
Detecting Novel Scans Through
Pattern Anomaly Detection

Alfonso Valdes, SRI International
Valdes@sdl.sri.com

Abstract

We introduce a technique for detecting
anomalous patterns in a categorical feature (one
that takes values from a finite alphabet). It
differs from most anomaly detection methods
used to date in that it does not require attack-
free training data, and it improves upon previous
methods known to us in that it is aware when it is
adequately trained to generate meaningful
alerts, and it models data not as normal and
anomalous but as falling into one of a number of
modes discovered by competitive learning. We
apply the technique to port patterns in TCP
sessions (the alphabet being the port numbers)
and highlight interesting patterns detected in
simulated and real traffic.

We propose extensions where the learned pattern
library can be seeded and some patterns of
interest can be labeled, so that certain patterns
generate an alert no matter how frequently they
are observed, while others labeled benign do not
generate alerts even if rarely seen. Finally, we
outline a hybrid system approach to closely
integrate anomaly and misuse detection, arguing
that the historical dichotomy with which many
researchers approach these techniques is now
artificial.

Acknowledgments

The work presented in this paper was funded by
the Defense Advanced Research Projects Agency
(DARPA), under subcontract to BBNT Solutions
LLC, government contract number F30602-98-
C-0012. EMERALD is a trademark of SRI
International.

Introduction

Papers in intrusion detection frequently draw a
distinction between anomaly and misuse
detection. The usual discussion cites the
advantage of one or the other (generalization to
novel attacks for the former, specificity and
lower false alarms for the latter) and then
presents an application to a simulated or actual
dataset. To date, systems that have enjoyed

some success tend to be of the misuse detection
class, and almost all are signature based.
Anomaly detection systems have an inherent
limitation in that they detect the anomalous,
which may not be malicious. They thus have a
built-in false alarm mechanism, namely, at best
they will generate alerts equal to that fraction of
some empirical distribution function that a
security administrator considers worthy of
interest. Some anomaly detection systems
attempt to characterize all normal system
behavior and thereby reduce this fraction to zero.
Learning normal behavior imposes the need for
training on anomaly detection systems.

Cognizant of the limitations and historical record
of anomaly detection, we nonetheless feel such
systems have their place, although seldom if ever
as the only detection mechanism guarding a
traffic stream. We have developed a competitive
learning technique to detect anomalous patterns
in network data, and closely coupled this
anomaly detector with a probabilistic misuse
detection engine. Although at present we
examine anomalous patterns of port usage in
TCP sessions, the technique is more generally
applicable. Our method addresses three
historical problems with anomaly detection:

• Rather than assuming that traffic is bimodal
(normal or anomalous), our approach
models data as belonging to one of several
modes. The number of modes is not known
beforehand. Detections are based on the
rarity of the mode that matches an observed
sequence. We also propose an approach
where we may alert on malicious modes
even if they are not particularly rare.

• Previous anomaly detection systems have
required training on data known to be attack
free or in which attack sequences are
labeled. For live traffic, this is very difficult
to obtain. Our approach will detect attacks
that fall into particular modes that may be
rare or explicitly labeled as malicious.
Seeing attacks in the training data merely
reinforces the modes to which the attack
belongs.

• Given a detection threshold, the system is
aware of when it has seen enough sequences
to consider itself trained. There is no fixed
training interval as such. With TCP traffic,
we obtain useful detection within hours of a
clean start.

The remainder of this paper is organized as
follows. In the next section, we discuss related
work in anomaly-based intrusion detection, as
well as work in the fields of clustering, neural
networks/competitive learning, and data mining.
Although we are addressing anomaly-based
intrusion detection, the lineage of our approach
draws more from the other fields. We then
describe the particular instantiation of our
method to detection of anomalous port patterns
in TCP sessions. We provide results on
simulated and actual network data. In our
discussion of future work, we present the
concept of seeding and labeling the library of
observed modes, so that our detector will always
alert on known or learned malicious behavior
modes. We also introduce a Bayes framework to
integrate probabilistic misuse detection,
signature systems, and anomaly detection to
exploit the strengths of each. It is thus argued
that the dichotomy between anomaly and misuse
detection is unnecessarily limiting.

Related Work

IDES and NIDES [Jav91] introduced anomaly
detection to the field of intrusion detection, using
a statistical profile learning approach. The
features considered by NIDES were related to
user activity as observable in audit data, and
included continuous (such as CPU usage) and
categorical features (such as file usage). Usage
rate or intensity features derived from interevent
times were also used. Deviations of the short-
term profile about the learned long-term profile
were summarized in a chi-squared-like statistic,
for which the system learned an empirical
distribution rather than referring to standard
tables. To control state space explosion, the
system included exponential fading memory to
forget extremely rare observations.

