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Abstract. Audit trail patterns generated on behalf of a Unix process
can be used to model the process behavior. Most of the approaches pro-
posed so far use a table of fixed-length patterns to represent the pro-
cess model. However, variable-length patterns seem to be more naturally
suited to model the process behavior, but they are also more difficult to
construct. In this paper, we present a novel technique to build a table of
variable-length patterns. This technique is based on Teiresias, an algo-
rithm initially developed for discovering rigid patterns in unaligned bio-
logical sequences. We evaluate the quality of our technique in a testbed
environment, and compare it with the intrusion-detection system pro-
posed by Forrest et al. [8], which is based on fixed-length patterns. The
results achieved with our novel method are significantly better than those
obtained with the original method based on fixed-length patterns.

Keywords: Intrusion detection, Teiresias, pattern discovery, pattern
matching, variable-length patterns, C2 audit trail, functionality verifi-
cation tests.

1 Introduction

In [9], Forrest et al. introduced a new approach to the problem of protecting com-
puter systems. The problem is viewed as an instance of the more general problem
of distinguishing self (i.e. normal process execution) from other (i.e. anomalous
process execution). Based on the way natural immune systems distinguish self
from other, Forrest et al. have developed a change-detection method that can
be applied to virus detection [9] and intrusion detection [8]. The method models
the way an application or service running on a machine normally behaves by
registering characteristic subsequences, i.e. patterns, of system calls invoked. An
intrusion is assumed to pursue abnormal paths in the executable code, and is de-
tected when new sequences are observed that cannot be matched with registered
patterns (see also [6, 7]).

Forrest et al. use fixed-length patterns to represent the process model. How-
ever, a main limitation of this approach is that there is no rationale for selecting
the optimal pattern length. As shown in [10], the pattern length has an influence
on the detection capabilities of the intrusion-detection system. Therefore, in [2]
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the concept of using variable-length patterns to model the process behavior was
introduced. However, preliminary results obtained with variable-length patterns
revealed no clear advantage of that method. In this paper, we present a novel
method to generate variable-length patterns. We can show that the results ob-
tained with variable-length patterns clearly outperform those achieved with the
original method, which is based on fixed-length patterns.

The structure of the paper is as follows. Section 2 describes the basic prin-
ciples of detecting suspicious process behavior by analyzing the sequences of
system calls a process can generate. Readers familiar with the previous work on
this topic [2, 3, 8, 10, 11, 13, 14, 15] can skip this section and go directly to Sec-
tion 3 where our novel intrusion-detection method, which uses variable-length
patterns, is presented. Section 4 compares our novel method with the one pro-
posed by Forrest et al. [8, 10] based on experiments performed in a testbed [5]
environment. Section 5 concludes the paper by summarizing the results obtained
and offering ideas for future work. In the Appendix, formal descriptions of the
variable-length pattern-extraction and the variable-length pattern-matching al-
gorithm are given.

2 Background

We describe the basic principles of intrusion-detection systems that use char-
acteristic subsequences of system call traces to model the process behavior and
to detect intrusions by looking for deviations from the process model. First, we
show the generic architecture of such intrusion-detection systems. Then we de-
scribe in more detail the intrusion-detection system proposed by Forrest et al.
[8, 10], which will be used as the reference system to evaluate the quality of our
novel approach.

2.1 Architecture

The intrusion-detection system proposed by Forrest et al. [8, 10] is a behavior-
based [4] intrusion-detection system. In a training phase, normal process behav-
ior is defined. During real-time operation, it is decided whether the observed
process behavior corresponds to the learned normal behavior, or whether signif-
icant deviations are observed, which may be an indication of an intrusion.

There are different interpretations of what the expression “normal” behavior
means. In [10] the authors differentiate between synthetic normal and real normal
behavior. Synthetic normal behavior is created by exercising a program in an
isolated environment in as many modes as possible and recording its behavior.
Real normal behavior is observed by tracing the behavior of a program in a live
user environment. For a discussion of the advantages and disadvantages of each
approach see [2].

Forrest et al. [8, 10] are mainly interested in real normal behavior because
this allows them to detect abnormal but legitimate behavior, i.e., behavior that
is valid according to the process specification but has not been seen during the
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training phase. In our work, we concentrate on synthetic normal behavior and
furthermore try to learn the normal process behavior exhaustively. We achieve
this by using functionality verification test suites (FVT) that systematically
exercise all valid process invocations. Our objective is to detect attacks against
the process itself, i.e. attacks that succeed in exercising process execution paths
that were hitherto unknown and do not correspond to the process specification.
However, it is important to note that the intrusion-detection technique itself,
specifically whether to use fixed- or variable-length patterns, does not depend
on the method used to learn normal behavior.

