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Abstract 
In this paper, we describe System Detection’s 

surveillance detection techniques for enclave 
environments (ESD) and peering center environments 
(PSD) and evaluate each technique over data gathered 
from two different network environments. ESD is 
evaluated over 74 hours of tcpdump packet traces (344 
million packets) from a large enclave; PSD is evaluated 
over 5 hours of tcpdump packet traces (110 million 
packets) gathered from a peering center.  Both 
surveillance detection modules were executed over the 
audit data offline to generate surveillance detection 
alerts, though the systems can be run in real-time as 
well. Our results show that both ESD and PSD 
accurately discover great quantities of surveillance 
activities (including long-lived and distributed scans) 
and can be tuned to reduce the volume of alerts. 
Furthermore, existing IDS technology may be blind to 
many activities discovered by ESD and PSD. 
 
1. Introduction 
 

Security software must detect surveillance activities 
to compete with the escalating sophistication and sheer 
prevalence of today's on-line attack procedures.  
Surveillance, the scanning of target IPs and ports for 
vulnerabilities, is the fundamental means to gather 
online attack intelligence, and is an increasingly 
common part of precise attack targeting.  This is 
reflected by an alarmingly high proportion of 
connection attempts that are indeed surveillance probes, 
as measured and presented in this paper.  The origins of 
such attempts range across most countries of the world, 
initiated by human attack activities as well as worms 
and otherwise captured drones.  The range of technical 
strategies to perform surveillance is growing in variety 
and sophistication as methods become more precise and 
more stealthy (i.e., camouflaged against detection, such 
as by stretching slowly over time or using multiple 
source addresses) [4][6][9].  Only with the full-scale 
detection of surveillance activities can security systems 
be augmented to match this arms race, organizing the 
flood of detected surveillance attempts with watch lists, 
correlation and intelligence profiling. 

Full-scale surveillance detection, i.e., detecting this 
range of surveillance activities with high precision, 
presents a series of technical challenges.  For example, 
real-time tracking of all prospective scanners within a 
high bandwidth network presents challenges with 
respect to memory use and speed, given the temporal 
analyses necessary to detect increasingly prevalent and 
stealthy scanning.  Moreover, certain network tap points 
suffer from crippling information loss, such as the 
partial information accessible at a peering center due to 
unpredictably asymmetric routing. 

This paper introduces System Detection (SysD)'s 
surveillance detection solution, which employs a 
cascading filter design that coordinates a series of 
specialized heuristics across extrapolated connection 
records, individual probes, scans and coordinated 
scanning groups. This design provides scalability via 
data reduction across aggregate filters, and detects scans 
and probes in high-bandwidth environments with high 
coverage and a low false positive (FP) rate.  Two 
variations specialize over environment class: enclave 
surveillance detection (ESD) and peering center 
surveillance detection (PSD).   

ESD is implemented and fully operational as a 
module in SysD’s Hawkeye Operational Platform 
(HOP).  The HOP infrastructure includes tools and APIs 
that allow various intrusion detection components to be 
“plugged in” and deployed.  Hawkeye modules embody 
analysis algorithms (e.g. ESD), and feature extraction 
and data parsing procedures.  

The rest of this paper is organized as follows:  in 
Section 2, we present related work in surveillance 
detection.  In Section 3, we describe how ESD and PSD 
work.  Section 4 presents a detailed evaluation applying 
ESD over data from a large enclave at a multinational, 
very security conscious, client.  Section 5 presents a 
detailed evaluation applying PSD over data from a 
peering point at a multinational, very security conscious, 
ISP.  The profiling and trends analyses in Section 4 and 
Section 5 provide critical information for security 
analysts to understand surveillance activity behavior in 
general and to select ESD and PSD parameter settings to 
optimize detection.  In Section 6, we offer concluding 
remarks and share directions of future work. 
 



 

 

2. Related Work 
 
Nearly all commercially available and open source 

intrusion detection systems contain techniques for 
detecting portscans and other forms of surveillance 
activity.  The most typical approach to surveillance 
detection is to look for X “events of interest” in a rolling 
window of Y seconds [4][6].  