The influential work of Forest [For96] used
ordered sequences, or n-grams, of commands or
system calls to distinguish user and program
activity. Warrender [War99] examined more
sophisticated models applied to the same
sequence data, such as hidden Markov models
(HMM), but did not show dramatic improvement
over the original work of Forest. Maxion
[Max02] has extensively studied the theoretical
efficacy of these approaches, considering such
factors as the underlying entropy in the data
sequences. Researchers at IBM-Zurich built on
the sequence analysis technique by adapting a
proprietary method for gene sequence analysis

[Wes00]. This method is not limited to fixed-
length sequences and can accommodate
sequences where a limited number of intervening
alphabet tokens are observed.

The SPADE and SPICE work [SD02] attempts
to detect novel portscans by observing
anomalous port pattern activity, as we do here.
Their approach is to maintain empirical
probabilities of source/target pairs, whereas we
are concerned principally with target ports,
which greatly reduces the size of state the system
must maintain. Moreover, as we shall see our
technique considers port patterns as well as
single ports, achieving a degree of correlation in
the SPICE sense.

One historical limitation of anomaly detection to
date is the assumption that the domain can be
classified into two modes. The very name
“anomaly detection” implies some means of
specifying or learning “normal” and its
complement as “anomalous” and therefore
worthy of alert. Forest’s terminology classifies
sequences into “self” and “non-self,” based on
the immune system metaphor, retaining the
notion of a bimodal dichotomy. On some level,
the library of n-grams can be considered a
polymodal knowledge base, and the
normal/anomalous dichotomy is imposed over
this, namely, that which is not in the library is
anomalous.

Related to this limitation is the need for training
data known to be attack-free or with the attacks
labeled. Eskin et al. [Es02] demonstrate
effective geometric-distance-based techniques
for anomaly detection that do not require labeled
data. This work shares with the present
development the notion of multimodality or
natural clusters in the data. Their methods differ
from our work in that it is still assumed that
intrusions are rare events and thus detectable as
outliers in a feature space, although their result
appears to permit alert triggering based on
cluster membership rather than cluster rarity, as
we propose below.

Recent work by Mahoney [Mah02] shares with
the present development the concept of
triggering not just on novelty but on rarity as
well. Mahoney [Mah02] does not ostensibly use
labeled data, but the approach relies heavily on
source IP as a discriminating feature, which is a
very effective discriminator in the data set they
considered. In Table 6 of [Ma02], for example,
it appears that source IP is responsible for at
least as many detections as all other features

combined. This data set is based on the Lincoln
data [Lip00]. While it is true that some source
IP addresses only interact with destinations
through various forms of attack, this effect is
over represented in the Lincoln data. In many
sets of real world data we have examined, source
IP is a far less reliable attack label.

Autoclass [Ch96] also uses an approach that
attempts to learn natural clusters in data when
the number of clusters and cluster membership
are unknown. It employs an iterative batch
training procedure similar to the
Expectation/Maximization (EM) technique of
Dempster [De77].

Our technique does not require a prior batch
training step since it trains on line and is self
aware of the point at which alerts can be
triggered a configurable anomaly threshold.

Our objective is to characterize clusters of
anomalous activity and while we alert primarily
on the rarity of the cluster, we are able to label a
cluster as potentially intrusive (even if it occurs
more frequently than the anomaly threshold) or
conversely label a rare cluster as not intrusive.

There have been two approaches to training
anomaly detection. In NIDES and n-gram
analysis, the system learned normal behavior by
observing a large and varied set of data known or
believed to be free of attacks. For real data,
guaranteeing completeness and the absence of
attacks is extremely difficult. The IBM Zurich
group trains its detector by collecting sequences
obtained when running the test suite of the
program to be monitored. While not proving
that this is theoretically complete, this is a
reasonable approach and likely to exercise rare
usage modes that may not be observed by live
traffic analysis over a short time interval.

The present work departs from these approaches
in assuming that usage falls into a number of
modes, which can be represented as patterns in a
pattern library. The number of modes is not
known beforehand, nor is labeled training data
required. The pattern library approach is
reminiscent of n-grams, although we consider
the presence or absence of symbols, or their
relative frequency, and not their sequence.
Alerts are generated not based on whether a
pattern is or is not in the library, but on how rare
it is. As such, there is no fixed training interval
required; the system recognizes when it has built
an adequate probability distribution over the

pattern library. Moreover, the training data need
not be labeled or attack free. Ideally, attacks will
form distinct nodes, and will generate alerts if
they are sufficiently rare. In future work, we will
seed the library with labeled patterns, enabling
alerts for malicious patterns even if they are not
particularly rare.