The architecture of our intrusion-detection system is depicted in Figure 1.
The system comprises two main parts: an off-line part, which corresponds to the
training system, and an on-line part, which corresponds to the detection system.
The main components of each part are described in the next two subsections.
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Fig. 1. Intrusion-detection system

Training System The behavior of the process under study is traced by record-
ing either the system calls or the audit events generated on behalf of the process.
In [8], system calls are used. Although on most operating systems not every sys-
tem call is represented as an audit event, it has been shown in [2] that audit
events are a viable alternative offering the same detection capabilities. For our
work we use audit events because, as our experiments have shown, collecting
audit events is a less intrusive technique than recording system calls.

The audit events generated on behalf of different process executions are sent
to a filtering module. Its task is to sort the events by process id while keeping
the chronological event order. The events are given as tuples comprising the
process and event name. For easier processing, the translation module translates
the events into an internal format. We use characters to represent this internal
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format. The translation rules are generated on the fly and stored in a translation
table. Figure 2 shows the translation steps from the stream of audit events to
the sequences of characters.

     (some fields omitted)
(b) Audit events sorted
     by process ID

16415
18210
16415
18303
16415
18303
18303

16415
...

...

PID

18303 ftpd/PROC_Create
ftpd/FILE_Close
ftpd/FILE_Close
...

root

     characters

ftpd
fingerd
ftpd
ftpd
ftpd
ftpd
ftpd

...

...

CMD

FILE_Close
FILE_Close
FILE_Close
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(c) Sequences of

FILE_Read
FILE_Read
FILE_Open

...

...

EVENT

root

root
root

root

...

...

USER

ftpd FILE_Open root

Translation table

ftpd/FILE_Open
ftpd/FILE_Read
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A

D

B
C

ftpd/FILE_Open
ftpd/FILE_Read
ftpd/FILE_Close

16415 ftpd/FILE_Open

...

AABC...

DCC...

root
root

Fig. 2. Translation of audit events to characters

The translated sequences are forwarded to the aggregation and reduction
module. The purpose of this module is twofold:

– It aggregates consecutive occurrences of the same character, i.e., of the same
event.

– It removes duplicate sequences.

The following example shows the usefulness of the aggregation of consecutive
identical characters. When a new instance of the ftpd process is invoked, it
inherits several file handles from inetd, its parent process. As one of its first
tasks, the ftp daemon closes the file handles, resulting in consecutive FILE close
events. The number of inherited file handles may vary because the inetd process
is not always in the same state. Closing all unneeded file handles will therefore
result in a varying number of FILE close events. As a consequence, the resulting
sequence of system calls is dependent on the environment in which the process
runs. Because we would like to have a process description that is independent of
the environment, we aggregate consecutive occurrences of the same character.

There are different ways to do the aggregation. We follow the approach pro-
posed in [2] and aggregate identical consecutive characters in a single character,
i.e., A = A+ in regular expression formalism. We make no claim of equivalence
between the simplified event sequence and the original one. The aggregation is
an experimental choice and would be removed if any negative impact on the
detection capabilities of the intrusion-detection system were observed.
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During the training phase, duplicate event sequences may occur. Because
they contain no new patterns, duplicate event sequences do not have to be con-
sidered and are hence removed.

After all process executions have taken place, the preprocessed sequences are
forwarded to the pattern-extraction module where the pattern table is generated.

Detection System The structure of the detection system is similar to that of
the training system. In the detection system, events generated on behalf of the
process under study are collected and processed in real time. The filtering module
is identical to that of the training system. The translation module is slightly
different from its counterpart in that audit events are translated based on the
entries already contained in the translation table. Events without a corresponding
entry in the translation table constitute quite an unusual event because they
have not been seen in the training phase of the process. They are translated into
a dummy character, and one may consider issuing an alarm whenever such a
character is observed. In the current implementation of our intrusion-detection
system, they are treated the same way as unmatched characters.

The reduction component of the reduction and aggregation module is no
longer needed. Pattern matching is done in real time, and initiated as soon
as possible for each sequence. This means we do not wait until the complete
sequence has been received before the pattern matching is started, and therefore
the reduction of entire sequences is not applicable.

The task of the pattern-matching module is to match the arriving event se-
quences with the entries in the pattern table. Based on how well the pattern
matching can be done, it is decided whether anomalous behavior is observed
and thus an alarm has to be raised.

