
Selection, Combination, and Evaluation of  
Effective Software Sensors for  

Detecting Abnormal Computer Usage
Jude Shavlik 

Computer Sciences Department 
University of Wisconsin 

Madison, WI  53706 

shavlik@cs.wisc.edu 

Mark Shavlik 
Shavlik Technologies 

2665 Long Lake Road, Suite 4000 
Roseville, MN 55113 

mark.shavlik@shavlik.com 
 
 

ABSTRACT 
We present and empirically analyze a machine-learning approach 
for detecting intrusions on individual computers.  Our Winnow-
based algorithm continually monitors user and system behavior, 
recording such properties as the number of bytes transferred over 
the last 10 seconds, the programs that currently are running, and 
the load on the CPU.  In all, hundreds of measurements are made 
and analyzed each second.  Using this data, our algorithm creates 
a model that represents each particular computer’s range of 
normal behavior.  Parameters that determine when an alarm 
should be raised, due to abnormal activity, are set on a per-
computer basis, based on an analysis of training data.  A major 
issue in intrusion-detection systems is the need for very low false-
alarm rates.  Our empirical results suggest that it is possible to 
obtain high intrusion-detection rates (95%) and low false-alarm 
rates (less than one per day per computer), without “stealing” too 
many CPU cycles (less than 1%).  We also report which system 
measurements are the most valuable in terms of detecting 
intrusions.  A surprisingly large number of different 
measurements prove significantly useful. 

Categories and Subject Descriptors 
D.4.6 [Security and Protection],  
I.2.6  [Artificial Intelligence]: Learning  

General Terms 

Algorithms, Experimentation, Security 

Keywords 
Intrusion detection, anomaly detection, machine learning, user 
modeling, Windows 2000, feature selection, Winnow algorithm  

1. INTRODUCTION 
In an increasingly computerized and networked world, it is crucial 
to develop defenses against malicious activity in information 
systems.  One promising approach is to develop computer 
algorithms that detect when someone is inappropriately intruding 
on the computer of another person.  However, intrusion detection 
is a difficult problem to solve [3].  System performance cannot be 
adversely affected, false positives must be minimized, and 
intrusions must be caught (i.e., false negatives must be very low).  
The current state of the art in intrusion-detection systems is not 
good; false positives are much too high and successful detection is 
unfortunately too rare.  We report on an approach where we have 
made significant advances toward creating an intrusion-detection 
system that requires few CPU cycles (less than 1%), produces few 
false alarms (less than one per day), and detects most intrusions 
quickly (about 95% within five minutes). 

Intrusion-detection systems (IDS’s) can either (a) look for known 
attack patterns or (b) be “adaptive software” that is smart enough 
to monitor and learn how the system is supposed to work under 
normal operation versus how it works when misuse is occurring 
[9].  We address approach (b) in this article.  Specifically, we are 
empirically determining which sets of fine-grained system 
measurements are the most effective at distinguishing usage by 
the assigned user of a given computer from misusage by others, 
who may well be “insiders” [3; 11] within an organization. 

We have created a prototype anomaly-detection system that 
creates statistical profiles of the normal usage for a given 
computer running Windows 2000.  Significant deviations from 
normal behavior indicate that an intrusion is likely occurring. For 
example, if the probability that a specific computer receives 10 
Mbytes/sec during evenings is measured to be very low, then 
when our monitoring program detects such a high transfer rate 
during evening hours, it can suggest that an intrusion may be 
occurring. 

The algorithm we have developed measures over two-hundred 
Windows 2000 properties every second, and creates about 1500 
“features” out of them.  During a machine-learning “training” 
phase, it learns how to weight these 1500 features in order to 
accurately characterize the particular behavior of each user – each 
user gets his or her own set of feature weights.  Following 
training, every second all of the features “vote” as to whether or 
not it seems like an intrusion is occurring. The weighted votes 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
KDD’04, August 22–25, 2004, Seattle, Washington, USA. 
Copyright 2004 ACM 1-58113-888-1/04/0008...$5.00. 
 



“for” and “against” an intrusion are compared, and if there is 
enough evidence, an alarm is raised.  (Section 2 presents 
additional details about our IDS algorithm that are being glossed 
over at this point.) 

This ability to create statistical models of individual computer’s 
normal usage means that each computer’s unique characteristics 
serve a protective role.  Similar to how each person’s antibodies 
can distinguish one’s own cells from invading organisms, these 
statistical-profile programs can, as they gather data during the 
normal operation of a computer, learn to distinguish “self” 
behavior from “foreign” behavior.  For instance, some people use 
Notepad to view small text files, while others prefer WordPad.  
Should someone leave their computer unattended and someone 
else try to inappropriately access their files, the individual 
differences between people’s computer usage will mean that our 
statistical-modeling program will quickly recognize this illegal 
access. 

We evaluate the ability to detect computer misuse by collecting 
data from multiple employees of Shavlik Technologies, creating 
user profiles by analyzing “training” subsets of this data, and then 
experimentally judging the accuracy of our approach by 
predicting whether or not data in “testing sets” is from the normal 
user of a given computer or from an intruder.  The key hypothesis 
investigated is whether or not creating statistical models of user 
behavior can be used to accurately detect computer misuse.  We 
focus our algorithmic development on methods that produce very 
low false-alarm rates, since a major reason system administrators 
ignore IDS systems is that they produce too many false alarms.  

Our empirical results suggest that it is possible to detect about 
95% of the intrusions with less than one false alarm per (8 hr) day 
per user.  It should be noted, though, that these results are based 
on our model of an “insider intruder,” which assumes that when 
Insider Y uses User X’s computer, that Y is not able to alter his or 
her behavior to explicitly mimic X’s normal behavior.  The 
training phase our approach can be computationally intensive due 
to some parameter tuning, but this parameter tuning could be done 
on a central server or during the evenings when users are not at 
work.  The CPU load of our IDS is negligible during ordinary 
operation; it requires less than 1% of the CPU cycles of a standard 
personal computer.  Our approach is also robust to the fact that 
users’ normal behavior constantly changes over time. 