One body of work related to ESD and PSD is that 
of Silicon Defense in their SPADE/SPICE project [9]. 
SPADE/SPICE is implemented as a SNORT pre-
processing engine [8]. This allows it to be run in 
conjunction with other SNORT filters or solely focused 
on scan detection.  Their approach is to collect 
statistically anomalous events (also cf. [1]) over long 
time intervals and then cluster anomalous packets 
together, theoretically into distinct surveillance 
attempts. ESD and PSD’s approach, described below in 
Section 3, is to only consider failed connections and 
other specific types of connections to be evidence of 
surveillance attempts; ESD and PSD do not use 
statistical anomaly detection to detect individual probes.  
The primary reason for this is that, as evidenced in this 
paper, surveillance is so prevalent that individual probes 
are unlikely to be statistically anomalous in nature.  
ESD and PSD also differ from SPADE/SPICE in that, 
instead of clustering to aggregate probes into scans, 
simple thresholding is employed, which may cast a 
wider net, and, demonstrably, is sufficiently precise.   

Silicon Defense’s paper provides additional, 
extensive background into the problem of detecting 
surveillance activity, surveying existing and past 
systems. 

Another system of note is scanlogd, which is a 
host-based scan detection program, although it can also 
be configured to detect portscans as a promiscuous 
network sniffer [7].  This program uses the canonical “X 
events in Y seconds” approach, but is limited to fully 
connected sockets and specific types of crafted packets. 
 
3. How SysD's Surveillance Detection 

Works 
 

Surveillance detection poses many difficult 
challenges. First, probing and scanning methods are 
varied, irregular and unpredictable, following unknown 
attacker agendas and heuristics.  Second, complete 
session re-assembly of raw TCP/IP packet data is 
impractical, since it would require complete and precise 
knowledge of all stack implementation idiosyncrasies, 
local configurations across all hosts, and which packets 
faced network errors that prevented them from reaching 
their destination.  Moreover, in an on-line deployment at 
a promiscuous network tap point, it is difficult to keep 

up with real-time session assembly of many connections 
for many hosts.  Finally, stealthy surveillance may be 
arbitrarily spread over long time-spans, effectively 
hiding its behavior amongst megabytes of data. 

Both ESD and PSD overcome these challenges with 
a three-staged process of cascading filters, as illustrated 
in Figure 1.  First, approximate sessions between 
source/destination IP pairs are extrapolated with a 
model that is largely a simplification of that described 
by Lee [5].  Second, each extrapolated session that 
represents a failed connection attempt or otherwise 
“interesting” packet is assumed to be a probe.  In the 
case of ESD, this is largely connections that show data 
only moving in one direction, i.e., from the source to the 
target, with no response.1  Third, each probing IP is 
given a score based on the number of unique destination 
IP/port pairs probed.  The IP is in turn considered a 
scanner if its score is greater than an empirically derived 
alert threshold.  IPs that pass such a threshold are likely 
true scanners (i.e., unlikely to be false positives) since a 
spread of failed connections over multiple destinations 
has few explanations beyond purposeful scanning.  The 
results shown in Section 4 illustrate how the alert 
threshold can be determined by the analyst, depending 
on network behavior and security concerns. 

 

 
Figure 1 Pipeline architecture of surveillance detection.  
Dotted lines indicate optional data flow. 

The primary difference between ESD and PSD is 
that PSD contains additional heuristics for extrapolating 
sessions and for probe detection when there is the 
possibility of asymmetric traffic (and thus visibility of 
communications in one direction only). 

                                                 
1 When applied over archived data, as in the 
experiments reported in this paper, ESD discounts 
apparently bad connections if valid connections also 
exist from the same source IP to the same destination 
IP/port pair.  This further decreases the false detection 
of individual probes. 
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Because of the precision this process provides for 
selecting probes by both ESD and PSD, individual 
probe activity may be stored for greater periods of time 
in order to assist in detecting long-term scanning 
activity.  Throughout the course of our experimentation, 
the longest of which was over 3 days of data, there was 
no need to expire any records describing individual 
probes.  

In order to reduce the number of alerts generated, 
multiple scanners can be grouped together if they are 
sufficiently close to one another in IP space 
(numerically, treating an IP as a literal 4 byte number). 
This helps find scanners who have, for example, 
obtained ranges of addresses from their ISP and are 
executing a distributed scan, or have dialed multiple 
times into their ISP getting a unique IP address for each 
connection.  Such groups are considered to be under the 
control of the same surveillance effort.  Section 4.5.3 
explores the effects of grouping. 

This detection algorithm is limited to the detection 
of surveillance that is intended to discover resources, 
such as canonical port-scans, rather than surveillance 
that intends to discover information about known 
resources by making valid connections.  As another 
limitation, the algorithm could be susceptible to decoys 
intended to cause false positives. 
 
