Alert Correlation through Triggering Events and Common Resources *

Dingbang Xu and Peng Ning
Cyber Defense Laboratory
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8207
{dxu, pning} @ncsu.edu

Abstract

Complementary security systems are widely deployed in
networks to protect digital assets. Alert correlation is es-
sential to understanding the security threats and taking
appropriate actions. This paper proposes a novel correla-
tion approach based on triggering events and common re-
sources. One of the key concepts in our approach is trig-
gering events, which are the (low-level) events that trigger
alerts. By grouping alerts that share “similar” triggering
events, a set of alerts can be partitioned into different clus-
ters such that the alerts in the same cluster may correspond
to the same attack. Our approach further examines whether
the alerts in each cluster are consistent with relevant net-
work and host configurations, which help analysts to par-
tially identify the severity of alerts and clusters. The other
key concept in our approach is input and output resources.
Intuitively, input resources are the necessary resources for
an attack to succeed, and output resources are the resources
that an attack supplies if successful. This paper proposes to
model each attack through specifying input and output re-
sources. By identifying the “common” resources between
output resources of one attack and input resources of an-
other, it discovers causal relationships between alert clus-
ters and builds attack scenarios. The experimental results
demonstrate the usefulness of the proposed techniques.

1. Introduction

As more and more organizations and companies build
networked systems to manage their information, network

* The authors would like to thank the anonymous reviewers for their
valuable comments. This work is partially supported by the National
Science Foundation (NSF) under grants ITR-0219315 and CCR-
0207297, and by the U.S. Army Research Office (ARO) under grant
DAAD19-02-1-0219. The authors also would like to thank DARPA
Cyber Panel Program for providing us GCP tools.

intrusion becomes a serious problem in recent years. At
present, there is no single system capable of solving all se-
curity concerns. Different types of security systems are de-
ployed into the networks to better protect the digital assets.
These systems may comprise firewalls (e.g., ZoneAlarm
[24]), intrusion detection systems (IDSs) (e.g., RealSecure
Network 10/100 [9], Snort [17] and NIDES [11]), antivirus
tools (e.g., Norton AntiVirus [19]), file integrity checkers
(e.g., Tripwire [21]), and so forth. They usually serve for
different security purposes, or serve for the same purpose
through different methods. For example, firewalls focus on
accepting, logging, or dropping network traffic, IDSs fo-
cus on detecting known attack patterns (signature-based
IDSs) or abnormal behaviors (anomaly-based IDSs), an-
tivirus tools focus on scanning viruses based on pre-defined
virus signatures, and file integrity checkers monitor the ac-
tivities on file systems such as file addition and deletion.

Although these security systems are complementary to
each other, and combining the reports (i.e., alerts) from
them can potentially get more comprehensive result about
the threats from outside and inside sources, it is challeng-
ing for analysts or analysis tools to analyze these alerts due
to the following reasons.

First, a single security system such as a network based
IDS may flag thousands of alerts per day [12], and multiple
security systems make the situation even worse. Large num-
bers of alerts may overwhelm the analysts. Second, among
a large volume of alerts, a high proportion of them are false
positives [12], some of them are low-severity alerts (e.g., an
attack to an inactive port), and some others correspond to
severe attacks. It is challenging to differentiate these alerts
and take appropriate actions. The low level and high vol-
ume of the alerts also make extracting the global view of
the adversary’s attack strategy challenging. Third, different
security systems usually run independently and may flag
different alerts for a single attack. Discovering that these
alerts are actually triggered by the same attack can be time-
consuming, though it is critical in assessing the severity of

the alerts and the adversary’s attack strategy.

To address the challenges, several alert correlation tech-
niques have been proposed in recent years, including ap-
proaches based on similarity between alert attributes (e.g,
[2,12,18,22]), methods based on pre-defined attack scenar-
ios (e.g., [6,13]), techniques based on pre/post-conditions of
attacks (e.g., [3, 15,20]), and approaches using multiple in-
formation sources [14, 16,23]. Though effective in address-
ing some challenges, none of them dominates the others.
Similarity based approaches group alerts based on the simi-
larity between alert attributes; however, they are not good at
discovering steps in a sequence of attacks. Pre-defined at-
tack scenario based approaches work well for known sce-
narios; however, they cannot discover novel attack scenar-
i0s. Pre/post-condition based approaches can discover novel
attack scenarios; however, specifying pre/post-conditions
is time-consuming and error-prone. Multiple information
sources based approaches correlate alerts from multiple in-
formation sources such as firewalls and IDSs; however, they
are not good at discovering novel attack scenarios.

Our alert correlation techniques proposed in this paper
address some limitations of the current correlation tech-
niques. We propose a novel similarity measure based on
triggering events, which helps us group alerts into clusters
such that one cluster may correspond to one attack. We en-
hance the pre/post-condition based approaches through us-
ing input and output resources to facilitate the specification
of pre-conditions and post-conditions. Intuitively, the pre-
condition of an attack is the necessary condition for the at-
tack to succeed, and the post-condition is the consequence
if the attack does succeed. Accordingly, the input resources
of an attack are the necessary resources for the attack to
succeed, and the output resources of the attack are the re-
sources that the attack can supply if successful.

Compared with the approaches in [3, 15] which use
predicates to describe pre-conditions and post-conditions,
our input and output resource based approach has sev-
eral advantages. (1) Using predicates to specify pre/post-
conditions may introduce too many predicates. Whereas
input and output resource types are rather limited com-
pared with the types of predicates and are easy to spec-
ify. (2) Since different experts may use different predicates
to represent the same condition, or use the same predicate
to represent different conditions, it is usually not easy to
discover implication relationships between predicates and
match post-conditions with pre-conditions. Whereas input
and output resource types are rather stable, straightforward
to match and easy to accommodate new attacks.