Our approach can also be used to detect abnormal behavior in 
computers operating as specialized HTTP, FTP, or email servers.  
Similarly, these techniques could be used to monitor, say, the 
behavior of autonomous intelligent software agents in order to 
detect rogue agents whose behavior is not consistent with the 
normal range of agent behavior for a given family of tasks.   
However, the experiments reported herein only involve computers 
used by humans doing the normal everyday business tasks.    
While we employ the word “user” throughout this article, the 
reader should keep in mind that our approach applies equally well 
to the monitoring of servers and autonomous intelligent agents.  
All that would be needed to apply our approach to a different 
scenario would be to define a set of potentially distinctive 
properties to measure and to write code that measured these 
properties periodically. 

Previous empirical studies have investigated the value of creating 
intrusion-detection systems by monitoring properties of computer 

systems, an idea that goes back at least 20 years [2].  However, 
prior work has focused on Unix systems, whereas over 90% of the 
world’s computers run some variant of Microsoft Windows.  In 
addition, prior studies have not looked at as large a collection of 
system measurements as we use.   For example, Warrender et al. 
[13], Ghosh et al. [4], and Lane and Brodley [5] only look at Unix 
system calls, whereas Lee et al. [7] only look at audit data, mainly 
from the TCP program.  Lazarevic et al. [6] provide a summary of 
some of the recent research on the application of data mining to 
network-based anomaly detection. 

In Section 2 we describe the algorithm we developed that 
analyzes the Windows 2000 properties that we measure each 
second, creating a profile of normal usage for each user.  Section 
3 presents and discusses empirical studies that evaluate the 
strengths and weaknesses of this algorithm, stressing it along 
various dimensions such as the amount of data used for training.  
This section also lists which Windows 2000 properties end up 
with the highest weights in our weighted-voting scheme.  Section 
4 describes possible future follow-up research tasks, and Section 5 
concludes this article. 

2. ALGORITHM DEVELOPED  
In this section we describe the algorithm that we developed.  Our 
key finding is that a machine-learning algorithm called Winnow 
[8], a weighted-majority type of algorithm, works very well as the 
core component of an IDS. 

This algorithm operates by taking weighted votes from a pool of 
individual prediction methods, continually adjusting these weights 
in order to improve accuracy.  In our case, the individual 
predictors are the Windows 2000 properties that we measure, 
where we look at the probability of obtaining the current value 
and comparing it to a threshold.  That is, each individual 
measurement suggests that an intrusion may be occurring if: 
 
    Prob (measured property has value v)   <    p                   [Eq. 1] 

Each property we measure votes as to whether or not an intrusion 
is currently occurring.  When the weighted sum of votes leads to 
the wrong prediction (intrusion vs. no intrusion), then the weights 
of all those properties that voted incorrectly are halved.  
Exponentially quickly, those properties that are not informative 
end up with very small weights.  Besides leading to a highly 
accurate IDS, the Winnow algorithm allows us to see which 
Windows 2000 properties are the most useful for intrusion 
detection, namely those properties with the highest weights 
following training (as we shall see, when viewed across several 
users, a surprisingly high number of properties end up with high 
weights). 

Actually, rather than using Equation 1, we found [12] it slightly 
better to compare probabilities relative to those in general (i.e., 
computed over all our experimental subjects) and use: 

    Prob(value | user X)  /  P(value | general public)  <  r      [Eq. 2] 

An alarm is sounded if this ratio is less than some constant, r.  
This way we look for relatively rare events for a specific user 
rather than rare events in general (it may well make sense to use 
both Equations. 1 and 2, and in the one experiment [12] where we 
did so - using W = 1200sec in Table 1’s algorithm - we increased 



the detection rate from 94.7% to 97.3% while still meeting our 
target of less than one false-alarm per day). 

The idea behind using the above ratio is that it focuses on feature 
values that are rare for this user relative to their probability of 
occurrence in the general population.  For example, feature values 
that are rare for User X but also occur rarely across the general 
population may not produce low ratios, while feature values that 
are rare for User X but are not rare in general will.  That is, this 
ratio distinguishes between “rare for User X and for other 
computer users as well” and “rare for User X but not rare in 
general.” 

We estimate prob(feature=value for the general population) by 
simply pooling all the training data from our experimental 
subjects, and then creating a discrete probability distribution using 
ten bins, using the technique explained below.  Doing this in a 
fielded system would be reasonable, since in our IDS design one 
requires a pool of users for the training and tuning phases. 

Because our experimental setup only involves measurements from 
normal computer users, the use of our ratio of probabilities makes 
sense in our experiments, since it defines “rare for User X” 
relative to the baseline of other computer users operating 
normally.  However, it is likely that the behavior of intruders, 
even insiders working at the same facility, may be quite different 
from normal computer usage (unfortunately we do not yet have 
such data to analyze).  For example, an intruder might do 
something that is rare in general, and hence Equation 2 above 
might not produce a value less than the setting for the threshold r.   

Before presenting our algorithm that calls as a subroutine the 
Winnow algorithm, we discuss how we make “features” out of the 
over two-hundred Windows properties that we measure.  
Technically, it is these 1500 or so features that do the weighted 
voting. 

2.1 Features Used  
Space limitations preclude describing here all of the 200+ 
properties measured.  Appendix A of our full project report [12] 
lists and briefly describes all of the Windows 2000 properties that 
we measure; some relate to network activity, some to file 
accesses, and others to the CPU load of the programs currently 
running.  Most come from Windows’ perfmon (“performance 
monitor”) program.  Several features we measure appear in Tables 
3 and 4 of this article.  For each of these measurements, we also 
derive additional measurements: 

   Actual Value Measured 
   Average of the Previous  10 Values 
   Average of the Previous 100 Values 
   Difference between Current Value and Previous Value 
   Difference between Current Value and Average of Last 10 
   Difference between Current Value and Ave of Last 100 
   Difference between Averages of Previous 10 and Previous 100 

As we discovered in our experiments, these additional “derived” 
features play an important role; without them intrusion-detection 
rates are significantly lower.  For the remainder of this article, we 
will use the term “feature” to refer the combination of a measured 
Windows 2000 property and one of the seven above 
transformations.  In other words, each Windows 2000 property 

that we measure produces seven features.  (The first item in the 
above list is not actually a derived feature; it is the “raw” 
measurement, but we include it in the above list for 
completeness.)  