4. ESD Evaluation and Alerts Analyses 
 

ESD was applied to 74 hours of logged traffic data 
from a large enclave at a multinational, very security 
conscious, client. This data set contains 344 million 
packets (24 GB of headers). The average bandwidth 
during the capture of this data was 0.7 megabytes per 
second, with a 3.3 megabyte per second peak (as 
measured over a one second sliding window).  A total of 
500,000 unique IP addresses were seen. 

Within the enclave data, a strikingly high 
percentage of attempted connections represent 
surveillance activity.  An estimated 11.5 million 
connections were extrapolated by ESD, of which 13% 
were determined to be probes.  This high percentage 
includes automatic probing events launched by hosts 
that were infected by worms (Code Red approximately 
47% and NIMDA 3%), although the data was not 
collected during any large worm attack such as Code 
Red.2 

SysD's surveillance detection solution can operate 
in real-time speed. Our implementation of the detection 
algorithm in C processes archive data 300 to 500 times 

                                                 
2 The data was collected approximately six months after 
the initial release of Code Red. 

the observed wire speed of the large enclave (the 74 
hours of enclave data were analyzed in 14 minutes). 

 
4.1.  Detection Precision Over Test Data  

 
A manual analysis of the alerts generated by ESD 

was performed to help determine how many 
surveillance alerts were correctly and incorrectly 
generated.  From the unfiltered 97,152 alerts 
representing potential scanners, 1000 alerts (1%) were 
selected to undergo human analysis. 

From scanners who sent between 1 probing 
connection and 35 probing connections, 10 alerts were 
randomly chosen from each level (i.e., 10 alerts were 
selected from scanners who sent 1 probing connection, 
10 alerts were selected from scanners who send 2 
probing connections, etc), for a total of 350 alerts.  
Additionally, 10 alerts were selected from each level 
from 36 to 652,118, which created a set of 1933 alerts, 
from which 650 alerts were randomly selected.   We 
selected the alerts in this fashion for two purposes: we 
posited that as an alert threshold over the number of 
probes was decreased, the false positive rate would 
increase and thus wanted fine granularity in the range of 
potentially likely threshold settings; and, simple random 
selection would be very strongly biased towards alerts 
where the scanner sent probes to a low number of IPs, 
since such scanners are much more prevalent (as 
indicated by the shape of the curve in Figure 2). 

ESD performs with high precision.  From the set of 
1000 alerts, we discovered 6 alerts that we determined 
were false positives (0.6% of the alerts).3  We also 
characterized the reason for the generation of these 
alerts.  The reasons were evenly split, with three alerts 
being generated due to local DNS servers attempting to 
resolve hosts on multiple lame DNS servers (DNS 
servers which had DNS domains delegated to them, but 
were either not up or not running DNS servers), and 
three alerts being generated due to buggy TCP/IP stacks 
(servers which accepted a connection, properly tore the 
connection down, and then an hour or two later, 
generated spontaneous TCP reset (RST) packets to abort 
this connection which had long since been shut down). 
We believe that both types of false positives should be 
easy to eliminate either through parameter adjustment, 
or through automated alert post-processing. 
(Alternately, the alerts could be revised and sent to the 
appropriate systems administration staff so that the 
necessary configuration could be corrected, or the non-
                                                 
3 The 994 true positives inspected showed 
characteristics conclusively indicative of valid behavior.  
Our full results were given to three other parties with 
vested interests, and no error was discovered in our 
analysis. 



 

 

compliant OS could be patched.  However, we 
recognize that this may not be practical, as useful as it 
might be.)  Due to the small sample size of false 
positives, no particular conclusions could be reached as 
to an appropriate threshold setting which would limit 
false positives. 

This high precision shows that, in general, even 
scanners detected only as initiating bad connections to a 
small number of destination points are in fact true 
positives.  Note that, indeed, certain other explanations 
for multiple, unidirectional connection destinations such 
as multicasting have been informally ruled out.  In 
general, the high precision provided by ESD is possible 
because it is able to gain almost complete knowledge 
about the state of the connections it observed due to the 
symmetric nature of its installation point.  Asymmetric 
traffic views require PSD. 

