

Surveillance Detection in High Bandwidth Environments

Seth Robertson1, Eric V. Siegel1, Matt Miller1, and Salvatore J. Stolfo2

1System Detection, Inc.

{seth,evs,matt}@sysd.com

2Columbia University
sal@cs.columbia.edu

Abstract
In this paper, we describe System Detection’s

surveillance detection techniques for enclave
environments (ESD) and peering center environments
(PSD) and evaluate each technique over data gathered
from two different network environments. ESD is
evaluated over 74 hours of tcpdump packet traces (344
million packets) from a large enclave; PSD is evaluated
over 5 hours of tcpdump packet traces (110 million
packets) gathered from a peering center. Both
surveillance detection modules were executed over the
audit data offline to generate surveillance detection
alerts, though the systems can be run in real-time as
well. Our results show that both ESD and PSD
accurately discover great quantities of surveillance
activities (including long-lived and distributed scans)
and can be tuned to reduce the volume of alerts.
Furthermore, existing IDS technology may be blind to
many activities discovered by ESD and PSD.

1. Introduction

Security software must detect surveillance activities
to compete with the escalating sophistication and sheer
prevalence of today's on-line attack procedures.
Surveillance, the scanning of target IPs and ports for
vulnerabilities, is the fundamental means to gather
online attack intelligence, and is an increasingly
common part of precise attack targeting. This is
reflected by an alarmingly high proportion of
connection attempts that are indeed surveillance probes,
as measured and presented in this paper. The origins of
such attempts range across most countries of the world,
initiated by human attack activities as well as worms
and otherwise captured drones. The range of technical
strategies to perform surveillance is growing in variety
and sophistication as methods become more precise and
more stealthy (i.e., camouflaged against detection, such
as by stretching slowly over time or using multiple
source addresses) [4][6][9]. Only with the full-scale
detection of surveillance activities can security systems
be augmented to match this arms race, organizing the
flood of detected surveillance attempts with watch lists,
correlation and intelligence profiling.

Full-scale surveillance detection, i.e., detecting this
range of surveillance activities with high precision,
presents a series of technical challenges. For example,
real-time tracking of all prospective scanners within a
high bandwidth network presents challenges with
respect to memory use and speed, given the temporal
analyses necessary to detect increasingly prevalent and
stealthy scanning. Moreover, certain network tap points
suffer from crippling information loss, such as the
partial information accessible at a peering center due to
unpredictably asymmetric routing.

This paper introduces System Detection (SysD)'s
surveillance detection solution, which employs a
cascading filter design that coordinates a series of
specialized heuristics across extrapolated connection
records, individual probes, scans and coordinated
scanning groups. This design provides scalability via
data reduction across aggregate filters, and detects scans
and probes in high-bandwidth environments with high
coverage and a low false positive (FP) rate. Two
variations specialize over environment class: enclave
surveillance detection (ESD) and peering center
surveillance detection (PSD).

ESD is implemented and fully operational as a
module in SysD’s Hawkeye Operational Platform
(HOP). The HOP infrastructure includes tools and APIs
that allow various intrusion detection components to be
“plugged in” and deployed. Hawkeye modules embody
analysis algorithms (e.g. ESD), and feature extraction
and data parsing procedures.

The rest of this paper is organized as follows: in
Section 2, we present related work in surveillance
detection. In Section 3, we describe how ESD and PSD
work. Section 4 presents a detailed evaluation applying
ESD over data from a large enclave at a multinational,
very security conscious, client. Section 5 presents a
detailed evaluation applying PSD over data from a
peering point at a multinational, very security conscious,
ISP. The profiling and trends analyses in Section 4 and
Section 5 provide critical information for security
analysts to understand surveillance activity behavior in
general and to select ESD and PSD parameter settings to
optimize detection. In Section 6, we offer concluding
remarks and share directions of future work.

2. Related Work

Nearly all commercially available and open source

intrusion detection systems contain techniques for
detecting portscans and other forms of surveillance
activity. The most typical approach to surveillance
detection is to look for X “events of interest” in a rolling
window of Y seconds [4][6].