Our approach proposes to correlate alerts in three stages.
The key concept in the first stage is triggering events, which
are the events observed by security systems that trigger an
alert. We observe that although different security systems
may flag different alerts for the same attack, the events that

trigger these alerts must be the same. In this paper, although
high-level events are possible, we focus on low-level events
(e.g., a TCP connection). Based on this observation, we find
triggering events for each alert, and cluster alerts that share
“similar” triggering events. The alerts in one cluster may
correspond to one attack.

In the second stage, we further identify the severity of
some alerts and clusters. This is done through examining
whether the alerts are consistent with their relevant network
and host configurations.

In the third stage, we build attack scenarios through in-
put and output resources. We observe that the causal re-
lationships between individual attacks can be discovered
through identifying the “common” resources between the
output resources of one attack and the input resources of
another. For example, Sadmind_Ping attack can output the
status information of sadmind daemon (service resources),
where sadmind service is necessary to successfully launch
Sadmind_Amslverify_Overflow attack. Then we can corre-
late these two attacks. These causal relationships can help
us connect alert clusters and build attack scenarios.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our alert correlation techniques, including
alert clustering through triggering events, alerts and rele-
vant configuration examination, and attack scenario con-
struction based on input and output resources. Section 3
presents experimental results to show the effectiveness of
our techniques. Section 4 discusses related work, and Sec-
tion 5 concludes this paper and points out some future re-
search directions.

2. Alert Correlation based on Triggering
Events and Common Resources

We present our major techniques in this section. We start
by introducing definitions such as alerts, events, configura-
tions and resources in Subsection 2.1. Given a set of alerts,
we are interested in what events trigger each alert, from
which we can cluster the alerts that share the “similar” trig-
gering events. These techniques are presented in Subsec-
tions 2.2, 2.3 and 2.4. After alert clustering, we use the in-
formation about network and host configurations to exam-
ine the alerts in each cluster, which provides us opportuni-
ties to identify the severity of some alerts and clusters. This
technique is presented in Subsection 2.5. The technique on
constructing attack scenarios is presented in Subsection 2.6,
which focuses on discovering causal relationships based on
the input and output resources.

2.1. Alerts, Events, Configurations and Resources

Different security systems may output alerts in various
formats (e.g., in a flat text file, in a relational database, or

in a stream of IDMEF [4] messages). We can always ex-
tract a set of attributes (i.e., attribute names and values) as-
sociated with the alerts. Events are security related occur-
rences observed by security systems. Configurations encode
the information about software and hardware in a host or a
network. Resources encode the “system resources” an at-
tack may require to use or can possibly supply if it suc-
ceeds. They can all be represented as a set of attributes (at-
tribute names and values). Formally, an alert type (or event
type, or configuration type, or resource type) is a set S of at-
tribute names, where each attribute name a; € S has a do-
main D;. A type T alert t (or event e, or configuration c,
or resource r) is a tuple on attribute name set in 7', where
each element in the tuple is a value in the domain of the
corresponding attribute name. In this paper, for the sake of
presentation, we assume each alert and event respectively
has at least two attributes: StartTime and EndTime. If an
alert or event only has one timestamp, we assume StartTime
and EndTime have the same value. For convenience, we de-
note the type of alert ¢, event e and resource r as T'ype(t),
Type(e) and Type(r), respectively. In the following, we
may use attributes to denote either attribute names, attribute
values, or both if it is not necessary to differentiate between
them.

Here we give a series of examples and discussion re-
lated to alert types, alerts, event types, events, config-
uration types, configurations, resource types, and re-
sources. For brevity, we omit the domain of each at-
tribute. As the first example, we define an alert type
Sadmind_Amslverify_Overflow = {SrcIP, SrcPort, Tar-
getlP, TargetPort, StartTime, EndTime}. A type Sad-
mind_Amslverify_Overflow alert t = {SrcIP = 10.10.1.10,
SrcPort = 683, TargetIP = 10.10.1.1, TargetPort = 32773,
StartTime = 03-07-2004 18:10:21, EndTime = 03-07-2004
18:10:21} can describe an Sadmind_Amslverify_Overflow
alert from IP address 10.10.1.10 to IP address 10.10.1.1.

As the second example, we define an event type ma-
licious sadmind NETMGT_PROC_SERVICE Request =
{SrcIP, SrcPort, TargetlP, TargetPort, StartTime, End-
Time} and a corresponding event e = {SrcIP = 10.10.1.10,
SrcPort = 683, TargetlP = 10.10.1.1, TargetPort =
32773, StartTime = 03-07-2004 18:10:21, EndTime =
03-07-2004 18:10:21}. Though high-level events are pos-
sible, in this paper we are more interested in low-level
events. For example, a TCP connection exploiting the vul-
nerability in a ftp server, and a read operation on a pro-
tected file. These low-level events may trigger the security
systems to flag alerts. For example, a ftp connection includ-
ing some special data such as “"$.—*+([]{}” [10] in its
payload may trigger a FTP_Glob_Expansion alert by a net-
work based IDS, and may trigger a NEW_CLIENT alert by
a network anomaly detector. The malicious sadmind NET-
MGT_PROC_SERVICE Request event may trigger Sad-

mind_Amslverify_Overflow alert if it is captured by a Re-
alSecure network sensor.

As the third example, we define a configuration type
HostFTPConfig = {HostIP, HostName, OS, FTPSoftware,
FTPOpenPort}, and a type HostFTPConfig configuration ¢
= {HostIP = 10.10.1.7, HostName = foo, OS = Solaris 8,
FTPSoftware = FTP Server, FTPOpenPort = 21}. We are
particularly interested in the critical software which may
have vulnerabilities, for example, a ftp server program and
its open port in a host. We further classify the configura-
tions into two categories: host configuration and network
configuration. The aforementioned HostFTPConfig is a host
configuration listing the ftp software and open port. Net-
work configurations specify the setting about the whole net-
work. For example, the access control list (ACL) in a fire-
wall, which controls the inbound and outbound traffic for
the whole network. A type NetTrafficControlConfig config-
uration ¢’ = {Source = any, Destination = 10.10.1.8, Dest-
Port = 80, Protocol = tcp, Action = accept} is an example
of network configuration controlling the inbound traffic to
10.10.1.8 at TCP port 80.