2.2 A Review of Forrest et al.’s Approach

This description of Forrest et al.’s work is based on the original paper [8] as well
as a more recent publication [10] in which some modifications of the original
concepts are described. We show the techniques applied for pattern extraction
and pattern matching as well as the metrics used to differentiate between normal
and abnormal behavior.

Pattern Extraction The algorithm to build the table of fixed-length patterns
is very simple. From the sequences sent to the pattern-extraction module, all
unique subsequences, i.e. patterns, of a given length k are extracted. This is
achieved by sliding a window of length k across all input sequences and recording
the encountered subsequences. Duplicates are not considered.

The construction of the pattern table is best illustrated with an example.
For k = 3 and the sample training sequence ABCCABC, we obtain the following
pattern table:

{ ABC, BCC, CCA, CAB }.
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Note that the pattern ABC shows up only once in the pattern table although it
is encountered at two window positions, namely the first and the last position.

Pattern Matching The pattern-matching technique is similar to the pattern-
generation technique. We move a window of length k across the sequence that
is recorded during real operation. Each window position is checked for a match,
i.e., whether there is a pattern that matches the subsequence in the window. If
no matching pattern exists, we speak of a mismatch.

Given the pattern table of the previous example and the sample sequence
ABCCACC, we observe three matches, namely {ABC, BCC, CCA}, and two mis-
matches, namely {CAC, ACC}.

Metric Note that the measure for raising an alarm must not depend on the
sequence length. Arriving events have to be processed in real time, and we do
not want to wait until all events of a process have arrived before we check
them for possible signs of intrusions. This would be problematic, for example,
in cases of continuously running processes. In [10], three measures are given to
differentiate between normal and abnormal behavior. However, only the measure
we are going to describe in this section is independent of the sequence length.

Let a and b be two sequences of length k. The expression ai designates the
character at position i. The difference d(a, b) between a and b is defined as

d(a, b) =
k∑

i=1

fi(a, b) where fi(a, b) =
{
0 if ai = bi

1 otherwise.

During pattern-matching, we determine for each subsequence u of the translated
event sequence the minimum distance dmin(u) between u and the entries in the
pattern table:

dmin(u) = min {d(u, p) ∀ patterns p} .

To detect an attack, at least one of the subsequences generated by the attack
must be classified as anomalous. In terms of the above measure, there is at least
one subsequence u for which

dmin(u) > 0.

It is assumed that the higher the dmin value, the more likely it is that the sub-
sequence was actually generated by an intrusion. In practice, the maximum dmin

value observed is used as the measure for an intrusion because it represents the
strongest anomalous signal. The signal of anomaly, SA, is defined as

SA = max {dmin(u) ∀ subsequences u} .

In the ideal case, an SA value that is greater than 0 can be considered a sign
of an intrusion. However, as experimental results show, a complete match can-
not always be achieved [10]. Therefore, a threshold is defined such that only
sequences whose SA value is above this threshold are considered suspicious.
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3 Variable-Length Patterns

Before building a table of fixed-length patterns, one has to decide which pattern
length to use. However, selecting the most appropriate pattern length is not
straightforward:

– Long patterns are expected to be more process-specific than short patterns.
The longer a pattern, the lower the probability that a pattern would match
part of an event sequence generated on behalf of an attack.

– It is desirable to have a small pattern table because it reduces the amount of
computation needed for the detection process. As experimental results show,
increasing the pattern length to a certain length also increases the size of
the corresponding pattern table [2].

Using variable-length patterns enables us to cope with these two apparently
contradictory constraints. To describe the normal behavior of a process, variable-
length patterns appear to be more naturally suitable than fixed-length patterns.
A careful look at the sequences of events that can be generated by a process
shows that there are many cases in which very long subsequences are repeated
frequently. For example, more than 50% of the process images we have obtained
for the ftpd process start with the same string. After aggregation, this string
contains 40 audit events and should be incorporated as a whole in the pattern
table. However, approaches based on fixed-length patterns use much shorter
pattern lengths and would therefore not detect such a long pattern.

Variable-length patterns are also motivated by the fact that, for example, the
ftp daemon answers user commands, and that each such command can probably
be represented by its own sequence of audit events.

Variable-length patterns are not as easy to generate as fixed-length patterns.
A technique based on building and pruning suffix trees [2] showed that variable-
length patterns are an interesting alternative to fixed-length patterns, but it also
showed some limitations of the chosen pattern-generation technique.

