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Abstract 

We introduce a technique for detecting 
anomalous patterns in a categorical feature (one 
that takes values from a finite alphabet).  It 
differs from most anomaly detection methods 
used to date in that it does not require attack-
free training data, and it improves upon previous 
methods known to us in that it is aware when it is 
adequately trained to generate meaningful 
alerts, and it models data not as normal and 
anomalous but as falling into one of a number of 
modes discovered by competitive learning.  We 
apply the technique to port patterns in TCP 
sessions (the alphabet being the port numbers) 
and highlight interesting patterns detected in 
simulated and real traffic. 

We propose extensions where the learned pattern 
library can be seeded and some patterns of 
interest can be labeled, so that certain patterns 
generate an alert no matter how frequently they 
are observed, while others labeled benign do not 
generate alerts even if rarely seen.  Finally, we 
outline a hybrid system approach to closely 
integrate anomaly and misuse detection, arguing 
that the historical dichotomy with which many 
researchers approach these techniques is now 
artificial. 
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Introduction 

Papers in intrusion detection frequently draw a 
distinction between anomaly and misuse 
detection.  The usual discussion cites the 
advantage of one or the other (generalization to 
novel attacks for the former, specificity and 
lower false alarms for the latter) and then 
presents an application to a simulated or actual 
dataset.  To date, systems that have enjoyed 

some success tend to be of the misuse detection 
class, and almost all are signature based.  
Anomaly detection systems have an inherent 
limitation in that they detect the anomalous, 
which may not be malicious.  They thus have a 
built-in false alarm mechanism, namely, at best 
they will generate alerts equal to that fraction of 
some empirical distribution function that a 
security administrator considers worthy of 
interest.  Some anomaly detection systems 
attempt to characterize all normal system 
behavior and thereby reduce this fraction to zero.  
Learning normal behavior imposes the need for 
training on anomaly detection systems. 

Cognizant of the limitations and historical record 
of anomaly detection, we nonetheless feel such 
systems have their place, although seldom if ever 
as the only detection mechanism guarding a 
traffic stream.  We have developed a competitive 
learning technique to detect anomalous patterns 
in network data, and closely coupled this 
anomaly detector with a probabilistic misuse 
detection engine.  Although at present we 
examine anomalous patterns of port usage in 
TCP sessions, the technique is more generally 
applicable.  Our method addresses three 
historical problems with anomaly detection: 

• Rather than assuming that traffic is bimodal 
(normal or anomalous), our approach 
models data as belonging to one of several 
modes.  The number of modes is not known 
beforehand.  Detections are based on the 
rarity of the mode that matches an observed 
sequence.  We also propose an approach 
where we may alert on malicious modes 
even if they are not particularly rare. 

• Previous anomaly detection systems have 
required training on data known to be attack 
free or in which attack sequences are 
labeled.  For live traffic, this is very difficult 
to obtain.  Our approach will detect attacks 
that fall into particular modes that may be 
rare or explicitly labeled as malicious.  
Seeing attacks in the training data merely 
reinforces the modes to which the attack 
belongs. 

• Given a detection threshold, the system is 
aware of when it has seen enough sequences 
to consider itself trained.  There is no fixed 
training interval as such.  With TCP traffic, 
we obtain useful detection within hours of a 
clean start. 



The remainder of this paper is organized as 
follows.  In the next section, we discuss related 
work in anomaly-based intrusion detection, as 
well as work in the fields of clustering, neural 
networks/competitive learning, and data mining.  
Although we are addressing anomaly-based 
intrusion detection, the lineage of our approach 
draws more from the other fields.  We then 
describe the particular instantiation of our 
method to detection of anomalous port patterns 
in TCP sessions.  We provide results on 
simulated and actual network data.  In our 
discussion of future work, we present the 
concept of seeding and labeling the library of 
observed modes, so that our detector will always 
alert on known or learned malicious behavior 
modes.  We also introduce a Bayes framework to 
integrate probabilistic misuse detection, 
signature systems, and anomaly detection to 
exploit the strengths of each.  It is thus argued 
that the dichotomy between anomaly and misuse 
detection is unnecessarily limiting. 

Related Work 

IDES and NIDES [Jav91] introduced anomaly 
detection to the field of intrusion detection, using 
a statistical profile learning approach.  The 
features considered by NIDES were related to 
user activity as observable in audit data, and 
included continuous (such as CPU usage) and 
categorical features (such as file usage).  Usage 
rate or intensity features derived from interevent 
times were also used.  Deviations of the short-
term profile about the learned long-term profile 
were summarized in a chi-squared-like statistic, 
for which the system learned an empirical 
distribution rather than referring to standard 
tables.  To control state space explosion, the 
system included exponential fading memory to 
forget extremely rare observations. 