In supervised clustering, a set of observations is
labeled as belonging to a particular class, and a
classification algorithm selects some function of
the features that achieves separation of the
classes. This function can be a decision function
in the sense of discriminant analysis, or the
connective weights of a neural classifier. The
cluster label can be the putative user, or it may
represent a mode of usage (such as all the
activity attributable to a particular application
window).

We also consider unsupervised cluster
approaches such as k-means and adaptive
resonance theory (ART [Gro88]). The first
method “seeds” a set of cluster centroids and
then iteratively assigns observations to the
centroids, subject to some limits on the number
of centroids allowed and optimizing a goodness
of fit criteria for centroid membership.

Discriminant functions and k-means are classical
techniques that make strong assumptions about
the separability of the clusters in high-
dimensional space, whereas neural networks (to
include ART in this context) make fewer such
assumptions and empirically achieve more
arbitrary separation.

The clusters identified by unsupervised methods
may indicate natural usage modes that may or
may not be associated with particular users.

Pattern Recognition and Competitive
Learning

Pattern recognition and competitive learning
techniques [Tou74, Rum88] commonly represent
an observation as a binary feature vector, where
an entry is 0 or 1 depending on whether or not
the corresponding alphabet token was present in
the observation. A candidate observation is then
evaluated against a library of existing
observations, and is classified as belonging to the
library exemplar that best matches it. This
matching is done by similarity functions such as
the dot product, that is,

Sim W j ,Y()= W j • Y

= wi
j yi

i =1

n

∑
W j = Weight vector for library

class exemplar j.

This similarity function has the desirable
intuitive property that, for binary feature vectors,
it is a count of the number of features in which X
and Y agree. It is also amenable to
implementations that are computationally
efficient. Often, the similarity is divided by the
total number of alphabet tokens in either pattern,
so that it is a floating point number between 0
and 1 inclusive, with 1.0 corresponding to a
perfect match.

In the typical pattern recognition application,
there are a number of exemplars for which the
classification is known. Ideally, these form
clusters of patterns with very high within-cluster
similarity and low between-cluster similarity. A
training algorithm identifies important features
in a cluster, generating a library of class
prototype patterns. New patterns are then
presented, and the system classifies these into
one of the library classes according to what it has
learned in the training phase. The empirical
validation of the approach for an application of
interest is how well the method classifies new
patterns not used by the system in training,
perhaps moderated by non-uniform
misclassification costs.

Competitive learning further extends this in two
respects. A class prototype is continuously
maintained as a weight vector, and the existing
classes “compete” for each new pattern. In this
case, a slightly different similarity function, still
based on the dot product, is employed. In ART
terminology, we classify a pattern as belonging
to a particular class if it “resonates” adequately
with the stored exemplar of that class, which
then adaptively learns from the new observation.

Sim W j ,Y()= W j • Y

= wi
j yi

i =1

n

∑
W j = Weight vector for library

class exemplar j.

Note that while this is still based on the dot
product, it is now the dot product of a floating-
point weight vector with a binary vector. The
class that “wins” then adapts its prototype
slightly in the direction of the new pattern, where
“slightly” is typically based on an annealing
schedule that allows greater adaptation early in
the training. The actual nature of the adaptation
is to increase slightly the weights corresponding
to entries where the new pattern has a value 1
(denoted the “active input lines” in [Rum88]).
All weights are positive and sum to unity.

Finally, we may consider systems that
dynamically grow new library classes if none of
the ones currently defined are sufficiently similar
to the new pattern. Such systems can start with
an empty library, and work for data sets for
which the label is not known. Our system is of
this type, and seeks to discover the number of
clusters into which the data appears to be
organized. Again, there is an analogy to ART.
In ART, if the observed pattern does not
adequately resonate with any stored exemplars
(based on a stress function), it becomes a new
exemplar. This is a similar approach if the
underlying mathematics are somewhat different

Data Mining

Data mining approaches [Agr88] seek to
discover association rules that describe the
degree to which certain types of items tend to
occur in the same transaction. A common
example used in the data mining literature is that
of a customer purchase, or transaction, where the
items purchased in the particular transaction are
the features of interest. Although the language
and discovery algorithms are somewhat
different, there is a commonality in the
representation of data with the binary patterns
described above. We can consider a transaction
to be a binary pattern vector in the sense
previously described, and the items as binary
features (the entry in the feature vector
corresponding to a particular item is 1 if the item
is purchased in the transaction). The alphabet is
the universe of items available for inclusion in
the basket, and the basket itself corresponds to a
pattern. Data mining seeks association rules that
estimate the expectation of observing a particular
item in a transaction given the occurrence of a
particular itemset in the transaction. The
technique is also interested in discovering large
itemsets, typically by an off-line learning

procedure involving multiple passes through the
entire database of transactions

These techniques can be applied to other
domains, such as pattern classification. In this
case, we can use association rules where X is a
library pattern and the itemset in the consequent
of an association rule is a binary indicator of the
class to which the pattern belongs. For example,
Lee [Lee99] uses such an approach to build
computer intrusion detection models, where the
association rules match patterns to intrusions of
certain types.