 
4.2. Comparison to Production Sensor 

 
We were given access to the alerts generated by a 

sensor in production use by our customer during the 
time our data set was gathered in order to compare them 
with our alerts.  At equivalent threshold settings, our 

system found 8,603 scanners and the production sensor 
found 23 scanners.  Their system had no false positives, 
and found one scanner we did not (caused by a bizarre 
configuration at the enclave involving a very large 
number of IP addresses performing honeypot decoying 
which hid the scanning activity from our algorithm).  
Our system therefore found close to 8600 scanners that 
the production system did not, including eight of the ten 
most active sources of scanning activity. 

 
4.3. Alert Distribution Analyses 

 
During manual analysis of the entire alert set, it was 

discovered that scanners were coming from 181 
countries.  Since there are only around 192 countries in 
the world, this is close or equal to every Internet-
connected country.  Additionally, manual analysis of the 
selected alerts revealed that at least 47% of the scans 
were generated by Code Red and 3% were generated by 
NIMDA. Considering Code Red had been out for 
approximately 10 months at the time the data set was 
gathered, and NIMDA had been out for 7 months, this 
speaks poorly of the promptness of worldwide patch 
installation [2][3]. 

 
Figure 2 Number of probing sources detected by threshold.  All four graphs are representations of the same data.  The 
vertical axis of the lower left graph and both axes of the outer large graph are on a logarithmic scale. 

 



 

 

4.4. The effect of alert threshold selection 
 

The example analyses performed in this and the 
following subsection over detected surveillance activity 
serve to:  
• Illustrate detection performance over various 

parameter values. 
• Reveal characteristics of today’s network and attack 

behavior, demonstrating a means of profiling 
different scan behaviors. 

• Enable analysts to select detection parameter values 
appropriate for the specific network behavior and 
security concerns at the enclave.  

 
As described in Section 3, the alert threshold 

controls the number of surveillance alerts produced; 
only source IPs that perform enough probes to cross the 
threshold will be considered a scanner. Threshold 
selection is critical for system optimization since a high 
threshold may result in many scans going undetected, 
while a low threshold may result in an overwhelming 
number of alerts. 

Figure 2, "Number of Probing Sources Detected by 
Threshold," displays four graphs, each representing 
various views on the same data: given the choice of an 
alert threshold (horizontal axis), how many source IPs 
would be considered a scanner (vertical axis).  As an 
example, examining Point A in the graph inset at the 
upper-right reveals that when the alert threshold is set at 
1000, there are 79 source IPs that trigger an alert (i.e., 
79 scanners). 

The number of alerts can be drastically lowered 
with relatively small alert thresholds.  As shown in the 
two upper-right inset graphs, the data points "hug the 
walls."  This means that most IPs that emit probes do so 
at most a small number of times, and that therefore even 
relatively low threshold settings will eliminate all the 
infrequent probers, and therefore only alert on a small 
fraction of the sources that probe.  The details of this 
dramatic influence of threshold selection are displayed 
in the upper-right inset graph. 

The ability to exclude the abundance of probing IPs 
with a low threshold is a beneficial, positive result.  This 
means the number of detection alerts displayed for the 
human analyst can be controllably low by dismissing 
scanners arguably less likely to be threatening in intent 
or focus. One motivation for dismissing IP addresses 
that appear to probe with very low frequency is that they 
are often exhibiting "backscatter" (i.e., replies sent to 
the enclave generated in response to packets sourced by 
attackers who spoof IP addresses of the enclave).  
Further, as mentioned above, scanners that direct probes 
to a wider range of target IPs are more likely to be true 
scanners, as opposed to an IP simply initiating a small 
number of bad connections for other reasons.  Another 

reason that it may be pragmatic to ignore these 
relatively inactive hosts is that, if they are scanning a 
lot, their individual probes must be dispersed across a 
range of addresses beyond the protected enclave, and 
therefore not targeting the enclave that ESD is 
protecting.  Note, however, that thresholding will by 
definition reduce the detection of the more stealthy 
scanners.  Alternatively, by integrating multiple sensors 
and correlating slow or low volume alerts among a 
number of collaborating and distributed sites, one may 
distinguish backscatter and harmless events from 
intentional stealthy scan activity.  We further address 
this in Section 6, below. 

Because threshold selection has such a large effect 
in its lower ranges, the two “normal” graphs examined 
so far make it difficult to characterize its effects beyond 
the low-end of possible threshold values.  This difficulty 
is addressed with the views presented by the other two 
graphs in this figure (the large one and the lower-left 
inset), which display the data on a logarithmic scale.  
This means that the values increase exponentially along 
each axis, revealing the effects of threshold selection 
across a much larger range of possible values. 