The influential work of Forest [For96] used 
ordered sequences, or n-grams, of commands or 
system calls to distinguish user and program 
activity.  Warrender [War99] examined more 
sophisticated models applied to the same 
sequence data, such as hidden Markov models 
(HMM), but did not show dramatic improvement 
over the original work of Forest. Maxion 
[Max02] has extensively studied the theoretical 
efficacy of these approaches, considering such 
factors as the underlying entropy in the data 
sequences. Researchers at IBM-Zurich built on 
the sequence analysis technique by adapting a 
proprietary method for gene sequence analysis 

[Wes00].  This method is not limited to fixed-
length sequences and can accommodate 
sequences where a limited number of intervening 
alphabet tokens are observed. 

The SPADE and SPICE work [SD02] attempts 
to detect novel portscans by observing 
anomalous port pattern activity, as we do here.  
Their approach is to maintain empirical 
probabilities of source/target pairs, whereas we 
are concerned principally with target ports, 
which greatly reduces the size of state the system 
must maintain.  Moreover, as we shall see our 
technique considers port patterns as well as 
single ports, achieving a degree of correlation in 
the SPICE sense. 

One historical limitation of anomaly detection to 
date is the assumption that the domain can be 
classified into two modes.  The very name 
“anomaly detection” implies some means of 
specifying or learning “normal” and its 
complement as “anomalous” and therefore 
worthy of alert.  Forest’s terminology classifies 
sequences into “self” and “non-self,” based on 
the immune system metaphor, retaining the 
notion of a bimodal dichotomy.  On some level, 
the library of n-grams can be considered a 
polymodal knowledge base, and the 
normal/anomalous dichotomy is imposed over 
this, namely, that which is not in the library is 
anomalous. 

Related to this limitation is the need for training 
data known to be attack-free or with the attacks 
labeled.  Eskin et al. [Es02] demonstrate 
effective geometric-distance-based techniques 
for anomaly detection that do not require labeled 
data.  This work shares with the present 
development the notion of multimodality or 
natural clusters in the data.  Their methods differ 
from our work in that it is still assumed that 
intrusions are rare events and thus detectable as 
outliers in a feature space, although their result 
appears to permit alert triggering based on 
cluster membership rather than cluster rarity, as 
we propose below. 

Recent work by Mahoney [Mah02] shares with 
the present development the concept of 
triggering not just on novelty but on rarity as 
well. Mahoney [Mah02] does not ostensibly use 
labeled data, but the approach relies heavily on 
source IP as a discriminating feature, which is a 
very effective discriminator in the data set they 
considered.  In Table 6 of [Ma02], for example, 
it appears that source IP is responsible for at 
least as many detections as all other features 



combined. This data set is based on the Lincoln 
data [Lip00].  While it is true that some source 
IP addresses only interact with destinations 
through various forms of attack, this effect is 
over represented in the Lincoln data.  In many 
sets of real world data we have examined, source 
IP is a far less reliable attack label. 

Autoclass [Ch96] also uses an approach that 
attempts to learn natural clusters in data when 
the number of clusters and cluster membership 
are unknown.  It employs an iterative batch 
training procedure similar to the 
Expectation/Maximization (EM) technique of 
Dempster [De77]. 

Our technique does not require a prior batch 
training step since it trains on line and is self 
aware of the point at which alerts can be 
triggered a configurable anomaly threshold. 

Our objective is to characterize clusters of 
anomalous activity and while we alert primarily 
on the rarity of the cluster, we are able to label a 
cluster as potentially intrusive (even if it occurs 
more frequently than the anomaly threshold) or 
conversely label a rare cluster as not intrusive.  

 

There have been two approaches to training 
anomaly detection.  In NIDES and n-gram 
analysis, the system learned normal behavior by 
observing a large and varied set of data known or 
believed to be free of attacks.  For real data, 
guaranteeing completeness and the absence of 
attacks is extremely difficult.  The IBM Zurich 
group trains its detector by collecting sequences 
obtained when running the test suite of the 
program to be monitored.  While not proving 
that this is theoretically complete, this is a 
reasonable approach and likely to exercise rare 
usage modes that may not be observed by live 
traffic analysis over a short time interval. 