As the last example, we define a resource type file =
{HostIP, Path}, a resource type network_service = {HostIP,
HostPort, ServiceName}, and a resource type privi-
lege = {HostIP, Access}. A type file resource 11 = {HostIP
= 10.10.1.9, Path = /home/Bob/doc/info.txt}, a type net-
work_service resource r9 = {HostIP = 10.10.1.9, Host-
Port = 21, ServiceName = ftp}, and a type privilege
resource r3 = {HostIP = 10.10.1.9, Access = AdminAc-
cess}.

2.2. Triggering Events for Alerts

As we mentioned, a single event may trigger different
alerts for different security systems. Since security systems
may not necessarily tell the analysts what events trigger an
alert, it is usually necessary to discover the triggering events
for alerts. Given an alert, we are interested in the set of event
types which may trigger an alert type, and the attribute val-
ues for each triggering event. Domain knowledge is essen-
tial for the discovery of triggering events.

Definition 1 Given an alert type T, the set of triggering
event types for T; is a set T of event types, where for each
event type T, € T, there is an attribute mapping function
f that maps attribute names in T; to attribute names in T,.
Given a type T; alert t, the triggering event set for t is a
set I of events, where for each T, € T, there is a type T,
event e € E, and the attribute values of e are instantiated
by the attribute values in t through the corresponding at-
tribute mapping function.

Example 1 Given an alert type 1T, = Sad-
mind_Amslverify_Overflow, the set of triggering

event types is {T.}, where T. = Malicious sad-
mind NETMGT_PROC_SERVICE Request, and the
attribute mapping function [has f(1;.SrcIP) =
T..SrcIP, f(T;.SrcPort) = T..SrcPort,
f(;. TargetIP) = T, Targetl P, f(T;.TargetPort) =
T..TargetPort, f(T;.StartTime) = T..StartTime
and f(Ty.EndTime) = T,.EndTime. Given a type Sad-
mind_Amslverify_Overflow alert t = {SrcIP = 10.10.1.10,
SrcPort = 683, TargetlP = 10.10.1.1, TargetPort =
32773, StartTime = 03-07-2004 18:10:21, EndTime =
03-07-2004 18:10:21}, we know the triggering event set
has one type Malicious NETMGT_PROC_SERVICE Re-
quest event e = {SrcIP = 10.10.1.10, SrcPort = 683, Tar-
getlP = 10.10.1.1, TargetPort = 32773, StartTime =
03-07-2004 18:10:21, EndTime = 03-07-2004 18:10:21}.

Triggering events provide us an opportunity to find dif-
ferent alerts that may correspond to the same attack. Given
a set of alerts, first we can discover the triggering event set
for each alert, then we can put individual alerts into clusters
if the alerts in the same cluster share the “similar” triggering
events. In the following, we simply use the term events in-
stead of triggering events if it is clear from the context. We
first discuss the event inference, then define “similarity” be-
tween alerts through which our clustering algorithm is in-
troduced.

2.3. Inference between Events

Intuitively, two events are “similar” if they have the same
event type, and their attribute names and values are also the
same. However, considering the existence of implication re-
lationships between events (the occurrence of one event im-
plies the occurrence of another event), we realize that the
concept of “similarity” can be extended beyond this intu-
ition to accommodate event implication.

We first give examples to illustrate the implication re-
lationships. Consider two events: the recursive dele-
tion of directory ‘“/home/Bob/doc” and the deletion of
file ‘“/home/Bob/doc/info.txt”. The first event can im-
ply the second one because “info.txt” is one of the files
in that directory. As another example, we know an event
type restricted_file_write may imply an event type filesys-
tem_integrity_violation. On the other hand, a recursive
directory deletion does not necessary imply a file dele-
tion if the file is not in the same directory. For example, the
recursive deletion of directory “/home/Bob/doc” cannot im-
ply the deletion of file “/home/Alice/doc/info.txt”. This
observation tells us when we introduce the implication re-
lationships between events, we not only need to examine
the semantics of event types, but also the relationships be-
tween attribute names and values. We use may-imply to
refer to the implication between event types, and use im-
ply to refer to the implication between events (includ-

ing types and their related attributes names and val-
ues). For convenience, we denote event e; implies event e
as e; — ea.

We introduce a binary specific-general relation to help us
identify implication relationships. Formally, given two con-
cepts (e.g., two event types, two attribute names, etc) a;
and aq, a specific-general relation between a; and as maps
low-level (specific) concept aq to high-level (general) con-
cept ao, and is denoted as a; < ao (for convenience, we
may also refer to specific-general relation as “<” relation in
this paper). Specific-general relation is reflexive (we have
a < a for any concept a), antisymmetric and transitive, and
it essentially is a partial order over a set of concepts (which
is modeled as concept hierarchy in data mining [8]).

Specific-general relations can be applied to event
types. For example, we can define file_deletion < recur-
sive_directory_deletion and restricted_file_write < filesys-
tem_integrity_violation. Here domain knowledge is neces-
sary to determine whether EventTypel may imply Event-
Type2 or EventType2 may imply EventTypel even if Event-
Typel < EventType2 or EventType2 < EventTypel is
decided. For example, it is straightforward for an ex-
pert to decide recursive_directory_deletion may imply
file_deletion and restricted_file_write may imply filesys-
tem_integrity_violation. Our next job is to decide the rela-
tionships between attribute names and values.

