL's performance is very promising since
57% of the hypothesized lexical candidates are both valid
English words and linked to semantically relevant visual
categories.

For all three measures, we found that cross-channel
structure is leveraged to improve learning performance. By
looking for agreement between di�erent channels of input,
CELL is able to �nd lexical candidates e�ectively through
unsupervised learning.

The Acoustic-only Model performed well considering the
input it received consisted of unsegmented speech alone.
In fact it learned some words which are not acquired by
CELL including \go", \yes", \no", and \baby". This result

suggests that in addition to cross-channel structure, within-
channel structure is useful and should also be leveraged in
learning words. Using other processes, the learner may
later attempt to determine the associations of these words.

XI. Conclusions and Future Directions

We have successfully implemented and evaluated CELL,
a computational model of sensor-grounded word learning.
The implemented system learns words from natural video
and acoustic input signals. To achieve this learning, three
diÆcult problems are simultaneously solved: (1) segmen-
tation of continuous spontaneous speech without a pre-
existing lexicon, (2) unsupervised clustering of shapes and
colors, and (3) association of spoken words with semanti-
cally appropriate visual categories. Mutual information is
used as a metric for cross-channel comparisons and clus-
tering. This system demonstrates the utility of mutual
information to combine modes of input for multisensory
learning.

The results with CELL show that it is possible to learn
to segment continuous speech and acquire statistical mod-
els of spoken words by providing a learning system with
untranscribed speech and co-occurring visual input. Vi-
sual input serves as extremely noisy labels for speech. The
converse is also true. The system learns visual categories
by using the accompanying speech as labels. The result-
ing statistical models may be used for speech and visual
recognition of words and objects. Manually trained data is
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TABLE II

Contents of LTM using the Acoustic-only Model to process the data from the same participant as Table I.

Phonetic Text Shape Segment. Word Semantic

Rank Transcript Transcript Category Accuracy Disc. Accuracy

1 (ono.) (engine) car C - - -
2 d`ud`ud`u do do do shoe A 0 0 0
3 (ono.) (engine) truck C - - -
4 (ono.) (engine) truck C - - -
5 w�yugonn�d what you shoe A 0 0 0

gonna do*
6 nawhirk now here okay* ball B 0 0 0
7 l�miyuz *amuse car E 0 1 0
8 beybi baby horse A 1 1 0
9 ahhib ah he's* horse E 0 0 0
10 iah *be a ball A 0 0 0
11 w�yugonnd what you key A 0 0 0

gonna do*
12 iligVd *really good shoe F 0 0 0
13 iv - ball F 0 0 0
14 yulbi� you'll be a ball A 0 0 0
15 ?ey *today dog D 0 1 0

Total 8% 25% 0%

TABLE III

Summary of results using three measures of performance. Percentage accuracy of CELL for each caregiver is shown.

Performance by the Acoustic-only Model is shown in parentheses.

Segmentation Word Semantic

Participant Accuracy Discovery Accuracy

PC 54 (8) 85 (25) 84 (0)
SI 25 (0) 75 (10) 42 (10)
CL 20 (33) 87 (60) 80 (20)
TL 17 (7) 50 (35) 25 (14)
CP 17 (0) 50 (8) 42 (8)
AK 33 (0) 92 (45) 67 (27)

Average 28�6 (7�5) 72�8% (31�8%) 57�10% (13�4%)
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replaced by two streams of sensor data which serve as la-
bels for each other. This idea may be applied to a variety
of domains where multimodal data is available, but human
annotation is expensive.

We are now exploring several applications of this work
for robust and adaptive human-computer interfaces. Cur-
rent spoken language interfaces process and respond only
to speech signals. In contrast, humans also pay attention to
the context in which speech occurs. These side channels of
information may serve to ground the semantics of speech,
leading to reduced ambiguity at various levels of the spo-
ken language understanding problem. Based on ideas pre-
sented in this paper, we are exploring the use of grounded
speech learning and understanding to create systems which
are able to resolve ambiguities in the speech signal.

Learning in CELL is driven by a bottom-up process of
discovering structure observed in sensor data. In the fu-
ture, we plan to experiment with learning architectures
which integrate top-down purpose driven categorization
with bottom-up methods. In doing so, cross-channel clus-
ters and associations can be acquired which are optimized
to achieve high level goals.
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