The present work departs from these approaches 
in assuming that usage falls into a number of 
modes, which can be represented as patterns in a 
pattern library.  The number of modes is not 
known beforehand, nor is labeled training data 
required.  The pattern library approach is 
reminiscent of n-grams, although we consider 
the presence or absence of symbols, or their 
relative frequency, and not their sequence.  
Alerts are generated not based on whether a 
pattern is or is not in the library, but on how rare 
it is.  As such, there is no fixed training interval 
required; the system recognizes when it has built 
an adequate probability distribution over the 

pattern library.  Moreover, the training data need 
not be labeled or attack free.  Ideally, attacks will 
form distinct nodes, and will generate alerts if 
they are sufficiently rare.  In future work, we will 
seed the library with labeled patterns, enabling 
alerts for malicious patterns even if they are not 
particularly rare. 

In supervised clustering, a set of observations is 
labeled as belonging to a particular class, and a 
classification algorithm selects some function of 
the features that achieves separation of the 
classes.  This function can be a decision function 
in the sense of discriminant analysis, or the 
connective weights of a neural classifier.  The 
cluster label can be the putative user, or it may 
represent a mode of usage (such as all the 
activity attributable to a particular application 
window).    

We also consider unsupervised cluster 
approaches such as k-means and adaptive 
resonance theory (ART [Gro88]).  The first 
method “seeds” a set of cluster centroids and 
then iteratively assigns observations to the 
centroids, subject to some limits on the number 
of centroids allowed and optimizing a goodness 
of fit criteria for centroid membership. 

Discriminant functions and k-means are classical 
techniques that make strong assumptions about 
the separability of the clusters in high-
dimensional space, whereas neural networks (to 
include ART in this context) make fewer such 
assumptions and empirically achieve more 
arbitrary separation.   

The clusters identified by unsupervised methods 
may indicate natural usage modes that may or 
may not be associated with particular users. 

Pattern Recognition and Competitive 
Learning 

Pattern recognition and competitive learning 
techniques [Tou74, Rum88] commonly represent 
an observation as a binary feature vector, where 
an entry is 0 or 1 depending on whether or not 
the corresponding alphabet token was present in 
the observation.  A candidate observation is then 
evaluated against a library of existing 
observations, and is classified as belonging to the 
library exemplar that best matches it.  This 
matching is done by similarity functions such as 
the dot product, that is, 



Sim W j ,Y( )= W j • Y

= wi
j yi

i =1

n

∑
W j = Weight vector for library 

class exemplar j.

 

This similarity function has the desirable 
intuitive property that, for binary feature vectors, 
it is a count of the number of features in which X 
and Y agree.  It is also amenable to 
implementations that are computationally 
efficient.  Often, the similarity is divided by the 
total number of alphabet tokens in either pattern, 
so that it is a floating point number between 0 
and 1 inclusive, with 1.0 corresponding to a 
perfect match. 

In the typical pattern recognition application, 
there are a number of exemplars for which the 
classification is known.  Ideally, these form 
clusters of patterns with very high within-cluster 
similarity and low between-cluster similarity.  A 
training algorithm identifies important features 
in a cluster, generating a library of class 
prototype patterns.  New patterns are then 
presented, and the system classifies these into 
one of the library classes according to what it has 
learned in the training phase.  The empirical 
validation of the approach for an application of 
interest is how well the method classifies new 
patterns not used by the system in training, 
perhaps moderated by non-uniform 
misclassification costs. 

Competitive learning further extends this in two 
respects.  A class prototype is continuously 
maintained as a weight vector, and the existing 
classes “compete” for each new pattern.  In this 
case, a slightly different similarity function, still 
based on the dot product, is employed.  In ART 
terminology, we classify a pattern as belonging 
to a particular class if it “resonates” adequately 
with the stored exemplar of that class, which 
then adaptively learns from the new observation. 

Sim W j ,Y( )= W j • Y

= wi
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n

∑
W j = Weight vector for library 

class exemplar j.

 

Note that while this is still based on the dot 
product, it is now the dot product of a floating-
point weight vector with a binary vector.  The 
class that “wins” then adapts its prototype 
slightly in the direction of the new pattern, where 
“slightly” is typically based on an annealing 
schedule that allows greater adaptation early in 
the training.  The actual nature of the adaptation 
is to increase slightly the weights corresponding 
to entries where the new pattern has a value 1 
(denoted the “active input lines” in [Rum88]).  
All weights are positive and sum to unity. 