Again, the relationships between attributes are deter-
mined through specific-general relations. As an example,
for specific-general relations between attribute names, we
can define file < directory and host < network. In
addition, we are interested in whether “<” relation is sat-
isfied once the attribute names are replaced by their val-
ues. For example, under file < directory relation, we
have “/home/Bob/doc/info.txt” < “/home/Bob/doc”, and
under host < network relation, we have 10.10.1.10 <
10.10.1.0/24. In the following, when referring to “<” rela-
tions, we may not distinguish between attribute names and
values if it is not necessary.

It is worth mentioning that as a special case, timestamp
attributes (StartTime and EndTime) have different charac-
teristics compared with other attributes in that even if two
triggering events actually refer to a same event, they may
not have the exactly same timestamps due to the clock dis-
crepancy in different systems or event propagation over the
network. We propose to use temporal constraint to evalu-
ate whether a set of events are “similar” w.r.t. timestamps.

Definition 2 Consider a set E of events and a time interval
. E satisfies the temporal constraint A if and only if for any
e, € E (e # ¢), |e.StartTime — €' .StartTime| < A
and |e.EndTime — ¢ .EndTime| < \.

Based on “<” relations and a temporal constraint A,
we outline an algorithm (shown in Figure 1) to determine

whether event e; implies event es. The basic idea is that
we first identify whether T'ype(e;) may imply Type(es). If
this is the case, we further check “<” relations between at-
tribute names and values, and examine the temporal con-
straint to see whether e; implies es.

Algorithm 1. Determining if event e; implies event e
Input: Two events e; and e and a temporal constraint \.
Output: True if e — e2; otherwise false.
Method:
Assume the attribute name sets for e; and es are A
and As, respectively. Initialize result=false.
1. If T'ype(e1) may imply Type(ez)
2. IfType(er) < Type(ez)
3. Find a mapping such that Va; € A} (A] C A1)
and Vas € A5(A5 C As), we have a1 < as
Else Find a mapping such that Vas € A5(A5 C As)
and Va; € A1(A} C A1), we have as < aq
Replace names with values for all “<” relations.
If all “<” relations are satisfied in step 5
If e1 and ey satisfy constraint A, Let result=true
. Output result.

&

% N o w»

Figure 1. An algorithm to discover implica-
tion relationship between events.

2.4. Clustering Alerts Using Triggering Events

Intuitively, we intend to group individual alerts into clus-
ters such that all alerts in the same cluster either share the
same triggering events, or their triggering events have im-
plication relationships. To formalize this intuition, we first
define similarity between alerts.

Definition 3 Consider a set S of alerts {t1,ta, -, tn}
and a temporal constraint \. Assume the triggering event
sets for t1,ta, - ,t, are By, By, - - - | E,, respectively. All
alerts in S are similar if and only if there exist e € Fy,
es € Es, -+, e, € E, such that for any two events e; and
ej in{ey, ea, -+, ey}, we have e; — e; or e; — e;.

The idea of Definition 3 can be demonstrated by an ex-
ample. Two alerts are similar if either their triggering events
have the same type, attribute names and values, and their
timestamps satisfy the given temporal constraint, or their
triggering events have implication relationship. Since two
events e; and es with everything the same is a special case
of e; — ey or ea — e, we can combine these two cases
and use implication relationships to define similarity.

Given a set S, of alerts, we can cluster them based
on Definition 3. Intuitively, we can iteratively pick a sub-

set of alerts from S, such that all the alerts in this sub-
set are similar. However, we have to solve a problem be-
fore we can apply this operation. This problem can be
demonstrated by an example. Suppose we have three alerts
t1, to and t3. They are of the same type and have the
same attribute names and values except for timestamp val-
ues, and their triggering event sets are {e;}, {e2}, and
{es}, respectively. Assume the temporal constraint A =
1 second, e;.StartTime = ei;.EndTime = 03-07-2004
18:20:21, ex.StartTime = es.EndTime = 03-07-2004
18:20:22, and e3.StartTime = ez.EndITime = 03-07-
2004 18:20:23. Based on Definition 3, ¢; and ¢, are simi-
lar, and ¢5 and t3 are similar. Thus ¢5 can be put into a clus-
ter either with ¢, or with ¢3. To solve this ambiguity, we ap-
ply a rule named “earlier timestamp first”, where the clus-
ter with the earlier (StartTime) alerts will get as many alerts
as possible. Applying this rule to the example, we let ¢;
and t, be in the same cluster. Algorithm 2 (Figure 2) out-
lines the alert clustering through applying this rule. In Al-
gorithm 2, line 1 prepares the alert set and initializes some
variables. Lines 2 through 6 are a loop, which always looks
for the alerts that are similar to the first alert in the alert
set and puts them into a cluster. This loop will not stop un-
til the alert set is empty. Line 7 finally outputs all clusters.

Algorithm 2. Alert Clustering via Triggering Events
Input: A set S, of alerts and a temporal constraint A.
Output: A set C of clusters.
Method:
1. Sort the set S,, of alerts ascendingly on StartTime,
and name it S,. Initialize C' = (), and let 7 = 1.
2. While S, is not empty
3. Let the alert with the earliest StartTime in S, be ¢.
4. Findset S’ C S, such that {t} U S’ are similar.
5. Remove {t} U S’ from S, into a set C;.
6. PutCjintoC.Leti =1+ 1.
7. Output C.

Figure 2. An algorithm to perform alert clus-
tering based on triggering events.

An interesting observation is that after alert clustering,
we may mark some clusters with low severity through ex-
amining whether the alerts are consistent with relevant con-
figurations. This will be further discussed in Subsection 2.5.