3.1 Pattern Extraction

We present a novel method to generate the table of variable-length patterns.
This method comprises two steps. In the first step, all maximal variable-length
patterns contained in the set of training sequences are determined. Because the
patterns can share common subsequences, not all patterns may be needed to
cover, i.e. fully match, the training sequences. Therefore, in the second step, a
reduction algorithm is applied to prune entries in the pattern table. The goal is
to obtain the minimum pattern set that still covers all training sequences.

Generating the Pattern Set The input to the pattern-extraction module (see
Fig. 1) are sequences of audit events that have been preprocessed as described
in Section 2.1. We define a variable-length pattern as a subsequence that has a
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minimum length of two and occurs at least twice, be it in the same or in different
sequences. Furthermore, we consider only maximal variable-length patterns. A
pattern p is maximal if there is no other pattern q that contains the pattern
p as a subsequence and has the same number of occurrences as pattern p. For
example, if there are two patterns DEA and EA, pattern EA is considered maximal
only if it occurs more often than pattern DEA.

There are several algorithms to determine variable-length patterns [1]. We
use the Teiresias algorithm [12], an algorithm developed initially to discover
rigid patterns in unaligned biological sequences. Teiresias has many interesting
properties. It is well suited to our problem for the following two main reasons:

– It finds the maximal variable-length patterns by avoiding the generation
of non-maximal intermediate patterns during the pattern-extraction pro-
cess [12].

– Its performance scales quasilinearly with the size of the output [12].

It follows that Teiresias very efficiently finds all the maximal variable-length
patterns in the set of training sequences.

Reducing the Pattern Set We want the pattern set to be as process-specific as
possible. This means that the pattern set should contain all the patterns needed
to cover the training sequences but not more. The set of maximal variable-
length patterns usually contains overlapping patterns, i.e. patterns that have
common subsequences. Let us have a look at the following sample set of training
sequences:

{ ABCDEAFDE, BCFDEABCD, BCEADEFDE }.
Extracting the maximal variable-length patterns results in the following pattern
table:

{ ABCD, DEA, FDE, BC, DE, EA }.
The question arises whether all patterns are needed to cover the training se-
quences. Let us decompose the training sequences such that the resulting sub-
sequences correspond to entries in the pattern table. A possible decomposition
of the training sequences is listed below. We use the symbol “–” to mark the
decomposition points:

{ ABCD-EA-FDE, BC-FDE-ABCD, BC-EA-DE-FDE }.
As we can see, of the six patterns in the pattern table only five are needed in
the above decomposition. The pattern DEA is not used. We conclude that the
pattern set determined by Teiresias can be reduced.

There are various ways to construct the reduced pattern set. The rationales
for the approach described in the remainder of this section are based on the
observation that there are patterns that have a clear semantical representation.
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A pattern may, for example, represent a subroutine that is invoked several times
or the statements that are executed in a loop. Such patterns can be regarded
as building blocks out of which the event sequences of any possible process
instantiation can be composed.

In our experiments, we observed that many training sequences have the same
beginning and end, i.e., the same initialization and termination routine is exe-
cuted for different process instantiations. As a first step, we can add the cor-
responding pattern to the reduced pattern set. Subsequences that match this
pattern are removed from the training sequences, and the reduction process con-
tinues with the pruned training sequences. This procedure is reiterated until no
training sequences are left, i.e., until all training sequences can be covered with
the patterns added to the reduced pattern set.

There is a single requirement that must be fulfilled by the reduced pattern
set:

– The training sequences must be covered by the patterns in the reduced pat-
tern set.

In addition, as explained at the beginning of Section 3, the following properties
are desirable:

– The reduced pattern set should contain long patterns.
– The number of patterns in the reduced pattern set should be small.

The two inputs for the reduction algorithm are the pattern table as produced
by the Teiresias algorithm and the set of training sequences. The algorithm itself
comprises four steps, which are executed repeatedly until all training sequences
have been processed. We outline here only the basic steps of the algorithm. A
detailed description can be found in Appendix A.2.

Step 1
The function bCover(p, s) returns the number of characters covered at the

beginning and at the end of a sequence s by a pattern p. bCover(p, s) considers
the fact that a pattern may match several times at the beginning or end of a
sequence, e.g.

bCover(AB, ABCDEABAB) = 6.

If S designates a set of sequences, bCover(p, S) is the sum of all events
matched at the beginning and end of all sequences by the pattern p. We call
the returned value the boundary coverage.

For each entry in the pattern table, we calculate its boundary coverage of
the set of training sequences. The pattern with the highest boundary coverage is
added to the reduced pattern set. This pattern is used further in Steps 2 and 3.