The concept of itemset discovery is analogous to
competitive learning. We consider two market
baskets, with items selected from an “item
alphabet”. A common formula for the similarity
of two baskets counts the items in common (the
intersecting item set) and divides by the total
number of items in both baskets (the union).

Sim X,Y() =
N X ∩ Y()
N X ∪ Y()

X,Y are the itemsets

N .() = element count

This is merely a restatement of the dot-product
similarity function presented earlier for binary
patterns, here expressed in set notation.

Port Pattern Anomaly Detection

Our model assumes that there is a categorical
feature (a feature taking values from some
alphabet) observed an arbitrary number of times
in some suitably aggregated analysis unit of data
such as a session. In the context of TCP
sessions, we have chosen the ports invoked as
the feature of interest. The “market basket” or
“itemset” is a TCP session, defined as a
temporally contiguous burst of traffic from the
same source, as defined in [Va00], which
introduced a TCP Bayes network intrusion
detection sensor. We have enhanced this sensor
to include a port pattern anomaly detection.
Although port pattern anomalies are the initial
instantiation of this technique, it is more general
in its applicability. In particular, we believe the
technique is applicable to TCP flag combinations
and system call anomalies, and hope to explore
these applications in the future.

A pattern is a set of symbols taken from the
alphabet. It may be of arbitrary length. We
represent the pattern as the set of symbols

between brackets […], enumerating the symbols
observed or including a hit count as well. Under
the first approach, the pattern might be [C, F,
M], whereas under the second the representation
might be [C:100, F:1:, M: 99]. We do not at
present consider the sequential order of the
symbols, as is done in the work of Forest and
Wespi. Library patterns are stored as
probabilities, and newly observed patterns are
normalized to probabilities as well. This permits
the update procedure below to treat the new
pattern as an observation with an effective count
(for our purposes, the mixing weight) of 1.0.

When patterns are stored as probabilities, we
adapt the similarity function expressed above in
terms of intersections and unions as follows.
The intersection (numerator) term is the sum of
the minimum probabilities for those alphabet
tokens where the patterns overlap. The union
(denominator) term is the sum of the maximum
probability for those alphabet tokens seen in
either pattern (note that this can exceed unity).
This is illustrated in the following numerical
example.

X =
1

3

1

3
0 0 0

1

3






Y = 1
5

1
5

1
5

1
5

1
5

0





Patterns overlap in the first two entries.

Y is minimum probability.

⇒ Numerator = 25
X is maximal probability in the first, second,

 and sixth entries.

Y is maximal elsewhere.

⇒ Denominator = 33+ 3
5 = 8

5

Sim X,Y() =
2

5
8

5
=

1

4

The system maintains a library of patterns that
may be initially empty, or it may be seeded as
described under future work below. When we
observe a pattern, we evaluate its similarity with
respect to patterns in the library. If it matches
one or more stored patterns above a configurable
threshold, then the new pattern is considered to
belong to the class of the best matching

exemplar. Borrowing terminology from
competitive learning, we call the pattern
achieving the best match the winning pattern or
simply the winner.

Algorithm to pick winner:

Find K s.t.

Sim X, EK() ≥ Sim X, Ek()∀k

X = observed pattern

Ek = kth pattern exemplar in library

If Sim X, EK()≥ Tmatch , EK is the winner

Else insert X into the library of pattern

exemplars

Tmatch = Minimum match threshold

The winner is adaptively modified by mixing in
the new pattern. The degree of mixing depends
on the historical count of observations of the
library exemplar. This count is exponentially
decayed with a slow aging factor. Patterns that
are frequently seen are therefore less perturbed
by a new observation.

EK ←
1

nK +1
nKEK + X()

nK = Historical (possibly aged) count

of observances of EK

Whether the observation triggers an alert
depends on the normalized probability of the
winner. In fact, as in the NIDES system, the
anomaly score is the tail probability, that is, the
sum of probabilities of all patterns that are as
probable or less probable than the winner. If this
anomaly score is sufficiently close to zero, an
alert is generated.