One body of work related to ESD and PSD is that
of Silicon Defense in their SPADE/SPICE project [9].
SPADE/SPICE is implemented as a SNORT pre-
processing engine [8]. This allows it to be run in
conjunction with other SNORT filters or solely focused
on scan detection. Their approach is to collect
statistically anomalous events (also cf. [1]) over long
time intervals and then cluster anomalous packets
together, theoretically into distinct surveillance
attempts. ESD and PSD’s approach, described below in
Section 3, is to only consider failed connections and
other specific types of connections to be evidence of
surveillance attempts; ESD and PSD do not use
statistical anomaly detection to detect individual probes.
The primary reason for this is that, as evidenced in this
paper, surveillance is so prevalent that individual probes
are unlikely to be statistically anomalous in nature.
ESD and PSD also differ from SPADE/SPICE in that,
instead of clustering to aggregate probes into scans,
simple thresholding is employed, which may cast a
wider net, and, demonstrably, is sufficiently precise.

Silicon Defense’s paper provides additional,
extensive background into the problem of detecting
surveillance activity, surveying existing and past
systems.

Another system of note is scanlogd, which is a
host-based scan detection program, although it can also
be configured to detect portscans as a promiscuous
network sniffer [7]. This program uses the canonical “X
events in Y seconds” approach, but is limited to fully
connected sockets and specific types of crafted packets.

3. How SysD's Surveillance Detection

Works

Surveillance detection poses many difficult
challenges. First, probing and scanning methods are
varied, irregular and unpredictable, following unknown
attacker agendas and heuristics. Second, complete
session re-assembly of raw TCP/IP packet data is
impractical, since it would require complete and precise
knowledge of all stack implementation idiosyncrasies,
local configurations across all hosts, and which packets
faced network errors that prevented them from reaching
their destination. Moreover, in an on-line deployment at
a promiscuous network tap point, it is difficult to keep

up with real-time session assembly of many connections
for many hosts. Finally, stealthy surveillance may be
arbitrarily spread over long time-spans, effectively
hiding its behavior amongst megabytes of data.

Both ESD and PSD overcome these challenges with
a three-staged process of cascading filters, as illustrated
in Figure 1. First, approximate sessions between
source/destination IP pairs are extrapolated with a
model that is largely a simplification of that described
by Lee [5]. Second, each extrapolated session that
represents a failed connection attempt or otherwise
“interesting” packet is assumed to be a probe. In the
case of ESD, this is largely connections that show data
only moving in one direction, i.e., from the source to the
target, with no response.1 Third, each probing IP is
given a score based on the number of unique destination
IP/port pairs probed. The IP is in turn considered a
scanner if its score is greater than an empirically derived
alert threshold. IPs that pass such a threshold are likely
true scanners (i.e., unlikely to be false positives) since a
spread of failed connections over multiple destinations
has few explanations beyond purposeful scanning. The
results shown in Section 4 illustrate how the alert
threshold can be determined by the analyst, depending
on network behavior and security concerns.

Figure 1 Pipeline architecture of surveillance detection.
Dotted lines indicate optional data flow.

The primary difference between ESD and PSD is
that PSD contains additional heuristics for extrapolating
sessions and for probe detection when there is the
possibility of asymmetric traffic (and thus visibility of
communications in one direction only).

1 When applied over archived data, as in the
experiments reported in this paper, ESD discounts
apparently bad connections if valid connections also
exist from the same source IP to the same destination
IP/port pair. This further decreases the false detection
of individual probes.

Internet

Network audit point

connection
extrapolation

probe
detection

scan
detection

grouping of
scanning hosts

Analyst

Analyst

Hawkeye
IDSWatch UI

intelligence profile of
surveillance activity

Because of the precision this process provides for
selecting probes by both ESD and PSD, individual
probe activity may be stored for greater periods of time
in order to assist in detecting long-term scanning
activity. Throughout the course of our experimentation,
the longest of which was over 3 days of data, there was
no need to expire any records describing individual
probes.

In order to reduce the number of alerts generated,
multiple scanners can be grouped together if they are
sufficiently close to one another in IP space
(numerically, treating an IP as a literal 4 byte number).
This helps find scanners who have, for example,
obtained ranges of addresses from their ISP and are
executing a distributed scan, or have dialed multiple
times into their ISP getting a unique IP address for each
connection. Such groups are considered to be under the
control of the same surveillance effort. Section 4.5.3
explores the effects of grouping.

This detection algorithm is limited to the detection
of surveillance that is intended to discover resources,
such as canonical port-scans, rather than surveillance
that intends to discover information about known
resources by making valid connections. As another
limitation, the algorithm could be susceptible to decoys
intended to cause false positives.

4. ESD Evaluation and Alerts Analyses

ESD was applied to 74 hours of logged traffic data
from a large enclave at a multinational, very security
conscious, client. This data set contains 344 million
packets (24 GB of headers). The average bandwidth
during the capture of this data was 0.7 megabytes per
second, with a 3.3 megabyte per second peak (as
measured over a one second sliding window). A total of
500,000 unique IP addresses were seen.