Finally, we may consider systems that 
dynamically grow new library classes if none of 
the ones currently defined are sufficiently similar 
to the new pattern.  Such systems can start with 
an empty library, and work for data sets for 
which the label is not known.  Our system is of 
this type, and seeks to discover the number of 
clusters into which the data appears to be 
organized.  Again, there is an analogy to ART.  
In ART, if the observed pattern does not 
adequately resonate with any stored exemplars 
(based on a stress function), it becomes a new 
exemplar.  This is a similar approach if the 
underlying mathematics are somewhat different 

Data Mining 

Data mining approaches [Agr88] seek to 
discover association rules that describe the 
degree to which certain types of items tend to 
occur in the same transaction.  A common 
example used in the data mining literature is that 
of a customer purchase, or transaction, where the 
items purchased in the particular transaction are 
the features of interest.  Although the language 
and discovery algorithms are somewhat 
different, there is a commonality in the 
representation of data with the binary patterns 
described above.  We can consider a transaction 
to be a binary pattern vector in the sense 
previously described, and the items as binary 
features (the entry in the feature vector 
corresponding to a particular item is 1 if the item 
is purchased in the transaction).  The alphabet is 
the universe of items available for inclusion in 
the basket, and the basket itself corresponds to a 
pattern.  Data mining seeks association rules that 
estimate the expectation of observing a particular 
item in a transaction given the occurrence of a 
particular itemset in the transaction.  The 
technique is also interested in discovering large 
itemsets, typically by an off-line learning 



procedure involving multiple passes through the 
entire database of transactions 

These techniques can be applied to other 
domains, such as pattern classification.  In this 
case, we can use association rules where X is a 
library pattern and the itemset in the consequent 
of an association rule is a binary indicator of the 
class to which the pattern belongs.  For example, 
Lee [Lee99] uses such an approach to build 
computer intrusion detection models, where the 
association rules match patterns to intrusions of 
certain types.   

The concept of itemset discovery is analogous to 
competitive learning.  We consider two market 
baskets, with items selected from an “item 
alphabet”.  A common formula for the similarity 
of two baskets counts the items in common (the 
intersecting item set) and divides by the total 
number of items in both baskets (the union). 

Sim X,Y( ) =
N X ∩ Y( )
N X ∪ Y( )

X,Y are the itemsets

N .() = element count

 

This is merely a restatement of the dot-product 
similarity function presented earlier for binary 
patterns, here expressed in set notation. 

Port Pattern Anomaly Detection 

Our model assumes that there is a categorical 
feature (a feature taking values from some 
alphabet) observed an arbitrary number of times 
in some suitably aggregated analysis unit of data 
such as a session.  In the context of TCP 
sessions, we have chosen the ports invoked as 
the feature of interest.  The “market basket” or 
“itemset” is a TCP session, defined as a 
temporally contiguous burst of traffic from the 
same source, as defined in [Va00], which 
introduced a TCP Bayes network intrusion 
detection sensor.  We have enhanced this sensor 
to include a port pattern anomaly detection.  
Although port pattern anomalies are the initial 
instantiation of this technique, it is more general 
in its applicability.  In particular, we believe the 
technique is applicable to TCP flag combinations 
and system call anomalies, and hope to explore 
these applications in the future. 

A pattern is a set of symbols taken from the 
alphabet.  It may be of arbitrary length.  We 
represent the pattern as the set of symbols 

between brackets […], enumerating the symbols 
observed or including a hit count as well.  Under 
the first approach, the pattern might be [C, F, 
M], whereas under the second the representation 
might be [C:100, F:1:, M: 99].  We do not at 
present consider the sequential order of the 
symbols, as is done in the work of Forest and 
Wespi.  Library patterns are stored as 
probabilities, and newly observed patterns are 
normalized to probabilities as well.  This permits 
the update procedure below to treat the new 
pattern as an observation with an effective count 
(for our purposes, the mixing weight) of 1.0. 

When patterns are stored as probabilities, we 
adapt the similarity function expressed above in 
terms of intersections and unions as follows.  
The intersection (numerator) term is the sum of 
the minimum probabilities for those alphabet 
tokens where the patterns overlap.  The union 
(denominator) term is the sum of the maximum 
probability for those alphabet tokens seen in 
either pattern (note that this can exceed unity).  
This is illustrated in the following numerical 
example. 
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Patterns overlap in the first two entries. 

Y is minimum probability.

⇒ Numerator =  25
X is maximal probability in the first,  second,

 and sixth entries.