The alert threshold has a particularly drastic (i.e., 
beneficial) effect in the very low range of values.  The 
lower-left inset, which presents a logarithmic view 
zooming in on the area where thresholds may typically 
be set (0-50 range), reveals an acceleration of detected 
scanners starting in the 20-25 range.  The acceleration is 
even greater (even in the log scale) as you approach 
zero.  The logarithmic view reveals a number of 
informative "inflection points" at certain threshold 
values.  As shown in the large graph, there are two 
pronounced "knees" out towards the right. This means 
that, at each of these areas, a relatively small increase in 
threshold value will eliminate a relatively large number 
of scanners.  One interpretation of this is that, for some 
reason, it is unusual for an IP to surpass that amount of 
probe or probe-like activity.  Specifically, the locations 
of these knees are at 8192 (8K) probes and 65536 (64K 
is both the size of a “class B” network and the number 
of ports in a TCP/IP stack) probes, which are typical 
configuration values to use.  Also, for example, there 
may be an absolute limit to the probing speed of many 
hosts due to common network capabilities limitations or 
common surveillance tool configurations – recall that all 
the counts in this data are over only three days of 
activity.  Speed limitations are also visible in the 
analysis of intraprobe delay in Section 4.5.2. 
 
4.5. The effects of other parameters 
 

Figure 3, Figure 4 and Figure 5 display the number 
of detected scanners (i.e., probing IPs) as influenced by 
additional detection parameters. 



 

 

 
Figure 3 Number of probing sources by scan length.  
The inset graph is a logarithmic representation of the 
same data. 

 
4.5.1. Scan Length.  Scan length is defined as the 
total duration of the surveillance attempt (i.e. the time 
between the first and last probes).  Figure 3, "Number of 
Probing Sources by Scan Length", displays the 
cumulative number of scanners for each scan length.  
For example, Point B indicates that 100,000 source IPs 
probed for 29,242 seconds or less.  This is the majority 
of scanners – most scanners don't scan for longer than 
that within the 3 days of data.  However, 48% of 
scanners spend more than one hour scanning, and 39% 
of scanners spend more than one day scanning.  The 
sharp acceleration (even in the log view) near the end of 
the graph, for scans which lasted close to three days, is 
most likely not a sign that scanners only have the 

patience to wait three days, but instead indicates that a 
large number of scanners appeared to terminate simply 
because of the limited (three day) amount of data we 
received.  Instead, we expect that the slowly climbing 
line would extend itself far to the right, indicating that 
some scanners spend enormous amounts of time 
scanning this enclave. 
 
4.5.2. Average Intraprobe Delay.  Average 
intraprobe delay is defined as the average time between 
probes during the duration of surveillance, i.e., from the 
time of a scanning IP’s first probe until its last.  Figure 
4, "Number of probing sources by average intraprobe 
delay”, displays the cumulative number of scanners for 
each intraprobe delay.  That is, only probing IPs for 
which the average amount of time between probes is 
less than or equal to a given value along the horizontal 
axis are counted as a scanner.  For example, Point C 
indicates that 66,814 source IPs have an average delay 
of 1,000 seconds or less. The majority (87%) of 
scanners has an average delay of 5,000 seconds or less – 
most scanners don't wait longer than that, on average, 
between probes.  That is, only a small number of 
scanners make their scanning stealthier than that.  
However, 18% of scanners delay more than one hour 
between packets, 10% of scanners delay more than two 
hours between packets, 5% delay more than four hours, 
and 90 (0.1%) delay more than one day.  Finally we 
discovered a very small number of scanners that waited 
more than 70 hours between probes, indicating a strong 
desire to remain unnoticed by security analysts. 

 

Figure 4 Number of probing sources by average intraprobe delay – three views of the same data.. 



 

 

 
Figure 5 Number of probing sources by group distance, 
with a probing threshold set at 14.  The outer graph is in a 
log scale.  The inset graphs represent the same data in a 
normal scale. 
 