2.2 Our IDS Algorithm 

Table 1 contains our main algorithm.  We take a machine-learning 
[10] approach to creating an IDS, and as is typical we divide the 
learning process into three phases.  First, we use some training 
data to create a model; here is where we make use of the Winnow 
algorithm (see Table 2), which we further explain below.  Next, 
we use some more data, the tuning set, to “tune” some additional 
parameters in our IDS.  Finally, we evaluate how well our learned 
IDS works be measuring its performance on some testing data.  
We repeat this process for multiple users and report the average 
test-set performance in our experiments. 

The Windows 2000 properties that we measure are continuous-
valued, and in Step 1b of Table 1 we first decide how to discretize 
each measurement into 10 bins; we then use these bins to create a 
discrete probability distribution for the values for this feature.   
Importantly, we do this discretization separately for each user, 
since this way we can accurately approximate each user’s 
probability distribution with our 10 bins.  (We did not experiment 
with values other than 10 for the number of bins.  We chose 10 
arbitrarily, though it does make sense that this number be small to 
reduce storage demands and to “smooth” our measurements.) 

We always place the value 0.0 in its own bin, since it occurs so 
frequently.  We then choose the “cut points” that define the 
remaining bins by fitting a sample of the measurements produced 
by each user to each of several standard probability distributions:  
uniform, Gaussian, and Erlang (for k ranging from 1 to 100).   
When k = 1 the Erlang is equivalent to the better known 
(“decaying”) Exponential distribution, and as k increases the 
distribution looks more and more like a Gaussian.  We then select 
the probability distribution that best fits the sample data (i.e., has 
the lowest root-mean-squared error), and create our 10 bins as 
follows: 

• For the uniform probability distribution, we uniformly divide 
the interval [minimum value, maximum value] into seven 
bins, and use the two remaining bins for values less than the 
minimum and greater than the maximum (since values 
encountered in the future might exceed those we have seen 
so far). 

• For the Gaussian probability distribution, we place the 
lowest 0.005% of the probability mass in the first bin, the 
next 0.1% in the second bin, 5% in the next bin, and 15% in 
the bin after that.  We do the same working down from the 
highest value, which leaves about 60% for the middle bin 
(60% is roughly one standard deviation around the mean of a 
Gaussian). 

• For the Exponential probability distribution, we put half the 
probability mass in the first bin, and then half of the 
remaining probability mass in each successive bin (except 
for the last bin).  



• For the Erlang probability distribution, we execute a 
combination of what we do for the Gaussian and the 
Exponential, depending on the value of k. 

We did not investigate alternate design choices in our 
discretization process; we developed the above approach and then 
used it unchanged during our subsequent learning-algorithm 
development and evaluation. 

____________________________________________________ 

Table 1.   Creating and Maintaining an IDS for User X 

Step 1: Initial Training 

Step 1a:  Collect measurements from User X and place 
in TRAINSET. 

Step 1b:  Using TRAINSET, choose good “cut points” 
(for User X) to discretize continuous values.  See text. 

Step 1c:  Select weights for User X’s measured features 
by applying the Winnow algorithm (see Table 2 and 
accompanying text) using TRAINSET and an equal 
number of “archived” sample measurements from other 
users. However, be sure to discretize the measurements 
from the other users by applying User X’s cut points, 
since we will be pretending that the other users are 
inappropriately using X’s computer. 

Step 2: Parameter Tuning 

Step 2a:  Using new measurements collected from User 
X and other users (the TUNESET), perform Steps 2b 
and 2c, calculating false-alarm and intrusion-detection 
rates in conceptually independent runs for as many as 
possible combinations of the parameters being tuned: 
W, threshmini and threshfull. 

Step 2b:  Use the weighted features to “vote” on “mini-
alarms” each second;  
if (wgtedVotesFOR / wgtedVotesAGAINST)  >  threshmini  
then raise a mini-alarm.  See Steps 2a and 2b of  
Table 2. 

Step 2c:  If the fraction of mini-alarms in the last W 
seconds ≥ threshfull then raise an alarm signaling that an 
intrusion might be occurring. After each “call,” wait 
another W seconds (i.e, the windows do no overlap). 

Step 2d:  Given the specified maximum false-alarm rate 
per (8-hour) day, choose the parameter settings that 
produce the highest intrusion-detection rate on the set of 
sample “other” users, while not producing more than 
the desired number of false alarms for User X. 

Step 3: Continual Operation 

Using Step 2d’s chosen settings for W, threshmini and 
threshfull, repeat Steps 2b and 2c on the TESTSET. (It 
might make sense to periodically retrain and retune in 
order to adjust to changing user behavior – see text.) 

____________________________________________________ 

Most of our features turned out to be best modeled by Gaussians, 
with the Exponential distribution being the second most common 
selection.  One final point about converting to a discrete 
probability distribution needs to be mentioned: for those Windows 
2000 measurements that vary over orders of magnitude (e. g., 
bytes sent per second); we use the log of their values. 

After we have discretized our features, we simply count how 
often in the training data did a feature value fall into a given bin, 
thereby producing a probability distribution (after normalizing by 
the total number of counts).  Following standard practice, we 
initialize all bins with a count of 1; this ensures that we will never 
estimate from our finite samples a probability of zero for any bin. 
We are now able to estimate the Prob(feature = measured value) 
that was mentioned earlier in Equations 1 and 2. 

____________________________________________________ 

Table 2.   Variant of Winnow that is Used 

Step 1:    Initialize User X’s weights on each measured 
               feature (wgtf ) to 1. 

Step 2:    For each training example do: 

Step 2a:  Zero wgtedVotesFOR and wgtedVotesAGAINST. 

Step 2b:  If then relative probability (Eq. 2) of the 
current measured value for feature f < r, then add wgtf  
to wgtedVotesFOR  otherwise add wgtf  to 
wgtedVotesAGAINST. 

I.e., if the relative probability of the current value of 
feature f is “low,” then this is evidence that something 
anomalous is occurring. In our experiments, we found 
that r = 0.33 worked well; however, overall 
performance was robust in regards to the value of r (and 
Eq 1’s p).  Various values for r that we tried in the 
range [0.25, 0.75] all worked well. 