Y is maximal elsewhere.

⇒  Denominator =  33+ 3
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The system maintains a library of patterns that 
may be initially empty, or it may be seeded as 
described under future work below.  When we 
observe a pattern, we evaluate its similarity with 
respect to patterns in the library.  If it matches 
one or more stored patterns above a configurable 
threshold, then the new pattern is considered to 
belong to the class of the best matching 



exemplar.  Borrowing terminology from 
competitive learning, we call the pattern 
achieving the best match the winning pattern or 
simply the winner. 

Algorithm to pick winner:

Find K s.t. 

Sim X, EK( ) ≥ Sim X, Ek( )∀k

X = observed pattern

Ek = kth pattern exemplar in library

If Sim X, EK( )≥ Tmatch , EK  is the winner

Else insert X into the library of pattern 

exemplars

Tmatch = Minimum match threshold

 

The winner is adaptively modified by mixing in 
the new pattern.  The degree of mixing depends 
on the historical count of observations of the 
library exemplar.  This count is exponentially 
decayed with a slow aging factor.  Patterns that 
are frequently seen are therefore less perturbed 
by a new observation. 

EK ←
1

nK +1
nKEK + X( )

nK =  Historical (possibly aged) count 

of observances of EK

 

Whether the observation triggers an alert 
depends on the normalized probability of the 
winner.  In fact, as in the NIDES system, the 
anomaly score is the tail probability, that is, the 
sum of probabilities of all patterns that are as 
probable or less probable than the winner.  If this 
anomaly score is sufficiently close to zero, an 
alert is generated. 

Pr EK( )= Historical probability of 

pattern K

= nK

nk
k
∑

Tail _ Pr EK( ) = Historical tail probability of 

pattern K

= Pr E j( )
Pr Ek( )≥Pr E j( )

∑
If Tail _ Pr EK( )≤ Talert,  generate alert

Talert = alert threshold
 

The need to consider tail probability rather than 
the raw pattern probability is motivated by the 
following example.  Suppose we have 1,000 
patterns in the library, all of which are equally 
probable with historical probability 0.001.  
However, they all have a tail probability of 1.0.  
In this pathological case of a maximum entropy 
pattern library, there is no meaningful alert 
threshold.  Typically, we observe that a few of 
the patterns account for most of the probability.  
In our environment, for example, web and mail 
account for 95% of the port patterns. 

We track the empirical probability of adding new 
patterns by the above algorithm.  If it is fairly 
common to see new patterns, the technique is of 
limited utility.   

An immediate concern is that the length of the 
alphabet can lead to a state space explosion.  For 
example, considering TCP ports, the alphabet 
contains over 1000 possible values.  Since we do 
not limit pattern length, it is apparent that the 
number of unique patterns can be arbitrarily 
large.  The pattern anomaly approach can work 
only if the actual number of observed patterns is 
comparatively small.   

The mechanisms for intelligent forgetting are 
similar to the category dropping heuristics 
introduced in our earlier NIDES work.  We 
invoke two forms of forgetting.  First, if after an 
update operation the normalized hit count (or 
equivalently, category probability) of an entry in 
the pattern drops below some threshold, that 
entry is dropped from the pattern.  Dropping 
these entries does not significantly affect that 
pattern’s ability to resonate with a new pattern, 
since the entry dropped is by definition 



extremely rare.  For this mode of forgetting, we 
require that patterns be represented with 
associated hit counts. We also forget entire 
patterns whose normalized probability is 
extremely rare.  Using these techniques, over 
weeks of live traffic analysis, the pattern library 
grows to about 80 unique patterns. 

We can thus sum up the conditions under which 
the technique can be reasonably successful.   

• The learned pattern library is modal rather 
than high entropy (for the number of 
patterns learned). 

• After an initial transient, learning of new 
patterns is infrequent. 

• The total number of patterns is small relative 
to the possible number of patterns given the 
cardinality of the alphabet. 

We observe that these conditions hold 
satisfactorily with TCP port patterns, if we 
eliminate patterns not likely to be interesting and 
employ intelligent forgetting.  We have taken 
steps to avoid evaluating patterns not likely to be 
interesting, such as those observed from FTP 
mget sessions or those otherwise dynamically 
assigned by the system. 

Because of the nature of the pattern similarity 
function, there is generalization potential to 
detect variants of malicious patterns. 