Within the enclave data, a strikingly high
percentage of attempted connections represent
surveillance activity. An estimated 11.5 million
connections were extrapolated by ESD, of which 13%
were determined to be probes. This high percentage
includes automatic probing events launched by hosts
that were infected by worms (Code Red approximately
47% and NIMDA 3%), although the data was not
collected during any large worm attack such as Code
Red.2

SysD's surveillance detection solution can operate
in real-time speed. Our implementation of the detection
algorithm in C processes archive data 300 to 500 times

2 The data was collected approximately six months after
the initial release of Code Red.

the observed wire speed of the large enclave (the 74
hours of enclave data were analyzed in 14 minutes).

4.1. Detection Precision Over Test Data

A manual analysis of the alerts generated by ESD

was performed to help determine how many
surveillance alerts were correctly and incorrectly
generated. From the unfiltered 97,152 alerts
representing potential scanners, 1000 alerts (1%) were
selected to undergo human analysis.

From scanners who sent between 1 probing
connection and 35 probing connections, 10 alerts were
randomly chosen from each level (i.e., 10 alerts were
selected from scanners who sent 1 probing connection,
10 alerts were selected from scanners who send 2
probing connections, etc), for a total of 350 alerts.
Additionally, 10 alerts were selected from each level
from 36 to 652,118, which created a set of 1933 alerts,
from which 650 alerts were randomly selected. We
selected the alerts in this fashion for two purposes: we
posited that as an alert threshold over the number of
probes was decreased, the false positive rate would
increase and thus wanted fine granularity in the range of
potentially likely threshold settings; and, simple random
selection would be very strongly biased towards alerts
where the scanner sent probes to a low number of IPs,
since such scanners are much more prevalent (as
indicated by the shape of the curve in Figure 2).

ESD performs with high precision. From the set of
1000 alerts, we discovered 6 alerts that we determined
were false positives (0.6% of the alerts).3 We also
characterized the reason for the generation of these
alerts. The reasons were evenly split, with three alerts
being generated due to local DNS servers attempting to
resolve hosts on multiple lame DNS servers (DNS
servers which had DNS domains delegated to them, but
were either not up or not running DNS servers), and
three alerts being generated due to buggy TCP/IP stacks
(servers which accepted a connection, properly tore the
connection down, and then an hour or two later,
generated spontaneous TCP reset (RST) packets to abort
this connection which had long since been shut down).
We believe that both types of false positives should be
easy to eliminate either through parameter adjustment,
or through automated alert post-processing.
(Alternately, the alerts could be revised and sent to the
appropriate systems administration staff so that the
necessary configuration could be corrected, or the non-

3 The 994 true positives inspected showed
characteristics conclusively indicative of valid behavior.
Our full results were given to three other parties with
vested interests, and no error was discovered in our
analysis.

compliant OS could be patched. However, we
recognize that this may not be practical, as useful as it
might be.) Due to the small sample size of false
positives, no particular conclusions could be reached as
to an appropriate threshold setting which would limit
false positives.

This high precision shows that, in general, even
scanners detected only as initiating bad connections to a
small number of destination points are in fact true
positives. Note that, indeed, certain other explanations
for multiple, unidirectional connection destinations such
as multicasting have been informally ruled out. In
general, the high precision provided by ESD is possible
because it is able to gain almost complete knowledge
about the state of the connections it observed due to the
symmetric nature of its installation point. Asymmetric
traffic views require PSD.

4.2. Comparison to Production Sensor

We were given access to the alerts generated by a

sensor in production use by our customer during the
time our data set was gathered in order to compare them
with our alerts. At equivalent threshold settings, our

system found 8,603 scanners and the production sensor
found 23 scanners. Their system had no false positives,
and found one scanner we did not (caused by a bizarre
configuration at the enclave involving a very large
number of IP addresses performing honeypot decoying
which hid the scanning activity from our algorithm).
Our system therefore found close to 8600 scanners that
the production system did not, including eight of the ten
most active sources of scanning activity.

4.3. Alert Distribution Analyses

During manual analysis of the entire alert set, it was

discovered that scanners were coming from 181
countries. Since there are only around 192 countries in
the world, this is close or equal to every Internet-
connected country. Additionally, manual analysis of the
selected alerts revealed that at least 47% of the scans
were generated by Code Red and 3% were generated by
NIMDA. Considering Code Red had been out for
approximately 10 months at the time the data set was
gathered, and NIMDA had been out for 7 months, this
speaks poorly of the promptness of worldwide patch
installation [2][3].