Step 2c:  If   wgtedVotesFOR > wgtedVotesAGAINST  
then call the current measurements anomalous. 

Step 2d:  If User X produced the current measurements 
and they are considered anomalous, then a false-alarm 
error has been made. Multiply by ½ all those features 
that incorrectly voted for raising an alarm. 

Otherwise if some other user produced the current 
measurements and they were not considered anomalous, 
then an intrusion has been missed.  Multiply by ½ all 
those features that incorrectly voted against raising an 
alarm.  When neither a false-alarm nor a missed-
intrusion error occurred, leave the current weights 
unchanged. 

____________________________________________________ 

We next turn to discuss using these probabilities to learn models 
for distinguishing the normal user of a given computer from an 
intruder.  Ideally we would use training data where some User X 
provided the examples of normal (i. e., non-intrusion) data and we 
had another sample of data measured during a wide range of 
intrusions on this user’s computer.  However, we do not have 
such data (this is a problem that plagues IDS research in general), 



and so we use what is a standard approach, namely we collect 
data from several users (in our case, 10), and we then simulate 
intrusions by replaying User Y’s measurements on User X’s 
computer.  We say that a false alarm occurs when User Y’s recent 
measurements are viewed as anomalous - that is, suggestive of an 
intrusion - when replayed on his or her own computer.  A detected 
intrusion occurs when we view User Y’s measurements as being 
anomalous when evaluated using X’s feature discretization and 
feature weighting.  (Notice that we need to use X’s discretization, 
rather than Y’s, since we are assuming that Y is operating on X’s 
computer.)  Figure 1 abstractly illustrates how we define false 
alarms and detected intrusions in our experimental setting. 

  
Figure 1.  False Alarms and Detected Intrusions 

As mentioned, we use Table 2’s version of Littlestone’s Winnow 
algorithm [8] to choose weights on the features we measure.  This 
algorithm is quite simple, yet has impressive theoretical properties 
and practical success on real-world tasks, especially those that 
have a very large number of features, which is the case for our 
task.  As already discussed, this algorithm sums weighted votes 
“for” and “against” the possibility that an intrusion is currently 
occurring.  When the winning choice (i. e., “for” or “against”) is 
wrong, then all those features that voted for the wrong choice 
have their weights halved.  We perform the Winnow algorithm for 
each user, in each case using a 50-50 mixture of examples, with 
half drawn from this user’s measured behavior (the “against an 
intrusion” examples) and half randomly drawn from some other 
user in the experiment (the “for an intrusion” examples). 

In order to raise an alarm after the training phase (Step 1 in Table 
1) has set the feature weights, our algorithm does not simply use 
the current weighted vote.  Instead, the current weighted vote can 
raise what we call a mini alarm, and we require that there be at 
least N mini alarms in the last W seconds in order to raise an 
actual alarm.  In other words, our intrusion detector works as 
follows (Steps 2b and 2c in Table 1): 

If weighted_vote(current measurements)  >  threshmini  
then raise “mini” alarm 

If fraction of “mini” alarms in last W sec  ≥ threshfull   
then predict intrusion 

As will be seen in Section 3, W needs to be on the order of 100 to 
get good detection rates with few false alarms. 

We choose the settings for our parameters on a per-user basis by 
evaluating performance on a set of tuning data – see Step 2 of 
Table 1.  One significant advantage of a data-driven approach like 
ours is that we do not have to pre-select parameter values.  

Instead, the learning algorithm selects for each user his or her 
personal set of parameter values, based on the performance of 
these parameters on a substantial sample of “tuning set” data. 

The only computationally demanding portion of our algorithm is 
the parameter-tuning phase, which depends on how many 
parameter combinations are considered and on how much tuning 
data each combination is evaluated.  In a fielded system, it might 
make sense to do this step on a central server or during the 
evenings.  The other tasks of measuring features, computing 
weighted sums, and using Winnow to adjust weights can all be 
done very rapidly.  Outside of the parameter tuning, Table 1’s 
algorithm requires less than 1% of a desktop computer’s CPU 
cycles. 

Notice that even during the testing phase (e. g., Step 3 in Table 1), 
we find it necessary to still execute the Winnow algorithm, to 
adjust the weights on the features after our algorithm decides 
whether or not an intrusion occurred.  If we do not do this, we get 
too many false alarms when the user’s behavior switches, and the 
intrusion-detection rates drastically drops to 20% from about 
95%.  On the other hand continually adjusting weights means that 
if we miss an intrusion we will start learning the behavior of the 
intruder, which is a weakness of our approach (and a weakness of 
statistics-based approaches for intrusion detection in general).  
This also means that the empirical results reported in the next 
section should properly be interpreted as estimating the 
probability that we will detect an intruder after his or her first W 
seconds of activity.  A subject for future work is to empirically 
evaluate how likely our approach will detect an intruder in the 
second (and successive) W seconds of activity, given we did not 
detect the intruder in the first W seconds.  On the other hand, the 
fact that we continually are adjusting the weights means that after 
the legitimate user reauthenticates himself or herself after a false 
alarm, our algorithm will adapt to the change in the user’s 
behavior. 

Obviously there is a delicate balance between adapting quickly to 
changes in the legitimate user’s behavior, and thus reducing false 
alarms, and adapting too quickly to the activity of an intruder and 
thus thinking the intruder’s behavior is simply a change in the 
behavior of the normal user of the given computer and thereby 
missing actual intrusions.  It is a simple fact of life that most 
users’ behavior is wide ranging and changing over time.  The 
more consistent a user’s behavior is, and the more accurately we 
can capture his or her idiosyncrasies, the better our approach will 
work. 

3. EXPERIMENTAL EVALUATION 
This section reports some experimental evaluation of our IDS 
algorithm.  Additional experiments are reported in detail in 
Shavlik and Shavlik [12], with some of their results mentioned in 
this article. 

3.1  Methodology 
We collected about 8 GB of data from 16 employees of Shavlik 
Technologies who volunteered to be experimental subjects.  We 
only collected data between 9am and 5pm on weekdays. 