2.5. Consistency between Alerts and Configura-
tions

Host and network configurations provide us an op-
portunity to verify the consistency or discover the in-

consistency between alerts and their relevant configura-
tions. The consistency between an alert and its related
configurations can be verified through examining the at-
tributes of the alert and the configurations. For exam-
ple, consider an FTP_Glob_Expansion alert t = {SrcIP =
172.16.1.7, SrcPort = 1042, TargetIP = 10.10.1.7, Target-
Port = 21, StartTime = 03-07-2004 18:20:21, EndTime =
03-07-2004 18:20:21} and a HostFTPConfig configura-
tion ¢ = {HostIP = 10.10.1.7, HostName = foo, OS = So-
laris 8, FTPSoftware = FTP Server, FTPOpenPort = 21}.
Alert t is consistent with configuration ¢ because it ex-
ploits a host 10.10.1.7 at port 21 which is an open port
listed in this host’s configuration. We formalize this rela-
tionship in Definition 4.

Definition 4 Consider an alert type T; and a configuration
type T.. A consistent condition for T; w.rt. T, is a logi-
cal formula including attribute names in T; and T,. Given
a type 1} alert t and a type T, configuration c, t is consis-
tent (or inconsistent, resp.) with c if the formula is evalu-
ated to True (or False, resp.) where attribute names in the
formula are replaced with the values in t and c.

Example 2 Given an alert type FTP_Glob_Expansion (7})
and a configuration type HostFTPConfig (T.), we de-
fine Ty TargetIP = T..HostIP N Ty TargetPort =
T..FTPOpenPort as a consistent condition for T; w.r.t.
T.. Given an FTP_Glob_Expansion alert t = {SrcIP =
172.16.1.7, SrcPort = 1042, TargetIP = 10.10.1.7, Tar-
getPort = 21, StartTime = 03-07-2004 18:20:21, EndTime
= 03-07-2004 18:20:21} and a HostFTPConfig con-
figuration ¢ = {HostIP = 10.10.1.7, HostName = foo,
OS = Solaris 8, FTPSoftware = FTP Server, FTPOpen-
Port = 21}, the consistent condition is evaluated to True
using attribute values in t and c. Then we know t is consis-
tent with c.

Consistency and inconsistency relationships be-
tween alerts and configurations provide us a way to classify
the alerts. We can mark each alert as consistent or incon-
sistent with the related configurations. A consistent alert
tells us the corresponding attack could be possible due to
the potential vulnerabilities in the configuration. A spe-
cial case worth mentioning is that sometimes a consistent
alert is a low-severity alert. For example, if a firewall re-
ports a FWROUTE alert saying that an inbound packet
is blocked, which is consistent with the ACL configura-
tion of the firewall, this alert is less severe because the cor-
responding connection is blocked. On the other hand, an
inconsistent alert may be of low severity because the corre-
sponding attack could not succeed (e.g., an adversary tries
to connect to a port which is not open). A special case is
that a configuration could be compromised (e.g., an ad-
versary installs malicious programs and opens new ports)
without the notice of the legitimate users, and then the cor-

responding attack may succeed. In this case, the “incon-
sistent” alert (which actually is not an inconsistent alert
because the configuration is changed) deserves more inves-
tigation.

We can apply consistency and inconsistency relation-
ships to alert clusters to determine the severity of some
clusters. For example, assume a FWROUTE alert (reported
by a firewall denoting that a connection is blocked) and a
NEW_CLIENT alert (reported by a network anomaly detec-
tor denoting that a new client requests a server) are in the
same cluster, and FWROUTE is consistent with its config-
uration. Since FWROUTE denies the requested connection,
the related attack cannot be successful and this cluster is
less severe. Then we could put more efforts on investigat-
ing other possibly severe clusters.

2.6. Attack Scenario Construction based on Input
and Output Resources

Our approach further determines the causal relationships
between alert clusters. We are interested in how individ-
ual attacks (represented by alert clusters) are combined to
achieve the adversary’s goal. The observation tells us that
in a sequence of attacks, some attacks have to be performed
earlier in order to launch later attacks. For example, an
adversary always installs DDoS software before actually
launching DDoS attacks. If we are able to capture these
causal relationships, it may help us build stepwise attack
scenarios and reveal the adversary’s attack strategy.

Our approach to modeling causal relationships between
attacks is inspired by the pre/post-condition based alert cor-
relation techniques [3, 15, 20]. However, as we mentioned
in Section 1, since we use resources to specify pre/post-
conditions, compared with the predicates based specifica-
tion [3, 15], we have several advantages such as the ease
of specifying and (partially) matching input and output re-
sources, and the ease of accommodating new attacks. Our
approach is based on the observation that the causal rela-
tionships between attacks can be captured through exam-
ining output resources of one attack with input resources
of another. Informally, input resources are the necessary re-
sources for an attack to succeed, and output resources are
the resources an attack can supply if successful.

We extend our model for alerts (or alert types, resp.) to
accommodate input and out resources (or input and out-
put resource types, resp.). We call them extended alerts (or
extended alert types, resp.) after this extension. Consider-
ing that the resource attribute names may not always be the
same as the alert attribute names, we further use functions to
map the alert attributes to resource attributes. In the follow-
ing, we formalize extended alert types and extended alerts.

Definition 5 An extended alert type T is a triple (73,
attr_names, 7,), where (1) attr_names is a set of attribute

names (including StartTime and EndTime) where each at-
tribute name a; has a domain Dj, (2) T; and T, are
a set of resource types, respectively, and (3) for each
T, € T, and T, € 1,, there exist attribute mapping func-
tions f; and f, that map attribute names in attr_names to
attribute names in T; and T, respectively.

A type T extended alert ¢ is a triple (input, attributes, out-
put), where (1) attributes is a tuple on attr_names, (2) input
and output are a set of resources, respectively, and (3) for
each T; € T, and T, € 1,, there exist resources r; € in-
put and r, € output, respectively, where their attribute val-
ues are instantiated by the corresponding attribute values
in attributes through attribute mapping functions.

Actually, attr_names in an extended alert type is an alert
type, and attributes in an extended alert is an alert that we
defined in Subsection 2.1. In the remaining part of this pa-
per, we may simply use alert types (or alerts, resp.) when
it is not necessary to differentiate between extended alert
types and alert types (or extended alerts and alerts, resp.).