Pr EK()= Historical probability of

pattern K

= nK

nk
k
∑

Tail _ Pr EK() = Historical tail probability of

pattern K

= Pr E j()
Pr Ek()≥Pr E j()

∑
If Tail _ Pr EK()≤ Talert, generate alert

Talert = alert threshold

The need to consider tail probability rather than
the raw pattern probability is motivated by the
following example. Suppose we have 1,000
patterns in the library, all of which are equally
probable with historical probability 0.001.
However, they all have a tail probability of 1.0.
In this pathological case of a maximum entropy
pattern library, there is no meaningful alert
threshold. Typically, we observe that a few of
the patterns account for most of the probability.
In our environment, for example, web and mail
account for 95% of the port patterns.

We track the empirical probability of adding new
patterns by the above algorithm. If it is fairly
common to see new patterns, the technique is of
limited utility.

An immediate concern is that the length of the
alphabet can lead to a state space explosion. For
example, considering TCP ports, the alphabet
contains over 1000 possible values. Since we do
not limit pattern length, it is apparent that the
number of unique patterns can be arbitrarily
large. The pattern anomaly approach can work
only if the actual number of observed patterns is
comparatively small.

The mechanisms for intelligent forgetting are
similar to the category dropping heuristics
introduced in our earlier NIDES work. We
invoke two forms of forgetting. First, if after an
update operation the normalized hit count (or
equivalently, category probability) of an entry in
the pattern drops below some threshold, that
entry is dropped from the pattern. Dropping
these entries does not significantly affect that
pattern’s ability to resonate with a new pattern,
since the entry dropped is by definition

extremely rare. For this mode of forgetting, we
require that patterns be represented with
associated hit counts. We also forget entire
patterns whose normalized probability is
extremely rare. Using these techniques, over
weeks of live traffic analysis, the pattern library
grows to about 80 unique patterns.

We can thus sum up the conditions under which
the technique can be reasonably successful.

• The learned pattern library is modal rather
than high entropy (for the number of
patterns learned).

• After an initial transient, learning of new
patterns is infrequent.

• The total number of patterns is small relative
to the possible number of patterns given the
cardinality of the alphabet.

We observe that these conditions hold
satisfactorily with TCP port patterns, if we
eliminate patterns not likely to be interesting and
employ intelligent forgetting. We have taken
steps to avoid evaluating patterns not likely to be
interesting, such as those observed from FTP
mget sessions or those otherwise dynamically
assigned by the system.

Because of the nature of the pattern similarity
function, there is generalization potential to
detect variants of malicious patterns.

Results

We have implemented the above procedure
examining the list of ports hit in TCP sessions
(an observation is the list of ports "hit" in a
session, and the "hit count" for each), as well as
for a synthetic measure with six categories
describing the TCP session open and close result.
This runs concurrently with our eBayes-TCP
session monitor that we have previously
described [Va00]. It is a misuse detector with a
knowledge base encoded as hypotheses and
conditional probability relations rather than
signatures. The integrated system alerts if either
the TCP session has sufficient posterior
probability of membership in a misuse class or if
the port pattern is anomalous. If both conditions
are true, the misuse alert overrides the anomaly
alert.

We have examined the Lincoln Laboratories
1999 Intrusion Detection Evaluation Data
[Lip00]. In the fourth and most difficult week of
that data, Bayes-TCP finds 13 attacks, including

several stealth attacks. In addition, the anomaly
procedure identifies 11 unusual port patterns at
the 0.5% threshold. All correspond to attacks.
Again, we remind the reader that the anomaly
detection does not consider "labeled" data and
does all its learning on the fly.

We run this system against our laboratory’s
internet gateway. For real-world data, ground
truth is not known, but it is the opinion of our
system administration staff that many of the port
anomaly alerts are genuine attacks, and many
more are at least worthy of attention. We also
see alerts for activity that is rare but probably
benign in our environment, such as https and ssh.
The following table lists some discovered
anomalous port patterns. Many are singletons (a
single rare port) but there are some interesting
combinations of ports for which we have no
prior signature. In the coupled Bayes/anomaly
system, the Bayes alert overrides the anomaly
alert, so that some of the patterns that would
generate an anomaly alert based on pattern rarity
cause a Bayes alert instead. For these patterns,
the comment field contains the phrase
“portsweep override”. We have excluded
obvious vertical port sweeps that fall into this
category as well.

Discovered Rare
Pattern

Comment

[119] Happy99 Trojan

[139], [135, 139] Netbios

[22], [443], [53],
[80, 443]

Probably benign but
rare

[27374] Sub7

[51506] ?