Of these 16 experimental subjects, we use 10 during training 
(Steps 1 and 2 of Table 1); for each one, we train our IDS to 
recognize the differences in behavior of that user from the other 9 

Replay of User Y’s Behavior

False Alarm
yes 

Alarm from Model of User X ? 

“Intrusion” Detected 

yes 

Alarm from Model of User Y ?



users.  We call these 10 users “insiders” and view them as 
members of a small group of co-workers.  The remaining 6 
subjects, for whom we have a total of about 50 work days of 
measurements, serve as simulated “external” intruders, i.e., users 
whose computer-usage behavior is not seen during training 
(including computing the denominator in Eq. 2) – these 6 
experimental subjects are only used during the testing phase (Step 
3 of Table 1) and are never used during the training and tuning 
phases.  Hence, one expects that these 6 “outsiders” would be 
harder to recognize as intruders on User X’s computer since their 
behavior is not observed while the IDS’s are still learning. 

3.2  Primary Results and Discussion 
Figure 2 shows, as a function of W (see Table 1) the detection and 
false-alarm rates for the scenario where the training lasts 15 work 
days (432,000 seconds), and the tuning, and testing periods each 
last 10 work days (288,000 seconds).  The train, tune, and test sets 
are temporally disjoint from one another.  This scenario involves 
a five-week-long training process, but as presented in Shavlik and 
Shavlik [12] shorter training periods produce results nearly as 
good. 

The results are averages over the 10 “insiders;” that is, each of 
these 10 experimental subjects is evaluated using the other 9 
subjects as “insider intruders” and the above-described 6 “outsider 
intruders,” and the 10 resulting sets of false-alarm and detection 
rates are averaged to produce Figure 2.  During the tuning phase 
of Table 2, the specified false-alarm rate of Step 2e was set to 0; 
such a extreme false-alarm rate could always be produced on the 
tuning set, though due to the fact we are able to explicitly fit our 
parameters only to the tuning data, a false-alarm rate of zero did 
not result during the testing rate (as one expects).  Over fitting 
(getting much higher accuracies on the tuning data than on the 
testing data due to having too many “degrees of freedom” during 
the tuning phase) is arguably the key issue in machine learning 
and is central to adaptive IDS’s. 

As can be seen in Figure 2, for a wide range of window widths 
(from 1 to 20 minutes), the false-alarm rates are very low – 
always less than one per eight-hour work day per user - and the 
intrusion-detection rates are impressively high, nearly 95%.  
Interestingly, the detection rate for “outsiders,” whose behavior is 
never seen during training, is approximately the same as for 
“insiders.”  This suggests that our learning algorithm is doing a 
good job of learning what is characteristic about User X, rather 
than just exploiting idiosyncratic differences between User X and 
the other nine “insiders.” 

Based on Figure 2, 300 seconds is a reasonable setting for W in a 
fielded system, and in most of the subsequent experiments in this 
section use that value. 

(It should be noted that going down to W = 60 sec in Figure 2 is 
not completely appropriate.  Some of the features we use are 
averages of a given measurement over the last 100 seconds, as 
explained earlier in this article.  In all of our experiments, we do 
not use any examples where the user’s computer has not been 
turned on for at least 100 seconds.  Hence, when we replay a 60-
second window of activity from User Y on User X’s computer, 
there is some “leakage” of User Y’s data going back 100 seconds.  
In a fielded system, 40 seconds worth of the data would actually 
be from User X and 60 seconds from User Y.  However, our 

experimental setup does not currently support such “mixing” of 
user behavior.  Should a fielded system wish to use W=60 sec, a 
simple solution would be to average over the last 60 seconds, 
rather than the last 100 seconds as done in our experiments.  We 
do not expect the impact of such a change to be significant.  The 
data point for W = 10 sec in Figure 2 only uses features that 
involve no more than the last 10 seconds of measurements, as a 
reference point – the issue of using less or more than the last 100 
seconds of measurements is visited in more depth in the next 
section.) 

___________________________________________________ 

Percentage on Testset  

___________________________________________________ 

One potentially confusing technical point needs to be clarified at 
this point.  In an eight-hour work day, there are 480 sixty-second-
wide, non-overlapping windows (i. e., W = 60) but only 48 six-
hundred-second-wide (W = 600) ones.  So one false alarm per day 
for W = 60 sec corresponds to a false-alarm rate of 0.2%, whereas 
for W = 600 sec a false-alarm rate of 2.1% produces one false-
alarm per day on average.  The (lower) dotted line in Figure 2 
shows the false-alarm rate that produces one false alarm per day 
per user.  Although it cannot be seen in Figure 2, as W increases 
the actual number of false alarms per day decreases.  Making a 
call every second leads to too many false alarms [12], so we use 
non-overlapping windows.  Conversely, as W increases an 
intruder is able to use someone else’s computer longer before 
being detected. 

To produce Figure 2’s results, Table 2’s tuning step considered 11 
possible settings for thresholdmini (0.8, 0.85, 0.90, 0.95, 0.97, 
1.0, 1.03, 1.05, 1.1, 1.15, and 1.2) and 26 for thresholdfull  (0.01,  
0.25, 0.5, 0.75, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 
0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975, 0.99, and 
1.0), that is 11x26=286 different combinations of these two 
parameters.  We did not experiment with different choices for the 
particular values and number of the candidate parameter settings, 
except we found it necessary to restrict thresholdmini = 1.0 in the 
cases in Figure 2 where W = 10 sec and W = 60 sec.  

Table 3 shows the highest-weighted features at the end of Figure 
2’s experiment, where the weights are averaged over all ten of our 
experimental subjects and over those values for W > 10 used to 
create Figure 2; for each experimental subject and setting for W, 

Figure 2.  False Alarm and Detection Rates

20

40

60

80

100

0 200 400 600 800 1000 1200

Window Width (W seconds)

   Insider Detection Rate

   Outsider Detection Rate

   False Alarms 

   One False Alarm per Day per User



we normalize the weights so that they sum to 1, thus insuring that 
each configuration contributes equally.  Remember that the 
weights are always changing, so this table should be viewed as a 
representation “snapshot.”  (Appendix A of Shavlik and Shavlik 
[12] contains additional explanations of several of these features). 