Results 

We have implemented the above procedure 
examining the list of ports hit in TCP sessions 
(an observation is the list of ports "hit" in a 
session, and the "hit count" for each), as well as 
for a synthetic measure with six categories 
describing the TCP session open and close result.  
This runs concurrently with our eBayes-TCP 
session monitor that we have previously 
described [Va00].  It is a misuse detector with a 
knowledge base encoded as hypotheses and 
conditional probability relations rather than 
signatures.  The integrated system alerts if either 
the TCP session has sufficient posterior 
probability of membership in a misuse class or if 
the port pattern is anomalous.  If both conditions 
are true, the misuse alert overrides the anomaly 
alert. 

We have examined the Lincoln Laboratories 
1999 Intrusion Detection Evaluation Data 
[Lip00].  In the fourth and most difficult week of 
that data, Bayes-TCP finds 13 attacks, including 

several stealth attacks.  In addition, the anomaly 
procedure identifies 11 unusual port patterns at 
the 0.5% threshold.  All correspond to attacks.  
Again, we remind the reader that the anomaly 
detection does not consider "labeled" data and 
does all its learning on the fly. 

We run this system against our laboratory’s 
internet gateway.  For real-world data, ground 
truth is not known, but it is the opinion of our 
system administration staff that many of the port 
anomaly alerts are genuine attacks, and many 
more are at least worthy of attention.  We also 
see alerts for activity that is rare but probably 
benign in our environment, such as https and ssh.  
The following table lists some discovered 
anomalous port patterns.  Many are singletons (a 
single rare port) but there are some interesting 
combinations of ports for which we have no 
prior signature.  In the coupled Bayes/anomaly 
system, the Bayes alert overrides the anomaly 
alert, so that some of the patterns that would 
generate an anomaly alert based on pattern rarity 
cause a Bayes alert instead.  For these patterns, 
the comment field contains the phrase 
“portsweep override”.  We have excluded 
obvious vertical port sweeps that fall into this 
category as well. 

Discovered Rare 
Pattern 

Comment 

[119] Happy99 Trojan 

[139], [135, 139] Netbios 

[22], [443], [53], 
[80, 443] 

Probably benign but 
rare 

[27374] Sub7 

[51506] ? 

[524] NCP 

[6346] gnutella 

[636] ldaps 

[80, 39, 445] Port sweep override, 
4 invalid IP, web, 
nebios, Win2k 
server message 
block 

[9, 12345, 27374, 
139] 

Portsweep override, 
Netbus, Sub7, 
Netbios 

The Lincoln data is characterized by about 30 
port patterns.  The live data falls into 80 port 
patterns over a period exceeding a month.  



Independently, a high-traffic set of real world 
data resulted in 63 patterns over a period slightly 
over a day, representing more than 130,000 TCP 
sessions.  Of these, the patterns [80] and [25] 
combined for about 92% of the total sessions.  
This validates our assumption that, at least in this 
domain, what is observed only sparsely 
populates what is possible, and therefore this 
procedure is applicable. 

Future Work 

Alert Triggering and Patern Seeding 

As presently implemented, our port pattern 
anomaly component is a pure anomaly detector, 
which means it generates alerts on activity it 
considers extremely rare.  It has been pointed out 
[McH01] that anomalous activity is not 
necessarily intrusive, and intrusions are not 
necessarily anomalous.  In particular, sufficiently 
rare but non-malicious activity will trigger alerts.  
As we mentioned above, https and ssh fall into 
the anomalous but probably benign category in 
our site. 

Moreover, patterns that are likely to be malicious 
but are regularly observed (e.g., as a result of a 
widely available scripted attack) may not be 
sufficiently rare to trigger alarms.   

Other patterns may require a policy-based 
response.  For example, we observe that our 
system discovered gnutella, initially as an 
anomalous port.  We may conjecture that, with 
increased use of this service, the port may be 
observed with enough frequency that it does not 
trigger an anomaly alert.  The administrator may 
choose to include this port in the seeded pattern 
library with an alert/no alert label depending on 
policy. 

Pattern library exemplars are instantiated as 
objects which contain, among other things, a 
trigger tag.  This tag assumes the values 
ALERT_IF_RARE, ALERT_ALWAYS, and 
ALERT_NEVER.  Pure anomaly detection is 
equivalent to the tag assuming the value 
ALERT_IF_RARE, and this is the default for 
newly allocated cluster objects. 