[524] NCP

[6346] gnutella

[636] ldaps

[80, 39, 445] Port sweep override,
4 invalid IP, web,
nebios, Win2k
server message
block

[9, 12345, 27374,
139]

Portsweep override,
Netbus, Sub7,
Netbios

The Lincoln data is characterized by about 30
port patterns. The live data falls into 80 port
patterns over a period exceeding a month.

Independently, a high-traffic set of real world
data resulted in 63 patterns over a period slightly
over a day, representing more than 130,000 TCP
sessions. Of these, the patterns [80] and [25]
combined for about 92% of the total sessions.
This validates our assumption that, at least in this
domain, what is observed only sparsely
populates what is possible, and therefore this
procedure is applicable.

Future Work

Alert Triggering and Patern Seeding

As presently implemented, our port pattern
anomaly component is a pure anomaly detector,
which means it generates alerts on activity it
considers extremely rare. It has been pointed out
[McH01] that anomalous activity is not
necessarily intrusive, and intrusions are not
necessarily anomalous. In particular, sufficiently
rare but non-malicious activity will trigger alerts.
As we mentioned above, https and ssh fall into
the anomalous but probably benign category in
our site.

Moreover, patterns that are likely to be malicious
but are regularly observed (e.g., as a result of a
widely available scripted attack) may not be
sufficiently rare to trigger alarms.

Other patterns may require a policy-based
response. For example, we observe that our
system discovered gnutella, initially as an
anomalous port. We may conjecture that, with
increased use of this service, the port may be
observed with enough frequency that it does not
trigger an anomaly alert. The administrator may
choose to include this port in the seeded pattern
library with an alert/no alert label depending on
policy.

Pattern library exemplars are instantiated as
objects which contain, among other things, a
trigger tag. This tag assumes the values
ALERT_IF_RARE, ALERT_ALWAYS, and
ALERT_NEVER. Pure anomaly detection is
equivalent to the tag assuming the value
ALERT_IF_RARE, and this is the default for
newly allocated cluster objects.

We will enhance our system in the near term to
incorporate a seeded pattern library. In such a
library, the patterns corresponding to https and
ssh would have the tag set to ALERT_NEVER.
This prevents detection of attacks on these ports
as anomalies, but does not preclude detections

from a protocol-specific IDS. Conversely, ports
corresponding to gnutella may be represented as
objects in which the tag is set to
ALERT_ALWAYS.

The security administrator would seed new
patterns and change the alert/ trigger
dynamically in response to new observations or
alert advisories.

Hybrid Systems

Papers in intrusion detection frequently draw a
dichotomy between signature systems and
anomaly detection. The Bayes TCP system of
[Va00] introduces a probabilistic model-based
system, where models of normal and malicious
use are represented as conditional probability
relations rather than very specific signatures.
The port pattern anomaly system presented here
is presently integrated as a component of Bayes-
TCP.

A Bayes framework can easily incorporate a
Bayes subsystem (a Bayes subtree is itself a
Bayes tree). Pattern anomalies can be integrated
either as hypotheses in themselves (the observed
pattern is unusual, or malicious if it correlates
with a seeded and labeled pattern). Alternately,
an anomaly subsystem can condition prior
probabilities elsewhere in the Bayes system (for
example, the rarity of the pattern makes the
system more suspicious by increasing the prior
probability of certain malicious usage modes).

A Bayes-like framework can in fact be used to
integrate rule based systems as well. Rules can
be implemented as nodes that establish or refute
hypotheses about a sequence of traffic. This can
be done with certainty or with perturbations to
express uncertainty in the underlying
observation. As a practical observation, such
perturbations prevent computational pathologies
that arise as the result of hard contradictions,
although if these arise obviously the system’s
rule base should be examined. The appendix
outlines a mathematical approach to implement
rule-based subsystems into an overall Bayes
framework.

A Bayes-like framework can thus provide a
hybrid system approach to tightly integrate
Bayes, rule-based, and anomaly systems. As
such, we believe the dichotomy between rule-
based and anomaly systems is artificial

Summary
We have presented a technique to discover
anomalous patterns in certain classes of
categorical data. Rather than formulating the
problem in a bimodal framework (learn normal
and identify anomalous as that which is not
normal) our approach atempts to discover
underlying clusters of patterns. It is hoped that
these clusters of patterns correspond to
behavioral modes in the data.

Our technique adapts competitive learning and
data mining approaches to discover these modes
dynamically. This eliminates the need for
attack-free or labeled training data.

The system is aware of the point at which it can
declare a pattern anomalous at some
configurable threshold. It does not require the
user to guess at a sufficiently long (in time)
training interval. In realistic traffic, the system
trains to a useful degree in a matter of hours at
most.