4.5.3. Group Distance.  Group distance is the 
maximum distance two IP addresses may be away from 
each other (numerically, treating an IP as a literal 4 byte 
number) in order for them to be considered part of the 
same surveillance effort. This produces a larger number 
of probing sources since nearby scanners who 
individually do not produce enough traffic to exceed an 
alert threshold (14 in this case4) will exceed the threshold 
when grouped together.  Figure 5, "Number of Probing 
Sources by Group Distance", displays the number of 
scanners for each of a range of group distances, 
cumulatively.  Given a group distance (the horizontal 
axis), any group of IPs that performs more than 14 probes 
is considered entirely composed of scanners.  The vertical 
axis represents the aggregate number of probing IPs 
across all scanning groups.  For example, Point D 
indicates that 44,179 source IPs are counted as scanners 
when the distance threshold for grouping is 256.  The 
graphs show that relatively small group sizes very quickly 
include almost all probers (as many as are considered 
scanners with a threshold of 0 and no grouping) - almost 
all probers get indiscriminately grouped. Therefore, only 
small group sizes can be effective, if at all. 

                                                 
4 The value 14 is adopted from an expert analyst at the 
client site who established it as a heuristic. 

 
Figure 6 Number of individual probes by source IP 
address.  
 
4.5.4. Additional Analyses.  Figure 6, Figure 7 and 
Figure 8 provide additional analyses.  Figure 6 and Figure 
7, which are complementary, illustrate that there are 
fewer source hosts than target hosts, and that each source 
host scans more frequently than each target host is 
scanned.  This is to be expected if there are more "good 
guys" than "bad guys."  The wide target distribution also 
indicates that this enclave has a large number of IP 
addresses assigned to it, and that the enclave was in fact 
itself the source of scanning activity.  Figure 8 displays 
the number of IP addresses seen in the dataset.  While this 
is related to the distribution of source and target hosts, it 
is also interesting to note the acceleration of IP addresses 
seen at 10 hours, 56 hours, and 70 hours.  This seems 
likely to be caused by address spoofing in an attempt to 
hide the wheat in the chaff.  Backscatter from address 
spoofing could be a possibility, but manual analysis tends 
to show that the packets which were received do not 
correspond to this thesis.  These points of acceleration are 
worthy of further analysis. 
 

 
Figure 7 Number of individual probes by target IP 
address. 



 

 

 
Figure 8 Number of IP address observed by time. 

 
5. PSD Evaluation and Results 
 

PSD was applied to 5 hours of logged traffic data 
from a peering point at a large, multinational, very 
security conscious, ISP.  This data set contains 110 
million packets (8 GB of headers).  The average 
bandwidth during the capture of this data was 2.6 
megabytes per second, with a 5.7 megabyte per second 
peak (as measured over a one second sliding window).  A 
total of 81,000 unique IP addresses were seen.  An 
estimated 5.4 million connections were extrapolated by 
PSD, of which 8% were determined to be probes.  As 
with the data analyzed with ESD, it is probable that hosts 
that were infected by worms were performing much of 
the probing activity. 

A manual analysis of the alerts generated by PSD 
was performed to help determine how many surveillance 
alerts were correctly and incorrectly generated.  From the 
filtered list of 2,670 alerts representing potential scanners 
who sent fourteen or more probing connections, 652 
(24%) alerts were selected to undergo human analysis.  
The sample of alerts which were manually analyzed was 
gathered from all alerts generated from traffic during one 
of the five hours, plus all alerts from the twenty most 
active scanning sources. 

PSD performs with reasonable precision, depending 
on security task and needs.  From the set of 652 alerts, we 
discovered 95 (14.6%) which we believed were false 
positives.  This investigative procedure was far more 
difficult than what we encountered during ESD testing, as 
the asymmetric nature of the dataset (30% of the 
connections involved traffic for which we only saw one 
of the two participants’ packet transmissions), which 
caused even experienced human analysis great difficulty 
in deciding whether or not an alert was valid.  While this 
percentage of false positives is high, it is solely a result of 
the asymmetric nature of the traffic.  Additionally, when 
considering only alerts which involved sources outside 
the range of addresses administered by this particular 

environment, the false positive rate fell to 4%.  It is hoped 
that further research and characterization of the data set 
and results will provide more opportunities for false 
positive reduction. 

While the precision of this technique is less than that 
of ESD, it provides a valuable tool for detection of 
surveillance activity at a point in the network hierarchy 
on the Internet backbone.  The precision degradation is 
primarily caused by the asymmetric nature of the traffic 
flow.  Even highly experienced human analysts looking at 
the asymmetric data frequently do not have enough 
information to adequately determine whether or not a 
particular packet trace represents a scan or not. 