____________________________________________________ 
Table 3.  Features with the 25 Highest Weights Averaged 
Across the Experiments that Produced Figure 2. 

   Print Jobs, Average of Previous 100 Values (ranked #1) 

   Print Jobs, Average of Previous 10 Values 

   System Driver Total Bytes, Actual Value Measured 

   Logon Total, Actual Value Measured 

   Print Jobs, Actual Value Measured 

   LSASS: Working Set, Average of Previous 100 Values 

   Number of Semaphores, Average of Previous 100 Values 

   Calc: Elapsed Time, 
Difference between Averages of Prev 10 and Prev 100 

   Number of Semaphores, Actual Value Measured 

   LSASS: Working Set, Average of Previous 10 Values 

   CMD: Handle Count, 
Difference between Current and Average of Last 10 

   CMD: Handle Count, Average of Previous 10 Values 

   Write Bytes Cache/sec, 
Difference between Current and Average of Last 10 

   Excel: Working Set, 
Difference between Current and Average of Last 10 

   Number of Semaphores, Average of Previous 10 Values 

   CMD: % Processor Time, 
Difference between Averages of Prev 10 and Prev 100 

   LSASS: Working Set, Actual Value Measured 

   System Driver Total Bytes, Average of Previous 100 Values 

   CMD: % Processor Time, 
Difference between Current and Average of Last 100 

   CMD: % Processor Time, 
Difference between Current and Average of Last 10 

   System Driver Resident Bytes, Actual Value Measured 

   Excel: Handle Count, Average of Previous 10 Values 

   Errors Access Permissions, 
Difference between Current and Average of Last 10 

   File Write Operations/sec, Average of Previous 100 Values 

   System Driver Resident Bytes, Average of Previous 10 Values 

____________________________________________________

____________________________________________________ 

Table 4.  The 25 Measurements with the Highest Number of 
Occurrences in the Top 10 Weights, Including Ties, in the 
Experiments that Produced Figure 2 (the numbers in 
parentheses are the percentages of Top 10 appearances) 

Number of Semaphores (43%) 

Logon Total (43%) 

Print Jobs (41%) 

System Driver Total Bytes (39%)  

CMD: Handle Count (35%) 

System Driver Resident Bytes (34%) 

Excel: Handle Count (26%) 

Number of Mutexes (25%) 

Errors Access Permissions (24%) 

Files Opened Total (23%) 

TCP Connections Passive (23%) 

LSASS: Working Set (22%) 

LSASS: % Processor Time (22%) 

SYSTEM: Working Set (22%) 

Notepad: % Processor Time (21%) 

CMD: Working Set (22%) 

Packets/sec (21%) 

Datagrams Received Address Errors (21%) 

Excel: Working Set (21%) 

MSdev: Working Set (21%) 

UDP Datagrams no port / sec (17%) 

WinWord: Working Set (17%) 

File Write Operations / sec (16%) 

Bytes Received / sec (16%) 

Bytes Transmitted / sec (16%) 

____________________________________________________ 

Observe that a wide range of features appear in Table 3: some 
relate to network traffic, some measure file accesses, others refer 
to which programs are being used, while others relate to the 
overall load on the computer.  It is also interesting to notice that 
for some features their average values over 100 seconds are 
important, whereas for others their instantaneous values matter, 
and for still others what is important is the change in the feature’s 
value. 

A weakness of Table 3 is that a measured Windows 2000 property 
that is important for only one or two subjects might not have a 
very high average weight.  Table 4 provides a different way to see 
which features play important roles.  To produce this table we 



count how often each measured property appears in the Top 10 
weights (including ties, which are common) following training.  
Surprisingly, over half of the Windows 2000 properties we 
measure appear at least once in some Top 10 list!  This supports 
our thesis that one should monitor a large number of system 
properties in order to best create a behavioral model that is well 
tailored to each individual computer user.  Our project’s final 
report [12] displays longer and additional lists of the highest-
weighted features, including those for one specific user. 

Most of the “derived” calculations (see Section 2.1) are used 
regularly in the highly weighted features, with the exception of 
“Difference from Previous Value,” which appears in the Top 50 
weighted features only about 1/20th as often as the others., 
presumably because it is too noisy of an estimate and needs to be 
smoothed.  “Difference between Current and Average of Last 10” 
is the most used, but the difference between the most used and the 
6th-most used is only a factor of two. 

3.3  Additional Results 
Tables 3 and 4 show that the features that use the last N 
measurements of a Windows 2000 property play an important 
role.  Figure 3 illustrates the performance of Table 1’s algorithm 
when we restrict features to use at most the last 1, 10, 100, or 
1000 measurements, respectively, of the Window 2000 properties 
that we monitor.  The Y-axis is the test-set detection rate and in all 
cases the false-alarm rate meets our goal of no more than one per 
user per workday.   Figure 3’s data is from the case where W = 
300 seconds; 15 days of training data, 3 of tuning, and 3 of testing 
are used for each experimental subject. 

Figure 3 shows that there is an advantage in considering features 
that have longer “histories.”   However, the cost of a longer 
history is that more data needs to be collected to define a feature 
value.  That is, if histories can go back as far as 1000 seconds (a 
little over 15 minutes), then it will take 1000 seconds after an 
intrusion until all of the feature values are due solely to the 
intruder’s behavior.  It appears that limiting features to at most the 
last 100 seconds of measurements is a good choice. 

So far we have reported results average over our pool of 10 
insiders and 6 outsiders.  It is interesting to look at results from 
individual experimental subjects.  Table 5 reports how often User 
Y was not detected when “intruding” on User X’s computer.  For 
example, the cell <row=User4, column=User1> says that the 
probability of detection is 0.86 when User 1 operates on User 4’s 
computer for 1200 seconds.  (The rightmost column is the 
detection rate when outsiders operate on each insider’s computer.)  

Given that the overall detection rate is about 95% (i.e., only 5% 
of 1200-sec intrusions do not sound alarms), one might expect 
that most of the individual penetration rates would range from, 
say, 2% to 10%.  However, the results are much more skewed.  In 
most cases, all (or nearly all) the attempted intrusions are detected 
– the majority of cells in Table 5 contain 0’s (in fact we report 
“penetration” rates rather than detection rates in this table because 
otherwise all of the 100%’s would be visually overwhelming).  
But in several cases a user is frequently not detected when 
operating on another user’s computer. 