At present, the system generates anomalies for
observed modes that are extremely unusual. We
have outlined a procedure where the library of
exemplar modes can be seeded, and particular
modes can be labeled as to whether or not they
warrant an alert. In this way, an attacker cannot
train the system to accept frequently seen
malicious behavior as normal. Such behavior
instead reinforces a known malicious mode.

At present, the system is integrated into the
EMERALD Bayes TCP sensor. We are
exploring methods whereby a Bayes-like
framework can be used as the basis of a hybrid
system incorporating Bayes, anomaly, and
signature detection techniques.

References

[Agr88] Agrawal, R., Imielinski, T., and Swami,
A. “Mining Association Rules Between Sets of
Items in Large Databases,” Proceedings of the
1993 ACM SIGMOD Conference.

[Ch96] Cheeseman, P. “Bayesian Classification
(Autoclass): Theory and Results”, in Fayyad, U.,
Piatesky-Shapiro, G., and Uthurusamy, R., eds.,
“Advances in Knowledge Discovery and Data
Mining”. AAAI Press/MIT Press, 1996.

[De77] Dempster, A P., Laird, N. M., and Rubin,
D. B. “Maximum Likelihood from Incomplete
Data Sets by the EM Algorithm”, Journal of the
Royal Statistical Society 39(1): pp. 1-38, 1977.

[For96] Forest, S., Hofmeyr, S., Somayaji, A.,
and Longstaff, T. “A Sense of Self for Unix
Processes,” proceedings of the IEEE Symposium
on Security and Privacy, Berkeley, CA, May
1996.

[Es02] Eskin, E., Arnold, A., Portnoy, L., and
Stolfo, S. “A Geometric Framework for
Unsupervised Anomaly Detection: Detecting
Intrusions in Unlabeled Data”,
http://www.cs.columbia.edu/~eeskin/

[Gro88] Grossberg, S. (ed.) “Neural Networks
and Natural Intelligence,” MIT Press, 1988.

[Jav91] Javitz, H. and Valdes, A. “The SRI IDES
Statistical Anomaly Detector,” Proceedings of
the IEEE Symposium in Security and Privacy,
Oakland, CA, May 1991.

[Lee99] Lee, W., Stolfo, S., and Mok, K. “A
Data Mining Framework for Building Intrusion
Detection Models,” 1999 IEEE Symposium on
Security and Privacy.

[Lip00] Lippmann, Richard, et al. “Evaluating
Intrusion Detection Systems: The 1998 DARPA
Off-Line Intrusion Detection Evaluation,”
Proceedings of DARPA Information
Survivability Conference and Exposition,
DISCEX’00, Jan 25-27, Hilton Head, SC, 2000,
http://www.ll.mit.edu/IST/ideval/index.html

[Max02] Maxion, R. and Tan, K. “Why 6?
Defining the Operational Limits of STIDE, and
Anomaly-Based Intrusion Detector,”
Proceedings of the 2002 IEEE Symposium on
Security and Privacy, Berkeley, CA, May 2002.

[McH01] McHugh, John, discussion at RAID
2001, Davis, CA, October 2001.

[Rum88] Rummelhart, D. and Zipser, D.
“Feature Discovery by Competitive Learning,”
in Rummelhart, D. and McLelland, J., eds.,
“Parallel Distributed Processing,” MIT Press,
1988

[SD02] Silicon Defense. Statistical Portscan
Intrusion Correlation Engine/Statistical Port
Anomaly Detector.
http://www.silicondefense.com/software/spice/in
dex.htm

 [Tou74] Tou, J. T., and Gonzalez, R. C. “Pattern
Recognition Principles,” Addison-Wesley, 1974.

[Va00] Valdes, A. and Skinner, K. “Adaptive,
Model-based Monitoring for Cyber Attack
Detection,” proceedings of “Recent Advances in
Intrusion Detection (RAID 2000),” Toulouse,
France, October 2000.

[War99] Warrender, C., Forest, S., and
Pearlmutter, B. “Detecting Intrusions Using
System Calls: Alternative Data Models,”
proceedings of the IEEE Symposium on Security
and Privacy, Berkeley, CA, May 1999.

[Wes00] Wespi, A., Dacier, M., and Debar, H.
“Intrusion Detection Using Variable-Length
Audit Trail Patterns,” Proceedings of “Recent
Advances in Intrusion Detection (RAID 2000),”
Toulouse, France, October 2000.

Appendix: Special Nodes in

Hybrid Systems

Although in general Bayes networks deal in
conditional probability relationships that are
learned or approximated from data, it is possible
to include in a system certain nodes that establish
or refute one or more hypotheses. These are
especially useful for classes of evidence that are
rarely observed (so that learning conditional
probabilities from data will not be reliable) but
for which judgment is appropriate. For these
nodes, learning should be disabled.