We will enhance our system in the near term to 
incorporate a seeded pattern library.  In such a 
library, the patterns corresponding to https and 
ssh would have the tag set to ALERT_NEVER.  
This prevents detection of attacks on these ports 
as anomalies, but does not preclude detections 

from a protocol-specific IDS.  Conversely, ports 
corresponding to gnutella may be represented as 
objects in which the tag is set to 
ALERT_ALWAYS. 

The security administrator would seed new 
patterns and change the alert/ trigger 
dynamically in response to new observations or 
alert advisories. 

Hybrid Systems 

Papers in intrusion detection frequently draw a 
dichotomy between signature systems and 
anomaly detection.  The Bayes TCP system of 
[Va00] introduces a probabilistic model-based 
system, where models of normal and malicious 
use are represented as conditional probability 
relations rather than very specific signatures.  
The port pattern anomaly system presented here 
is presently integrated as a component of Bayes-
TCP. 

A Bayes framework can easily incorporate a 
Bayes subsystem (a Bayes subtree is itself a 
Bayes tree).  Pattern anomalies can be integrated 
either as hypotheses in themselves (the observed 
pattern is unusual, or malicious if it correlates 
with a seeded and labeled pattern).  Alternately, 
an anomaly subsystem can condition prior 
probabilities elsewhere in the Bayes system (for 
example, the rarity of the pattern makes the 
system more suspicious by increasing the prior 
probability of certain malicious usage modes). 

A Bayes-like framework can in fact be used to 
integrate rule based systems as well.  Rules can 
be implemented as nodes that establish or refute 
hypotheses about a sequence of traffic.  This can 
be done with certainty or with perturbations to 
express uncertainty in the underlying 
observation.  As a practical observation, such 
perturbations prevent computational pathologies 
that arise as the result of hard contradictions, 
although if these arise obviously the system’s 
rule base should be examined.  The appendix 
outlines a mathematical approach to implement 
rule-based subsystems into an overall Bayes 
framework. 

A Bayes-like framework can thus provide a 
hybrid system approach to tightly integrate 
Bayes, rule-based, and anomaly systems.  As 
such, we believe the dichotomy between rule-
based and anomaly systems is artificial 



Summary 
We have presented a technique to discover 
anomalous patterns in certain classes of 
categorical data.  Rather than formulating the 
problem in a bimodal framework (learn normal 
and identify anomalous as that which is not 
normal) our approach atempts to discover 
underlying clusters of patterns.  It is hoped that 
these clusters of patterns correspond to 
behavioral modes in the data. 

Our technique adapts competitive learning and 
data mining approaches to discover these modes 
dynamically.  This eliminates the need for 
attack-free or labeled training data. 

The system is aware of the point at which it can 
declare a pattern anomalous at some 
configurable threshold.  It does not require the 
user to guess at a sufficiently long (in time) 
training interval.  In realistic traffic, the system 
trains to a useful degree in a matter of hours at 
most. 

At present, the system generates anomalies for 
observed modes that are extremely unusual.  We 
have outlined a procedure where the library of 
exemplar modes can be seeded, and particular 
modes can be labeled as to whether or not they 
warrant an alert.  In this way, an attacker cannot 
train the system to accept frequently seen 
malicious behavior as normal.  Such behavior 
instead reinforces a known malicious mode. 

At present, the system is integrated into the 
EMERALD Bayes TCP sensor.  We are 
exploring methods whereby a Bayes-like 
framework can be used as the basis of a hybrid 
system incorporating Bayes, anomaly, and 
signature detection techniques. 
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Appendix: Special Nodes in 

Hybrid Systems 

Although in general Bayes networks deal in 
conditional probability relationships that are 
learned or approximated from data, it is possible 
to include in a system certain nodes that establish 
or refute one or more hypotheses.  These are 
especially useful for classes of evidence that are 
rarely observed (so that learning conditional 
probabilities from data will not be reliable) but 
for which judgment is appropriate.  For these 
nodes, learning should be disabled. 

The nodes in question have two states (yes or no, 
depending on whether the corresponding 
evidence is observed or fact is established).  We 
will call such nodes establishing or refuting 
nodes, since they either establish or refute a 
hypothesis, respectively. The parent node of 
establishing or refuting nodes can have a number 
of hypotheses.  The framework is presented in a 
way that incorporates either requirement, since 
to establish a hypothesis (or subset of 
hypotheses) is to refute all others.  The goal is to 
achieve the desired establishment or refutation if 
the evidence is observed (that is, if the node in 
question is yes) but change belief minimally 
otherwise.  We shall show that nodes of this type 
are an effective way of incorporating rule-based 
subsystems into a hybrid system that performs 
probabilistic inference as well. 