One implication of the results in Table 5 is that for a fielded 
system one could run experiments like these on some group of 
users, and then identify for which ones their computer behavior is 

sufficiently distinctive that Table 1’s algorithm provides them 
effective protection. 

____________________________________________________ 

70

75

80

85

90

95

100

1 10 100 1000
Number of Previous Values Used

D
et

ec
tio

n 
R

at
e 

(%
)

  
Figure 3.   Detection Rate as Function of Number of 

          Previous Values Used (W = 300 sec) 

Table 5.  Percentage (%) of Times that User Y Successfully 
Intruded on User X’s Machine (using W = 1200 sec). The 
columns range over Y and the rows over X.  The rightmost 
column (O) reports the rate of successful intrusions by the set 
of six outsiders.  Cells with values less than 0.5% are left 
blank. 

 Y
X  

1 2 3 4 5 6 7 8 9 10 O 

1     7  23    41  15 
2   5    1  35       2  
3     26       5  
4 14           
5   2    4         4  
6           1  20 
7         45 75  2 
8            4 
9        3    2 
10   9 60 16 1  43 6  25   3 

3.4 Comparison to Naïve Bayes 
A successful algorithm on many tasks is the Naïve Bayes 
algorithm [10], in which one assumes all the features (i.e., 
measurements in our case) are conditionally independent of each 
other given the category, and estimates the probability of 
obtaining the current set of measurements given each of the 
possible categories (intrusion versus normal behavior in our case). 

We applied the Naïve Bayes algorithm in the same experimental 
setup as used to evaluate Table 1’s algorithm.  However, the best 
results we have been able to obtain (for W = 1200 seconds) are a 
59.2% detection rate with an average of 2.0 false alarms per day 
per user, which compares poorly to Table 1’s algorithm’s results, 
in the identical scenario, of a 93.6% detection with an average of 



0.3 false alarms per day per user.  (In fact, we started out this 
project using the Naïve Bayes algorithm, and then switched to our 
Winnow-based approach when we realized that Naïve Bayes’ 
independence assumption was too severely violated for us to 
create an effective anomaly detector.) 

4. FUTURE WORK 
We discuss a few possible extensions to the work reported above 
that have not yet been fully discussed.  An obvious extension is to 
obtain and analyze data from a larger number of users, as well as 
data from a collection of server machines.  And of course it would 
be greatly beneficial to have data gathered during actual 
intrusions, rather than simulating them by replaying one user’s 
measurements on another user’s computer.  Among other 
advantages, having data from a larger pool of experimental 
subjects would allow “scaling up” issues to be addressed, 
statistically justified confidence intervals on results to be 
produced, and parameters to be better tuned (including many for 
which we have “hard-wired in” values in our current 
experiments). 

When we apply the Winnow algorithm during the training phase 
(Step 1 in Table 1), we get remarkable accuracies.  For example, 
out of 3,000,000 seconds of examples (half that should be called 
an intrusion and half that should not), we consistently obtain 
numbers on the order of only 150 missed intrusions and 25 false 
alarms, and that is from starting with all features weighted 
equally.  Clearly the Winnow algorithm can quickly pick out what 
is characteristic about each user and can quickly adjust to changes 
in the user’s behavior.  In fact, this rapid adaptation is also 
somewhat of a curse (as previously discussed in Section 2), since 
an intruder who is not immediately detected may soon be seen as 
the normal user of a given computer.  This is why we look for N 
mini-alarms in the last W seconds before either sounding an alarm 
or calling the recent measurements normal and then applying 
Winnow to these measurements; our assumption is that when the 
normal user changes behavior, only a few mini-alarms will occur, 
whereas for intruders the number of mini-alarms produced will 
exceed N.  Nevertheless, we still feel that we are not close to fully 
exploiting the power of the Winnow algorithm on the intrusion-
detection task.  With more tinkering and algorithmic variations, it 
seems possible to get closer to 99% detection rates with very few 
false alarms. 

In Section 2’s Winnow-based algorithm we estimate the 
probability of the current value for a feature and then make a 
simple “yes-no” call (see Eq. 1 and 2), regardless of how close the 
estimated probability is to the threshold.  However, it seems that 
an extremely low probability should have more impact than a 
value just below the threshold.  In the often-successful Naïve 
Bayes algorithm, for example, actual probabilities appear in the 
calculations, and it seems worthwhile to consider ways of 
somehow combining the weights of Winnow and the actual 
(rather than thresholded) probabilities. 

In our main algorithm (Table 1) we did not “condition” the 
probabilities of any of the features we measured.   Doing so might 
lead to more informative probabilities and, hence, better 
performance.  For example, instead of simply considering  
Prob(File Write Operations/sec), it might be more valuable to use 
Prob(File Write Operations/sec | MS Word is using most of the 
recent cycles), where ‘|’ is read “given.”  Similarly, one could use 

the Winnow algorithm to select good pairs of features.  However 
these alternatives might be too computationally expensive unless 
domain expertise was somehow used to choose only a small 
subset of all the possible combinations. 

In none of the experiments of this article did we mix the behavior 
of the normal user of a computer and an intruder, though that is 
likely to be the case in practice.  It is not trivial to combine two 
sets of Windows 2000 measurements in a semantically 
meaningful way (e. g., one cannot simply add the two values for 
each feature or, for example, CPU utilizations of 150% might 
result).  However, with some thought it seems possible to devise a 
plausible way to mix normal and intruder behavior.  An alternate 
approach would be to run our data-gathering software while 
someone is trying to intrude on a computer that is simultaneously 
being used by another person. 

In the results reported in Section 3, we tune parameters to get zero 
false alarms on the tuning data, and we found that on the testing 
data we were able to meet our goal of less than one false alarm 
per user per day (often we obtained test-set results more like one 
per week).  If one wanted to obtain even fewer false alarms, then 
some new techniques would be needed, since our approach 
already is getting no false alarms on the tuning set.  One solution 
we have explored is to tune the parameters to zero false alarms, 
and then to increase the stringency of our parameters - e. g., 
require 120% of the number of mini-alarms as needed to get zero 
tuning-set false alarms.  More evaluation of this and similar 
approaches is needed.  