Step 2
All the subsequences at the beginning and end of the training sequences that

are matched by the pattern determined in Step 1 are removed. For example, if
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the pattern AB is selected in Step 1, the sequence ABABCDAB will be transformed
as follows:

ABABCDAB → CD.

Furthermore, we have to avoid training sequences being reduced to sequences
that are shorter than the minimal pattern length. By definition, there would
be no pattern to match such a short sequence. For example, if the minimal
pattern length is two and ABC is an entry in the pattern table, the following
transformation of the sequence ABCD is invalid:

ABCD → D.

because the remaining sequence D is shorter than the minimum pattern length.

Step 3
After removing the matching subsequences at the boundary of the training

sequences, we now also remove matching subsequences p that are not adjacent
to the boundary. We call this process nonboundary matching. Removing such
subsequences results in splitting the original sequence into two new sequences.
As in the case of boundary matching, it has to be ensured that the length of the
resulting sequences is equal to or greater than the minimum pattern length. If a
sequence has several subsequences that can be matched, the longest subsequence
is removed first. Nonboundary matching may again be applied to the resulting
sequences. For example, given the pattern AB and a maximal pattern length of
two, the following transformation can be applied to the sequence CDABABEFABGH:

CDABABEFABGH → { CD, EFABGH } → { CD, EF, GH }.

Step 4
No further transformation can be applied to sequences whose length is less

than two times the minimal pattern length. Any further transformation would
result in a new sequence that is less than the minimal pattern length, which
contradicts our requirements. As a result, any sequence that cannot be further
reduced will be added to the reduced pattern set. However, they are first moved
to the pattern table and treated the same way as the patterns determined by the
Teiresias algorithm. Note that, as a consequence, the reduced pattern set may
contain entries that were not determined by Teiresias.

If after execution of Step 4 no sequences remain in the training set, the
reduction algorithm terminates, otherwise execution continues at Step 1.

Figure 3 illustrates how the algorithm works for a sample training set of three
sequences. In this example, five steps are needed to derive the reduced pattern
table. For each step, we show the state of the training sequences, the entries
in the pattern table, their corresponding bCover values, and the state of the
reduced pattern table.
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Fig. 3. Reduction algorithm

To show the importance of the reduction algorithm, let us take a look at the
following numbers. The training sequences of the experiment that we are going
to describe in Section 4 contained a total of 167,187 patterns. Of this total,
554 patterns are maximal. These are the patterns that we generate using the
Teiresias algorithm. It becomes obvious that generating the maximal patterns
directly as Teiresias does offers a significant advantage over other approaches
that also generate the intermediate patterns. Of the 554 maximal variable-length
patterns, a pattern set of only 71 patterns can be constructed that covers all
the training sequences. This shows the usefulness of reducing the pattern sets
generated by Teiresias. A pattern-matching process that has to consider only 71
patterns will run faster than one that has to consider 554 entries. The statistics
for the variable-length patterns are summarized in Table 1.
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Table 1. Example of table sizes of variable-length patterns

Patterns 167,187

Maximal patterns 554

Covering patterns 71

3.2 Pattern Matching

As stated in the previous section, variable-length patterns can be seen as building
blocks out of which any valid event sequence can be constructed. This idea is also
reflected in the juxtaposed pattern-matching technique we apply for variable-
length patterns.

The sequence to be matched is processed starting from the beginning of the
sequence to its end. One out of three conditions holds at a given point of the
pattern-matching process.

1. Exactly one pattern matches at a given position. The corresponding events
are marked as matched and the pattern matching continues right after the
last event marked.

2. Several patterns match at a given position. To decide which of the matching
patterns to select, a look-ahead algorithm determines for a predefined value
of n whether a sequence of up to n patterns can be found that matches the
continuation of the sequence. The pattern whose continuation results in the
longest match is selected, the corresponding events are marked as matched,
and the pattern matching continues right after the last event marked.

3. No matching pattern can be found. The event at the current position of the
pattern-matching process is marked as unmatched and skipped. The pattern
matching continues right after the skipped event.

A detailed description of the pattern-matching algorithm can be found in
Appendix A.3.

3.3 Metric

For each sequence, the pattern-matching algorithm returns the g groups of con-
secutive uncovered events and the length li, i = 1 . . . g, of each of these groups.
It is assumed that the greater the length li, the more likely it is that an intrusion
is observed. Based on the length of the longest group of uncovered events, T , it
has to be decided whether an attack is observed. T is defined as follows:

T = max(li), i = 1 . . . g.