Example 3 Define an Sadmind_Amslverify_Overflow
(T') extend alert type as { {network_service} , {SrclP,
SrcPort, TargetlP, TargetPort, StartTime, EndTime},
{privilege} }, where network_service (T;) = {HostIP, Host-
Port, ServiceName} and privilege (T,) = {HostIP, Ac-
cess}. For attribute mapping, we have f;(T.TargetIP) =
T;.HostIP, f;(T.TargetPort) = T;.HostPort, and
fo(T.TargetIP) = T,.HostIP.

Given a type Sadmind_Amslverify Overflow alert
{SrcIP = 10.10.1.10, SrcPort = 683, TargetIP = 10.10.1.1,
TargetPort = 32773, StartTime = 03-07-2004 18:10:21,
EndTime = 03-07-2004 18:10:21}, we can get their in-
put and output resources as input = { {HostIP = 10.10.1.1,
HostPort = 32773, ServiceName = sadmind} }, and out-
put = { {HostIP = 10.10.1.1, Access = AdminAccess}}.
These three parts combined together are an extended alert.

Please note in Definition 5, when performing attribute
mapping from attr_names to T; € 7T; and T, € 7,, based
on domain knowledge, we can mark some attributes in 7T;
and 7T, as special attributes, where they have pre-determined
values once the attribute values of resources in input and
output are instantiated. For example, as shown in Exam-
ple 3, Access attribute in privilege resource has a pre-
determined AdminAccess value.

Similar to the implication relationship between events,
one resource r; can imply another resource 75 (we use r; —
ro to represent r1 implies r2). For example, a privilege re-
source {HostIP = 10.10.1.9, Access = AdminAccess} im-
plies another privilege resource {HostIP = 10.10.1.9, Ac-
cess = UserAccess}. Please note two resources 1 and 7
have their types, attribute names and values all the same is
a special case of 1y — 74 or ro — r1. The implication re-
lationships between resources can be determined through

specific-general relations and a similar procedure described
in Subsection 2.3 (The difference is that in this paper we
do not associate resources with timestamps). For space rea-
sons, we do not repeat it here.

We can identify causal relationships between attacks
through discovering “common” resources between input
and output resources. Intuitively, if one attack’s output re-
sources include one resource in another attack’s input re-
sources, we can correlate these two attacks together. We for-
malize this intuition as follows.

Definition 6 Given two extended alerts t =(input, at-
tributes, output) and t' = (input’, attributes’, out-
put’), t and t' are causally correlated if there exist v, €
output and r; € input’ such that r, implies r and
t.EndTime < t'.StartTime.

Example 4 Consider two alerts t and t' (Type(t) =
SCAN_NMAP_TCP and Type(t') = FTP_Glob_Expansion).
Suppose the output resource of t is a network_service re-
source {HostIP = 10.10.1.7, HostPort = 21, ServiceName
= fip}, the input resource of t' is a network service re-
source {HostIP = 10.10.1.7, HostPort = 21, ServiceName
= fip}, and t.EndTime < t'.StartTime. Since the out-
put resource of t and the input resource of t' are the same,
we know that t and t' are causally correlated.

We also refer to “causally-correlate” relationships intro-
duced in Definition 6 as causal relationships, which provide
us opportunities to build attack scenarios. Consider a set of
alerts reported by different security systems. We can group
alerts into clusters using triggering events. Each cluster may
correspond to one attack. Through discovering causal rela-
tionships between alerts in different clusters, we can link
different clusters and construct the attack scenarios. Defini-
tion 7 further formalizes this intuition.

Definition 7 Consider a set C of clusters where each clus-
ter is a set C; of alerts. A scenario graph SG = (V, A) is
a directed acyclic graph, where (1) V is the vertex set, and
A is the edge set, (2) each vertex v € V is a cluster in C,
and (3) there is an edge (v1,v2) € A if and only if there ex-
istty € vy and ty € vy such that t1 and to are causally cor-
related.

Y

Figure 3. An example scenario graph

Example S An example of scenario graph is shown
in Figure 3. The string inside each node is the alert
type followed by an ID (we will follow this conven-
tion in our experiments). This scenario has two clusters:
Cy ={SCAN_NMAP_TCPI1} and C; ={NEW_CLIENTS3,
FTP_Glob_Expansion2}, where SCAN_NMAP_TCP1 is re-
ported by Snort, FTP_Glob_Expansion2 is reported
by a RealSecure network sensor, and NEW _CLIENT3
is reported by a network anomaly detector. Assume
SCAN_NMAP_TCP1 and FTP_Glob_Expansion2 are
causally correlated. Then we can correlate Cy and Cs to-
gether as shown in Figure 3. Such graph clearly discloses
an adversary’s attack strategy.

3. Experimental Results

To evaluate the effectiveness of our techniques, we per-
formed experiments through DARPA Cyber Panel Program
Grand Challenge Problem Release 3.2 (GCP) [5, 7], which
is an attack scenario simulator. GCP simulator can simulate
the behavior of sensors and generate alert streams. There
are totally 10 types of sensors in the networks. All the sen-
sors generate the alerts in IDMEF [4] messages.

The current implementation is a proof-of-concept sys-
tem. We use Java as the programming language, and Mi-
crosoft SQL Server 2000 as the DBMS to save the alert data
set and domain knowledge. Alert processing in our system
can be divided into four stages. In the first stage, we con-
centrate on data preparation. We extract the attributes from
the IDMEF messages generated by GCP simulator and put
them into the database. All the necessary domain knowl-
edge such as triggering event types and resource types are
all put into the database. The second stage is the alert clus-
tering stage. We group alerts into different clusters based
on Algorithm 2 shown in Figure 2. The third stage is to ex-
amine the consistency or inconsistency between alerts and
configurations. In the last stage, we use input and output re-
source based correlation techniques to discover causal rela-
tionships and build attack scenarios. To save our develop-
ment effort, we use GraphViz [1] to draw scenario graphs.