We were given access to the alerts generated by the 
installed system at the peering site, but we quickly 
discovered that this system simply produced a list of 
every single source which produced connections to N or 
more unique destinations over a given time window.  This 
obviously included every scan we detected, and some 
12,000 other perfectly innocuous hosts.  Human analysts 
at the site were responsible for manually discovering the 
scans from this candidate pool. 

A C implementation of PSD is estimated to perform 
with the same speed as ESD (current results were 
gathered using a Perl prototype). 
 
6. Conclusions and Future Work 
 

Both ESD and PSD have proven successful at 
detecting the wide range of surveillance activity within 
large, realistic data archives; ESD has done so with a 
particularly high degree of precision, and hundreds of 
times faster than observed wire speed.   

The example analyses performed in this paper over 
detected surveillance activity serve to:  
• Illustrate detection performance over various 

parameter values. 
• Reveal characteristics of today’s network and 

scanning behavior. 
• Enable analysts to select parameter values 

appropriate for the specific network behavior and 
security concerns at the enclave.  

These analyses lead to the following conclusions: 
• Surveillance activity is very prevalent. 
• Since even a low detection threshold can drastically 

reduce alerts, fewer false negatives may be 
generated. 

• Grouping scanners reduces alerts, but must be limited 
in range to remain effective. 

 
The cascading filter design of our surveillance 

detection algorithm enhances its extensibility, with the 
expectation that future versions must scale and evolve to 
match increasing bandwidths and to match the continued 



 

 

arms race of surveillance methods.  For example, the 
detection filters can be deployed in a parallel pipelined 
fashion for a linear increase in execution speed.  
Additionally, improved, specialized or refined detection 
techniques and heuristics can be integrated at each level 
by modifying the corresponding filter, matching specific 
advances in the arms race.   

Future deployments of this technology will display, 
through the Hawkeye IDSWatch UI, complete 
intelligence profiles of surveillance activities, including 
graphical trend depictions such as those shown above in 
Section 4 for ESD.  This profile consists of a range of 
measures and statistics that characterize surveillance 
trends, such as the number of scans per time unit, the 
number of scanners, the percentage of activity that is 
surveillance, the breakdown of source country 
frequencies, the most frequently targeted IPs, the 
breakdown of surveillance and surveillance-related 
activities (i.e., probes, scans, etc.), and temporal 
frequency trends (e.g., “stealthiness”) of individual 
scanners. 

Future enhancements and research will also include: 
• Sharing and cross-referenced correlation of 

surveillance detection across distributed sites.  
Evidence of malicious or electronically captured 
probing source IPs detected by ESD and PSD 
installations will be shared in order to increase 
detection confidence, determine target ranges and 
distributions, and create a global view. 

• Divide scanning analysis data by originating 
countries or infected domain hosts controlled by a 
client or affiliates, and visually represent it in 
graphical or geographical formats, i.e., a “Big Board” 
alert display.  This process was performed manually 
for the example data sets. 

• Inference of quantity of undetected stealthy scans, 
i.e., scanning activity too slow to be detected within a 
given time span of analyzed network behavior.  This 
inference will be based on the falloff rate of, for 
example, average intra-probe delay. 

• Efforts to aggregate and correlate alert streams in 
order to reduce analyst workload and provide 
intelligence discovery that reveals alert trends and 
enemy assessment and fingerprinting. Efforts 
include: 
• “Watchlist” generation of frequent offenders.  

As surveillance alerts are generated over days, 
weeks, and months, it is expected (and human 
analysts interviewed agree) that trends quickly 
emerge as to certain sources which scan 
continually.  Additional analysis modules which 
score scanners and attackers by their long-term 
scanning (or indeed, attack) patterns will create a 
database of addresses which bear additional 
scrutiny or indeed may be passed to law 

enforcement for traditional prosecution (though 
this is frequently difficult for foreign sourced 
scans and attacks). 

• “Danger” assessment of protected hosts.  An 
additional analysis module will report which IPs 
are most frequently targeted by watchlist-tracked 
IPs that are considered dangerous with respect to 
their originating country, organization or 
behavior (inferred intention).  Response will 
include reassignment of target IPs or proactive 
security responses to tighten security on 
machines that are frequently targeted 

• Automatic clustering of scanning activities 
according to temporal behavior patterns to 
categorize activity by its source hacker method, 
tool or script employed, or worm incarnation.  
This can be considered a generalized form of 
passive fingerprinting.  Results will in turn 
inform intention inference. 
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