4 Results

We have set up a test environment [5] to evaluate the quality of Forrest et al.’s
intrusion-detection method and our novel method, which is based on variable-
length patterns. We report the results obtained for the ftpd process. We focus
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on this process because it is widely used and is known to contain many vulner-
abilities (either due to software flaws or configuration errors). Furthermore, it
provides a host of possibilities for user interaction and is therefore a challeng-
ing process from an intrusion-detection point of view. We have also successfully
applied our intrusion-detection approach to other network services, e.g. finger
and sendmail. For space reasons, only the results obtained for the ftp service are
presented in this paper.

To train the system, we use the functionality verification test suites (FVT)
running under AIX [3]. The test suite allows us to automatically exercise all ftp
subcommands and thus to learn the complete process behavior.

4.1 Problem Size

The FVT for the ftp process consists of 487 individual tests. Because many of
these tests do not differ in the subcommands invoked but only in the arguments
used, they result in identical sequences of audit events. When running the ftp
test suite, 68 unique sequences (after aggregation and reduction) were recorded
comprising a total of 23,302 audit events. Table 2 summarizes these numbers.

Table 2. Problem size of the ftp experiment

Tests 487

Training sequences 68

Events 23,302

For the comparison of the fixed- and variable-length approaches, we use two
tables of fixed-length patterns and one of variable-length patterns. The pattern
sizes of the fixed-length pattern tables are six and ten, respectively. Six was
selected because it is stated in [10] that the pattern size makes only little dif-
ference for the normalized signal of anomaly, i.e. SA/k, once we have a length
of at least six, and ten because this is the pattern size used in the experiments
reported in [10]. It is worth noting that, coincidentally, the mean pattern length
of the variable-length pattern table is ten. Table 3 lists the size of the respective
pattern tables. We see that the size of the variable-length pattern table is much
smaller than that of the fixed-length pattern tables.

4.2 Normal User Sessions

In our testbed [5], we simulated series of user sessions. The simulation resulted
in 65 unique sequences comprising a total of 26,025 audit events. We used these
sequences to evaluate the quality of the fixed-length and variable-length pattern-
matching techniques in combination with the respective pattern tables. As we
have used the FVT to learn the complete process behavior and the user sessions
contain no attacks, the intrusion-detection system should not generate an alarm.
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Table 3. Table sizes of fixed-length patterns

Pattern type (Mean) pattern size Table size

Fixed-length 6 396

Fixed-length 10 702

Variable-length 10 71

Table 4 shows the results obtained. The first column lists the number of
unique sequences recorded. The second column specifies a value n that is used
as a comparison value for columns three to five. Columns three and four give a
measure of how well the normal user sessions could be matched with the entries
of the respective fixed-length pattern tables, and column five does the same for
the variable-length pattern table.

To understand the content of columns three to five, we have to recall the
meaning of the two metrics SA and T . The metric SA is the signal of anomaly
defined in Section 2.2 and is used to differentiate between normal and abnor-
mal behavior when fixed-length patterns are used. The values of SA lie between
0 and k, where k is the pattern size. The higher the value of SA, the more
likely it is that an intrusion is observed. The metric T is the number of consec-
utive uncovered characters defined in Section 3.3 and is the metric used in our
intrusion-detection system that is based on variable-length patterns.

The entries in columns three to four list the number of sequences for which SA

is equal to the comparison value n of the same row. For example, the row with
n = 4 indicates that for a window size of six (ten), we have observed a maximum
of four uncovered characters in all subsequences of six (ten) characters. This has
been seen in five (eight) out of 65 sequences.

The last column lists the results obtained for the variable-length approach.
Here, the row with n = 4 indicates that there are two sequences out of 65 where
the maximum number of consecutive uncovered characters is 4.

Table 4. Experimental results for normal user sessions

Number of n Fixed Fixed Variable
sequences k = 6 k = 10

SA = n SA = n T = n

65 0 11 11 47
1 19 0 14
2 19 25 1
3 11 15 1
4 5 8 2
5 0 4 0
6 0 2 0

> 6 – 0 0
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In the ideal case, we would like to see SA = 0 and T = 0, i.e. full coverage
of all test sequences. However, Table 4 shows that with the two fixed-length
approaches only 17% of the sequences, i.e. 11 out of 65, can be fully matched.
With the variable-length pattern approach, 72% of the sequences, i.e. 47 out
of 65, can be covered. We see that variable-length patterns result in much a
better coverage of the test sequences than fixed-length patterns.

Table 4 also allows us to set thresholds to differentiate between normal and
abnormal behavior. Any value of SA or T that is above the threshold would be
considered a sign of an intrusion. If we do not want to issue false alarms, the
threshold for SA has to be set to four (six) in the case of fixed-length patterns.
In the case of variable-length patterns, the threshold of T has to be set to four.