We have also collected Windows 2000 event-log data from our 
set of 16 Shavlik Technologies employees.  However we decided 
not to use that data in our experiments since it seems one would 
need to be using data from people actually trying to intrude on 
someone else’s computer for interesting event-log data to be 
generated.  Our approach for simulating “intruders” does not 
result in then generation of meaningful event-log entries like 
failed logins. 

Another type of measurement that seems promising to monitor are 
the specific IP addresses involved in traffic to and from a given 
computer.  Possibly interesting variables to compute include the 
number of different IP addresses visited in the last N seconds,  the 
number of “first time visited” IP addresses in the last N seconds, 
and differences between incoming and outgoing IP addresses. 

A final possible future research topic is to extend the approaches 
in this article to local networks of computers, where the statistics 
of behavior across the set of computers is monitored.  Some 
intrusion attempts that might not seem anomalous on any one 
computer may appear highly anomalous when looking at the 
behavior of a set of machines. 

5. CONCLUSION 
Our approach to creating an effective intrusion-detection system 
(IDS) is to continually gather and analyze hundreds of fine-
grained measurements about Windows 2000.  The hypothesis that 
we successfully tested is that a properly (and automatically) 
chosen set of measurements can provide a “fingerprint” that is 
unique to each user, serving to accurately recognize abnormal 
usage of a given computer.  We also provide some insights into 
which system measurements play the most valuable roles in 
creating statistical profiles of users (Tables 3 and 4).  Our 



experiments indicate that we may get high intrusion-detection 
rates and low false-alarm rates, without “stealing” too many CPU 
cycles.  We believe it is of particular importance to have very low 
false-alarm rates; otherwise the warnings from IDS will soon be 
disregarded. 

Specific key lessons learned are that it is valuable to: 

• consider a large number of different properties to 
measure, since many different features play an 
important role in capturing the idiosyncratic behavior of 
at least some user (see Table 3 and 4) 

• continually reweight the importance of each feature 
measured (since users’ behavior changes), which can be 
efficiently accomplished by the Winnow algorithm [8] 

• look at features that involve more than just the 
instantaneous measurements (e. g., difference between 
the current measurement and the average over the last 
10 seconds) 

• tune parameters on a per-user basis (e. g., the number of 
“mini alarms” in the last N seconds that are needed to 
trigger an actual alarm) 

• tune parameters on “tuning” datasets and then estimate 
“future” performance by measuring detection and false-
alarm rates on a separate “testing” set (if one only looks 
at performance on the data used to train and tune the 
learner, one will get unrealistically high estimates of 
future performance; for example, we are always able to 
tune to zero false alarms) 

• look at the variance in the detection rates across users; 
for some, there are no or very few missed intrusions, 
while for others many more intrusions are missed – this 
suggests that for at least some users (or servers) our 
approach can be particularly highly effective 

An anomaly-based IDS, such as the one we present, should not be 
expected to play the sole intrusion-detection role, but such 
systems nicely complement IDS that look for known patterns of 
abuse.  New misuse strategies will always be arising, and 
anomaly-based approaches provide an excellent opportunity to 
detect them even before the internal details of the latest intrusion 
strategy are fully understood. 

6. ACKNOWLEDGMENTS 
We wish to thank the employees of Shavlik Technologies who 
volunteered to have data gathered on their personal computers.  
We also wish to thank Michael Skroch for encouraging us to 
undertake this project and Michael Fahland for programming 
support for the data-collection process.  Finally we also wish to 
thank the anonymous reviewers for their insightful comments.  

This research was supported by DARPA’s Insider Threat Active 
Profiling (ITAP) program within the ATIAS program. 

7. REFERENCES 
[1] R. Agarwal & M. Joshi, PNrule: A New Framework for 

Learning Classifier Models in Data Mining (A Case-Study in 
Network Intrusion Detection) Proc. First SIAM Intl. Conf. on 
Data Mining, 2001. 

[2] J. Anderson, Computer Security Threat Monitoring and 
Surveillance, J. P. Anderson Company Technical Report, 
Fort Washington, PA, 1980. 

[3] DARPA, Research and Development Initiatives Focused on 
Preventing, Detecting, and Responding to Insider Misuse of 
Critical Defense Information Systems, DARPA Workshop 
Report, 1999. 

[4] A. Ghosh, A. Schwartzbard, & M. Schatz, Learning Program 
Behavior Profiles for Intrusion Detection, USENIX 
Workshop on Intrusion Detection & Network Monitoring, 
April 1999. 

[5] T. Lane & C. Brodley, Approaches to Online Learning and 
Concept Drift for User Identification in Computer Security, 
Proc. KDD, pp 259-263, 1998. 

[6] A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava & V. Kumar, 
A Comparative Study of Anomaly Detection Schemes in 
Network Intrusion Detection, Proc. SIAM Conf. Data 
Mining, 2003. 

[7] W. Lee, S.J. Stolfo, and K. Mok, A Data Mining Framework 
for Building Intrusion Detection Models, Proc. IEEE Symp. 
on Security and Privacy, 1999. 

[8] N. Littlestone, Learning Quickly When Irrelevant Attributes 
Abound. Machine Learning 2, pp. 285—318. 

[9] T. Lunt, A Survey of Intrusion Detection Techniques, 
Computers and Security 12:4, pp. 405-418, 1993. 

[10]  T. Mitchell, Machine Learning, McGraw-Hill. 

[11] P. Neumann, The Challenges of Insider Misuse, SRI 
Computer Science Lab Technical Report, 1999 

[12] J. Shavlik & M. Shavlik, Final Project Report for DARPA’s 
Insider Threat Active Profiling (ITAP) program, April 2002. 

[13] C. Warrender, S. Forrest, & B. Pearlmutter. Detecting 
Intrusions using System Calls. IEEE Symposium on Security 
and Privacy, pp. 133-145, 1999. 

 

 


	Intrusion detection, anomaly detection, machine learning, us
	INTRODUCTION
	ALGORITHM DEVELOPED
	EXPERIMENTAL EVALUATION
	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