Refuted hypotheses are zeroed out or severely 
downgraded if the evidence is observed (or 
equivalently, if an appropriate rule fires).  
Remaining hypotheses increase in posterior 
belief in proportion to their belief before the 
observation of the evidence.  For example, 
suppose that hypotheses A, B, and C have beliefs 
0.25, 0.50, and 0.25, and evidence is observed 
that refutes A.  Before observing the evidence, B 
has twice the belief of C.  After observation, we 
would like the belief of A to be near 0, and the 
belief of B to be approximately twice that of C.  
In other words, we would like the new beliefs to 
be near 0.0, 0.67, and 0.33. 

A Bayes net made up entirely of nodes of these 
types can accomplish much of the functionality 
of a rule-based system.  The antecedent of a rule 
is analogous to an establishing node, and 
observing “yes” is equivalent to asserting the 
antecedent.  The consequent is the parent node, 
or more specifically the set of hypotheses that 

result from the antecedent.  With a multilevel 
Bayes structure, these nodes may represent 
directly observable evidence or may themselves 
be parent nodes, so that their assertion is not the 
result of direct observation but of inference.   

Since these nodes are “handcrafted,” the 
developer is cautioned that it is easy to build a 
system with such nodes that may cause a 
contradiction, so these nodes must be employed 
judiciously. 

In the following, we assume that α  and ε  are 
both small, and ε  is small relative to α .  
Setting ε  to 0 causes nodes of this type to make 
“hard” calls.  This can cause numerical problems 
if, for example, two nodes conflict.  The 
conditional probability table (CPT) for an 
establishing node is given below.  Columns 
correspond to states of the node in question (yes 
or no, with yes corresponding to the first 
column), while rows correspond to hypotheses at 
the parent node. 

  

CPT =

H1

M

Hi

M

Hn

ε 1− ε
M M

α 1−α
M M

ε 1− ε

 

 

 
 
 
 

 

 

 
 
 
 

 

Here, hypotheses indexed by i  are established 
by the node, and their likelihood is increased by 

the node according to the ratio α
ε .  If the “no” 

state is observed, the likelihood is slightly 
diminished for these hypotheses by the ratio 
1−α

1− ε , which is near unity by 

construction. 

Numerical Example 

We now give a numerical example of a node that 
establishes hypotheses B and C (or equivalently, 
refutes A).  We have chosen α = 0.05 and 
ε = 0.01. 

CPT =
A

B

C

0.01 0.99

0.05 0.95

0.05 0.95

 

 
 
 

 

 
 
 

 

Let us suppose that the belief vector before 
considering this node is given by 
Bel A B C[ ]= 0.25 0.50 0.25[ ] 



We would like the node to refute (significantly 
downweight) A while leaving B twice as likely 
as C. 

The node computation can be summarized as 
follows.  First, we form the matrix product of the 
CPT with the likelihood vector corresponding to 
the observed evidence. If we observe “yes,” this 
vector is given by 

λ =
1

0
 
  
 
   

Since all the likelihood is in one state, this 
amounts to choosing a column from the CPT.  
More generally, the likelihood can be fractional 
corresponding to the observation of “yes” or 
“no” with some uncertainty.  In this case, rather 
than choosing a column from the CPT, we 
instead obtain a single column that is a weighted 
average of the original columns.  In either case, 
we now form the elementwise product of this 
column with the prior belief and normalize to 
unit sum.  In our case, we obtain 

Bel = β 0.25 0.50 0.25[ ]⊗
0.01

0.05

0.05

 

 
 
 

 

 
 
 

= β 0.0025 0.025 0.0125[ ]
= 0.0625 0.6250 0.3125[ ]
β = Normalizing facor, in this case 

0.0025+ 0.025+ 0.0125

 

We have achieved the desired result of 
downweighting A and maintaining B twice as 
likely as C.  By choosing α  and ε  
appropriately, we can get as close as we wish to 
the limiting values 

Bel = 0 2
3

1
3[ ] 

Now, suppose the node state is “no”.  We then 
choose the second column of the CPT.  
Proceeding as above, it is straightforward to 
show that the posterior belief becomes 
Bel = 0.2578 0.4948 0.2474[ ] 

As desired, this represents a minimal change 
from the prior belief. By increasing α , the node 
downgrades hypotheses accordingly when the 
node state is “no”; by setting α  to unity, the 
node can refute these hypotheses. 