4.3 Attacks

We have implemented seven attacks against the ftp service. Some of the attacks
exploit server misconfigurations, others take advantage of vulnerabilities in older
versions of the ftp daemon.

The put forward attack consists of putting a .forward file in the home direc-
tory of the ftp user, and then sending a mail to the ftp user. This vulnerability
results from a misconfiguration of the ftp service because this directory should
obviously not be world writable.

The site exec suite of attacks exploits a vulnerability that was enabled by
wrongly setting the PATH EXECPATH variable when compiling the ftpd program.
Precompiled binaries containing this vulnerability were shipped with an older
release of the Linux Slackware distribution. Two different attack scripts were
executed, ftpbug and copy. To make the two scripts difficult to detect, they were
given the names ftpd and ls (hence the code names of the attacks).

The tar exec type of attacks use the option of the GNU tar program to
specify a compression program in combination with the tar command. The attack
becomes possible because some older versions of the ftp daemon do not release
their root privileges quickly enough before forking other processes. To exploit
this vulnerability, we let the tar program invoke renamed copies of the ftpbug
and copy program as compression programs.

A detailed description of the attacks can be found in [5]. The results we
obtained are shown in Table 5.

We see that all three approaches can be used to detect the attacks. For the
two fixed-length pattern tables, SA is equal to the maximum value of six (ten)
for all attacks. All the values obtained are above the threshold we have defined
for SA. For the variable-length method, the values for T vary between 13 and
36. These values are significantly higher than the threshold we have set for T ,
namely four.

4.4 Discussion

The quality of an intrusion-detection method is given by its capability to dif-
ferentiate between normal and abnormal behavior. For the intrusion-detection
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Table 5. Experimental results for attacks

Attack Fixed Fixed Variable
description k = 6 k = 10

SA SA T

put forward 6 10 36
site copy 6 10 18
site exec copy ftpd 6 10 16
site exec copy ls 6 10 18
site exec ftpbug ftpd 6 10 16
tar exec ftpbug ftpd 6 10 13
tar exec ftpbug ls 6 10 14

methods we investigate, the differentiator is the threshold that has to be set
for the measures SA and T . In the case of fixed-length patterns, the threshold
for SA, i.e. four or six, is relatively high compared to the pattern length of six or
ten, and implies an increased risk to miss an attack. In the case of variable-length
patterns, we observe quite a difference between the threshold for T , i.e. four, and
the minimum value of T obtained for the attack sequences, namely 13. There-
fore, the risk of issuing a false alarm is quite low if variable-length patterns are
used.

We conclude that intrusion-detection methods based on variable-length pat-
terns can be more reliably used to differentiate between normal and abnormal
behavior. This is mainly because variable-length patterns better match normal
user sessions.

5 Conclusions

We have presented a host-based intrusion-detection system that can model the
normal process behavior based on the audit sequences created on behalf of the
process. The process model is a pattern table whose entries are subsequences of
the audit event sequences determined during a training phase.

Because the fixed-length pattern approach has certain limitations, including
the inability to represent long, meaningful substrings, it appears to be more
natural to use variable-length patterns to build the process model. We have
developed a novel technique to generate tables of variable-length patterns auto-
matically. To construct the patterns, the Teiresias algorithm, a method initially
developed for discovering rigid patterns in unaligned biological sequences, is used
in combination with a pattern-reduction algorithm.

We have shown that the variable-length pattern model has several advantages
over the fixed-length model. Fewer patterns are needed to describe the normal
process behavior, and the quality of the results achieved is significantly better
than that of the results obtained with fixed-length patterns. Our results also show
that behavior-based intrusion-detection systems can be built that do not suffer
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from one of the main problems observed in behavior-based intrusion detection,
namely generating (too) many false alarms.

Future work will concentrate on validating our approach for other network
services and on investigating techniques that would result in 100% coverage of
normal user sessions. Furthermore, as our technique to build variable-length
pattern tables has some similarities with techniques used for data compression,
we plan to investigate the potential of this technology for intrusion-detection
purposes.

A Algorithms

The pattern-reduction and pattern-matching algorithms have been briefly de-
scribed in Sections 3.1 and 3.2, respectively. Here, we describe them in more
detail.

A.1 Terminology and Notation

Consider a finite set of characters Σ = c1, c2, . . . , cn. The set Σ is called al-
phabet. To denote a string of n, n > 0, consecutive identical characters c ∈ Σ,
we write cn. c+ denotes a string of identical consecutive characters of arbitrary
length l, l > 0.
The length of a string s is written as |s|. We write c ∈ s if the character c is
contained in the string s.