The experiments were performed using Attack 1 sce-
nario in GCP attack simulator. We chose 4 network en-
claves, namely HQ enclave, APC enclave, Ship enclave and
ATH enclave, to play this scenario. Attack 1 is a (agent-
based) worm related attack. After the agent being activated,
it performs a series of malicious actions such as communi-
cating with an external host, getting malicious code and in-
structions, spreading from one network enclave to another,
compromising hosts in the network enclaves, sniffing the
network traffic, reading and modifying the sensitive files,
sending the sensitive data to the external host, getting new
malicious instructions, and so forth. For this scenario, we
totally got 529 alerts with 16 different types.

Cluster ID Alerts

2 NEW_CLIENT10, FWROUTE7

4 NEW _CLIENT25, FWROUTE27

54 NEW_CLIENT132, FTP_Globbing_Attack135
102 NEW_CLIENT6, FWROUTES

116 NEW_CLIENT124, ServiceUnavailable125
132 NEW_CLIENT33, FWROUTE21

136 NEW _CLIENT122, ServiceUnavailable121
184 NEW _CLIENT24, FWROUTE34

236 NEW _CLIENT32, FWROUTE20

238 NEW _CLIENT49, FWROUTES7

242 NEW_CLIENT153, FTP_Globbing_Attack154
281 NEW _CLIENT29, FWROUTE26

333 NEW _CLIENTS8, FWROUTE12

335 NEW _CLIENT30, FWROUTE39

340 NEW _CLIENT54, FWROUTES3

342 NEW _CLIENT50, FWROUTES6

385 NEW_CLIENT134, FTP_Globbing_Attack133

Table 1. All 2-alert clusters.

Our first goal is to evaluate the effectiveness of alert clus-
tering proposed in this paper. For space reasons, we omit
listing the set of triggering event types for each alert type.
We set the temporal constraint A = 1 second.

Totally we get 512 clusters from alert clustering. Among
them there are 17 clusters, each of them comprises 2 alerts,
and all other clusters are single-alert clusters. Table 1 lists
all 2-alert clusters. From Table 1, we observe every clus-
ter has a NEW_CLIENT alert, which is reported by network
anomaly sensors denoting a new client requests a server
(service). This is normal because the connection requests
trigger these alerts. Both alerts in each cluster in Table 1 ac-
tually refer to the same network connection, which triggers
different alerts for different systems.

Our next goal is to evaluate the effectiveness of con-
sistent conditions in identifying the severity of some
alerts and clusters. Among all alerts, we find 4 alerts in-
consistent with their configurations. These 4 alerts are
NEW_CLIENTI22, NEW_CLIENTI24, ServiceUnavail-
ablel2] and ServiceUnavailablel25. NEW_CLIENTI22
and ServiceUnavailablel21 target at port 111 on host
10.1.2.2, and NEW_CLIENTI24 and ServiceUnavail-
ablel?25 target at port 21 on host 10.1.2.2. They are also
in Table 1 (Cluster ID = 136 and 116), which means
these 4 alerts actually represent two attacks. Our investi-
gation shows that both attacks are failed attempts (one is
through sadmind exploit, and the other is through ftp glob-
bing exploit) because the ports 111 and 21 are not open at
host 10.1.2.2.

We also investigate the 2-alert clusters where one alert
in the cluster is FWROUTE. In Table 1, there are 12 clus-
ters that include FWROUTE alerts. These FWROUTE alerts
are consistent with their configurations. Since FWROUTE
represents connections being blocked, their impact to the
network may not be severe. Thus the corresponding 2-alert

FTP_Globbing_Attack154

\ J

Restricted_System_File_Scan184

restricted_read232
restricted_write528

Network_Interface_In_PromiscuousMode79

' slricledwrll’

registry-integrity527

Figure 4. One Scenario Graph in HQ Enclave

clusters are low-severity clusters.

Our last goal is to evaluate the effectiveness of our tech-
niques in building attack scenarios. We performed the ex-
periments on the above data set and got 10 scenario graphs.
For space reasons, we only show one of them in Figure 4.

Figure 4 is a scenario graph in HQ enclave. The alerts
in this figure can be roughly divided into two parts:
the right side part and the left side part. The right side
part reveals that the adversaries iteratively read (Re-
stricted_System_File_Scan), write (restricted_write) and
sniff (Network_Interface_In_PromiscuousMode) sensi-
tive data in HQ enclave, and use tunneling techniques
such as Loki to secretly transmit data to the exter-
nal host. The adversaries also modify critical files and
keys (filesystem-integrity and registry-integrity) to dis-
rupt the operation of the network. The left side part reveals
that the adversaries use FTP_Globbing_attack to compro-
mise the victim hosts, and also read and write sensitive data
in the enclave. The attackers’ strategy disclosed in this sce-
nario graph is consistent with the description of GCP attack
scenarios.

4. Related Work

In recent years, several alert correlation approaches have
been proposed. They can be roughly classified into four cat-
egories.

The first category consists of the similarity based ap-
proaches [2,12,18,22]. These approaches group alerts based
on the similarity between alert attributes. They are essen-
tially clustering analysis. Our techniques also include alert

clustering, which uses a novel similarity measure: trigger-
ing events. Triggering events are a similar concept to root
cause [12] in that they represent the reason why the alerts
are flagged. However, triggering events focus on low-level
events (though high-level events are possible) and we as-
sume security systems or domain knowledge can tell us trig-
gering event types for each alert type, while root cause anal-
ysis concentrates on high-level events and clustering tech-
niques are used to discover root causes. In [2], Cuppens pro-
poses to use alert clustering to identify “the same attack oc-
currence”, where expert rules are used to specify the simi-
larity requirement between alerts.

The second category of alert correlation techniques is the
pre-defined attack scenario based approaches [6, 13]. They
work well for well-defined attack sequences, but they can-
not discover novel attack scenarios.