The nodes in question have two states (yes or no,
depending on whether the corresponding
evidence is observed or fact is established). We
will call such nodes establishing or refuting
nodes, since they either establish or refute a
hypothesis, respectively. The parent node of
establishing or refuting nodes can have a number
of hypotheses. The framework is presented in a
way that incorporates either requirement, since
to establish a hypothesis (or subset of
hypotheses) is to refute all others. The goal is to
achieve the desired establishment or refutation if
the evidence is observed (that is, if the node in
question is yes) but change belief minimally
otherwise. We shall show that nodes of this type
are an effective way of incorporating rule-based
subsystems into a hybrid system that performs
probabilistic inference as well.

Refuted hypotheses are zeroed out or severely
downgraded if the evidence is observed (or
equivalently, if an appropriate rule fires).
Remaining hypotheses increase in posterior
belief in proportion to their belief before the
observation of the evidence. For example,
suppose that hypotheses A, B, and C have beliefs
0.25, 0.50, and 0.25, and evidence is observed
that refutes A. Before observing the evidence, B
has twice the belief of C. After observation, we
would like the belief of A to be near 0, and the
belief of B to be approximately twice that of C.
In other words, we would like the new beliefs to
be near 0.0, 0.67, and 0.33.

A Bayes net made up entirely of nodes of these
types can accomplish much of the functionality
of a rule-based system. The antecedent of a rule
is analogous to an establishing node, and
observing “yes” is equivalent to asserting the
antecedent. The consequent is the parent node,
or more specifically the set of hypotheses that

result from the antecedent. With a multilevel
Bayes structure, these nodes may represent
directly observable evidence or may themselves
be parent nodes, so that their assertion is not the
result of direct observation but of inference.

Since these nodes are “handcrafted,” the
developer is cautioned that it is easy to build a
system with such nodes that may cause a
contradiction, so these nodes must be employed
judiciously.

In the following, we assume that α and ε are
both small, and ε is small relative to α .
Setting ε to 0 causes nodes of this type to make
“hard” calls. This can cause numerical problems
if, for example, two nodes conflict. The
conditional probability table (CPT) for an
establishing node is given below. Columns
correspond to states of the node in question (yes
or no, with yes corresponding to the first
column), while rows correspond to hypotheses at
the parent node.

CPT =

H1

M

Hi

M

Hn

ε 1− ε
M M

α 1−α
M M

ε 1− ε



















Here, hypotheses indexed by i are established
by the node, and their likelihood is increased by

the node according to the ratio α
ε . If the “no”

state is observed, the likelihood is slightly
diminished for these hypotheses by the ratio
1−α

1− ε , which is near unity by

construction.

Numerical Example

We now give a numerical example of a node that
establishes hypotheses B and C (or equivalently,
refutes A). We have chosen α = 0.05 and
ε = 0.01.

CPT =
A

B

C

0.01 0.99

0.05 0.95

0.05 0.95













Let us suppose that the belief vector before
considering this node is given by
Bel A B C[]= 0.25 0.50 0.25[]

We would like the node to refute (significantly
downweight) A while leaving B twice as likely
as C.

The node computation can be summarized as
follows. First, we form the matrix product of the
CPT with the likelihood vector corresponding to
the observed evidence. If we observe “yes,” this
vector is given by

λ =
1

0

 

 

Since all the likelihood is in one state, this
amounts to choosing a column from the CPT.
More generally, the likelihood can be fractional
corresponding to the observation of “yes” or
“no” with some uncertainty. In this case, rather
than choosing a column from the CPT, we
instead obtain a single column that is a weighted
average of the original columns. In either case,
we now form the elementwise product of this
column with the prior belief and normalize to
unit sum. In our case, we obtain

Bel = β 0.25 0.50 0.25[]⊗
0.01

0.05

0.05













= β 0.0025 0.025 0.0125[]
= 0.0625 0.6250 0.3125[]
β = Normalizing facor, in this case

0.0025+ 0.025+ 0.0125

We have achieved the desired result of
downweighting A and maintaining B twice as
likely as C. By choosing α and ε
appropriately, we can get as close as we wish to
the limiting values

Bel = 0 2
3

1
3[]

Now, suppose the node state is “no”. We then
choose the second column of the CPT.
Proceeding as above, it is straightforward to
show that the posterior belief becomes
Bel = 0.2578 0.4948 0.2474[]

As desired, this represents a minimal change
from the prior belief. By increasing α , the node
downgrades hypotheses accordingly when the
node state is “no”; by setting α to unity, the
node can refute these hypotheses.