Given is a set of strings S = {s1, s2, ..., sn} over the alphabet Σ. A substring p
that

– occurs at least twice in the set of strings S, and
– has a length |p| of two or more characters

is called a pattern.

pn denotes the pattern p repeated n, n > 0 times. p+ denotes the pattern p
repeated l, l > 0 times.

A pattern p is maximal if there is no pattern q for which holds that

– p is a substring of q with |p| < |q|, and
– the number of occurrences of the pattern q in S is equal to or larger than

the number of occurrences of the pattern p in S.

A character c ∈ s is said to be covered by the pattern p if c ∈ p and p is a
substring of s.

A string s is said to be covered by a set of patterns P if for each character c,
c ∈ s, there is a pattern p, p ∈ P , such that c is covered by p.
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A set of strings S is said to be covered by a set of patterns P if each string
s, s ∈ S, is covered by P . Additionally, P is said to cover S.

Given are a pattern p and a string s. Let us decompose the string s as follows:

s = pls′pr l, r >= 0, |s′| >= 0

It is assumed that the decomposition is maximal, i.e., there is no l′ and r′ for
which holds l′ + r′ > l + r.

The expression (l+r) · |p|, i.e. the sum l+r times the pattern length |p|, is called
boundary coverage of pattern p and string s. It is written as bCover(p, s).

The boundary coverage of a pattern p and a string set S = s1, s2, . . . , sn, written
as bCover(p, S), is defined as

bCover(p, S) =
n∑

i=1

bCover(p, si).

A.2 Pattern Reduction

Out of the set of patterns P consisting of all the maximal patterns found for
the string set S, a subset of patterns R,R ⊂ P, is selected that covers S. µ
denotes the minimal pattern length that was used to generate the set of maximal
variable-length patterns. The reduced pattern set R is constructed as follows:

1. If P = ∅, then add all s ∈ S to the reduced pattern set R and exit.
2. For each p ∈ P calculate bCover(p, S).
3. Select a pattern r ∈ P for which bCover(r, S) is maximal, i.e., there is no

other pattern p ∈ P for which holds:
– bCover(p, S) > bCover(r, S), or
– bCover(p, S) = bCover(r, S) ∧|p| > |r|.

4. Add r to the reduced pattern set R and remove it from P .
5. Remove all matching substrings adjacent to the beginning or end of a string,

i.e., remove strings of the form s = r+, and replace strings of the form
s = r+s′, |s′| > µ, or s = s′′r+, |s′′| > µ, with s′ or s′′, respectively.

6. Remove the matching substrings that are not adjacent to the beginning or
end of a string, i.e., as long as there is an s ∈ S, s = s′rs′′, |s′| ≥ µ, |s′′| ≥ µ,
replace s with the two strings s′ and s′′.

7. If there is an s ∈ S with length |s| < 2 ·µ, remove s from the set of strings S
and add it to the pattern set P .

8. If S �= ∅, go to Step 1, otherwise exit.
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A.3 Pattern Matching

At certain points of the pattern-matching process, there may be several patterns
that match the input stream. To decide which pattern to select, the algorithm
uses a look-ahead approach. A pattern is selected if δ, δ > 0, patterns can be
found that match the continuation of the string. We designate δ as look-ahead
parameter. An alarm is raised if the number of consecutive uncovered characters
exceeds a threshold τ .

The pattern matching is done as follows:

1. Set the look-ahead parameter to a value δ > 0, and set the threshold for the
number of consecutive uncovered characters to a value τ > 0.

2. Set the counter of consecutive uncovered characters, κ, to 0.
3. When there is a sufficient number of characters in the input stream I, find a

pattern p ∈ P that covers the beginning of the input stream I. If no pattern
can be found, go to Step 6.

4. Find δ > 0 patterns q1, q2, . . . , qδ, such that the string t = pq1q2...qd covers
the beginning of the stream. If there are ε patterns q1, q2, ..., qε, 0 < ε < δ,
that cover the entire input sequence, set t = pq1q2...qε.
(a) If t matches the entire input sequence, remove it and go to Step 2.
(b) If δ patterns can be found that cover the beginning of the input stream,

remove pattern p from the input stream, and go to Step 2.
5. Determine all pattern combinations that match the beginning of the input

stream. If there is a match, select the pattern combination that covers the
longest input sequence, remove it from the input stream, and go to Step 2.

6. Skip one character, and increase κ by 1.
7. If κ = τ + 1, raise an alarm.
8. Go to Step 2.
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