The third category is the pre/post-condition based ap-
proaches [3, 15,20]. Through (partially) matching the post-
condition of one attack with the pre-condition of another,
these approaches can discover novel attack scenarios. How-
ever, specifying pre-conditions and post-conditions for each
attack is time-consuming and error-prone. Our techniques
on building attack scenarios fall into this pre/post-condition
based category. However, since our approach uses resources
to specify pre/post-conditions, compared with the predicate
based specification [3, 15], it is easy to specify and (par-
tially) match input and output resources, and easy to ac-
commodate new attacks.

The fourth category is the multiple information sources
based approaches [14, 16, 23]. The mission-impact-based
approach [16] ranks the alerts based on the overall impact

to the mission of the networks. M2D2 [14] proposes a for-
mal model to describe the concepts and relations about var-
ious security systems. DOMINO [23] is a distributed intru-
sion detection architecture targeting at coordinated attack
detection with potentially less false positives. We consider
these techniques are complementary to ours.

5. Conclusion and Future Work

In this paper we proposed a correlation approach based
on triggering events and input and output resources. One
key concept in our approach is triggering events, which cap-
tures the (low-level) events that trigger alerts. We proposed
to group different alerts into clusters if they share “simi-
lar” triggering events, through which we can identify the
alerts that may correspond to the same attack. We further
introduced network and host configurations into our model,
and identified consistent and inconsistent alerts, which help
us mark the severity of some alerts and clusters. The other
key concept in our approach is input and output resources.
We proposed to model each attack through specifying in-
put and output resources, and discover causal relationships
between attacks through identifying “common” resources
between output resources of one attack and the input re-
sources of another. This approach helps us identify logical
connections between alert clusters and build attack scenar-
ios. Our preliminary experimental results demonstrated the
effectiveness of our techniques.

There are several future research directions. In this paper
we mainly focus on low-level events as triggering events.
An alternative way is to use high-level events, or combine
low-level and high-level events. Another future direction is
quantitatively evaluating different correlation approaches.

References

[1] AT & T Research Labs. Graphviz - open source graph layout
and drawing software. http://www.research.att.
com/sw/tools/graphviz/.

[2] F. Cuppens. Managing alerts in a multi-intrusion detection
environment. In Proceedings of the 17th Annual Computer
Security Applications Conference, December 2001.

[3] F. Cuppens and A. Miege. Alert correlation in a cooperative
intrusion detection framework. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, May 2002.

[4] D. Curry and H. Debar. Intrusion detection message ex-
change format data model and extensible markup language
(xml) document type definition. Internet Draft, draft-ietf-
idwg-idmef-xml-03.txt, Feb. 2001.

[5] DARPA Cyber Panel Program. n DARPA cyber panel
program grand challenge problem. http://www.
grandchallengeproblem.net/, 2003.

[6] H. Debar and A. Wespi. Aggregation and correlation of
intrusion-detection alerts. In Recent Advances in Intrusion
Detection, LNCS 2212, pages 85 — 103, 2001.

(71

(8]
(9]
(10]

(11]

[12]

[13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

J. Haines, D. Ryder, L. Tinnel, and S. Taylor. Validation of
sensor alert correlators. IEEE Security & Privacy Magazine,
1(1):46-56, 2003.

J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers, 2001.

Internet Security Systems. RealSecure intrusion detection
system. http://www.iss.net.

Internet Security Systems, Inc. REALSECURE signatures
reference guide. http://www.1iss.net/.

H. S. Javitz and A. Valdes. The NIDES statistical compo-
nent: Description and justification. Technical report, SRI In-
ternational, Mar. 1994.

K. Julisch. Clustering intrusion detection alarms to support
root cause analysis. ACM Transactions on Information and
System Security, 6(4):443-471, Nov 2003.

B. Morin and H. Debar. Correlation of intrusion symptoms:
an application of chronicles. In Proceedings of the 6th Inter-
national Conference on Recent Advances in Intrusion Detec-
tion (RAID’03), September 2003.

B. Morin, L. Mé, H. Debar, and M. Ducassé. M2D2: A for-
mal data model for IDS alert correlation. In Proceedings of
the 5th International Symposium on Recent Advances in In-
trusion Detection (RAID 2002), pages 115-137, 2002.

P. Ning, Y. Cui, and D. S. Reeves. Constructing attack sce-
narios through correlation of intrusion alerts. In Proceedings
of the 9th ACM Conference on Computer and Communica-
tions Security, pages 245-254, Washington, D.C., November
2002.

P. Porras, M. Fong, and A. Valdes. A mission-impact-based
approach to INFOSEC alarm correlation. In Proceedings of
the 5th International Symposium on Recent Advances in In-
trusion Detection (RAID 2002), pages 95-114, 2002.

M. Roesch. Snort - lightweight intrusion detection for net-
works. In Proceedings of the 1999 USENIX LISA confer-
ence, 1999.

S. Staniford, J. Hoagland, and J. McAlerney. Practical auto-
mated detection of stealthy portscans. Journal of Computer
Security, 10(1/2):105-136, 2002.

Symantec Corporation. Symantec’s norton antivirus. http:
//www.symantec.com.

S. Templeton and K. Levitt. A requires/provides model for
computer attacks. In Proceedings of New Security Paradigms
Workshop, pages 31 — 38. ACM Press, September 2000.
Tripwire, Inc. Tripwire changing monitoring and reporting
solutions. http://www.tripwire.com.

A. Valdes and K. Skinner. Probabilistic alert correlation. In
Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection (RAID 2001), pages 54-68,
2001.

V. Yegneswaran, P. Barford, and S. Jha. Global intrusion de-
tection in the domino overlay system. In Proceedings of the
11th Annual Network and Distributed System Security Sym-
posium (NDSS’04), February 2004.

Zone Labs. Zonealarm pro. http://www.zonelabs.
com.