Figure 2 Number of probing sources detected by threshold. All four graphs are representations of the same data. The
vertical axis of the lower left graph and both axes of the outer large graph are on a logarithmic scale.

4.4. The effect of alert threshold selection

The example analyses performed in this and the
following subsection over detected surveillance activity
serve to:
• Illustrate detection performance over various

parameter values.
• Reveal characteristics of today’s network and attack

behavior, demonstrating a means of profiling
different scan behaviors.

• Enable analysts to select detection parameter values
appropriate for the specific network behavior and
security concerns at the enclave.

As described in Section 3, the alert threshold

controls the number of surveillance alerts produced;
only source IPs that perform enough probes to cross the
threshold will be considered a scanner. Threshold
selection is critical for system optimization since a high
threshold may result in many scans going undetected,
while a low threshold may result in an overwhelming
number of alerts.

Figure 2, "Number of Probing Sources Detected by
Threshold," displays four graphs, each representing
various views on the same data: given the choice of an
alert threshold (horizontal axis), how many source IPs
would be considered a scanner (vertical axis). As an
example, examining Point A in the graph inset at the
upper-right reveals that when the alert threshold is set at
1000, there are 79 source IPs that trigger an alert (i.e.,
79 scanners).

The number of alerts can be drastically lowered
with relatively small alert thresholds. As shown in the
two upper-right inset graphs, the data points "hug the
walls." This means that most IPs that emit probes do so
at most a small number of times, and that therefore even
relatively low threshold settings will eliminate all the
infrequent probers, and therefore only alert on a small
fraction of the sources that probe. The details of this
dramatic influence of threshold selection are displayed
in the upper-right inset graph.

The ability to exclude the abundance of probing IPs
with a low threshold is a beneficial, positive result. This
means the number of detection alerts displayed for the
human analyst can be controllably low by dismissing
scanners arguably less likely to be threatening in intent
or focus. One motivation for dismissing IP addresses
that appear to probe with very low frequency is that they
are often exhibiting "backscatter" (i.e., replies sent to
the enclave generated in response to packets sourced by
attackers who spoof IP addresses of the enclave).
Further, as mentioned above, scanners that direct probes
to a wider range of target IPs are more likely to be true
scanners, as opposed to an IP simply initiating a small
number of bad connections for other reasons. Another

reason that it may be pragmatic to ignore these
relatively inactive hosts is that, if they are scanning a
lot, their individual probes must be dispersed across a
range of addresses beyond the protected enclave, and
therefore not targeting the enclave that ESD is
protecting. Note, however, that thresholding will by
definition reduce the detection of the more stealthy
scanners. Alternatively, by integrating multiple sensors
and correlating slow or low volume alerts among a
number of collaborating and distributed sites, one may
distinguish backscatter and harmless events from
intentional stealthy scan activity. We further address
this in Section 6, below.

Because threshold selection has such a large effect
in its lower ranges, the two “normal” graphs examined
so far make it difficult to characterize its effects beyond
the low-end of possible threshold values. This difficulty
is addressed with the views presented by the other two
graphs in this figure (the large one and the lower-left
inset), which display the data on a logarithmic scale.
This means that the values increase exponentially along
each axis, revealing the effects of threshold selection
across a much larger range of possible values.

The alert threshold has a particularly drastic (i.e.,
beneficial) effect in the very low range of values. The
lower-left inset, which presents a logarithmic view
zooming in on the area where thresholds may typically
be set (0-50 range), reveals an acceleration of detected
scanners starting in the 20-25 range. The acceleration is
even greater (even in the log scale) as you approach
zero. The logarithmic view reveals a number of
informative "inflection points" at certain threshold
values. As shown in the large graph, there are two
pronounced "knees" out towards the right. This means
that, at each of these areas, a relatively small increase in
threshold value will eliminate a relatively large number
of scanners. One interpretation of this is that, for some
reason, it is unusual for an IP to surpass that amount of
probe or probe-like activity. Specifically, the locations
of these knees are at 8192 (8K) probes and 65536 (64K
is both the size of a “class B” network and the number
of ports in a TCP/IP stack) probes, which are typical
configuration values to use. Also, for example, there
may be an absolute limit to the probing speed of many
hosts due to common network capabilities limitations or
common surveillance tool configurations – recall that all
the counts in this data are over only three days of
activity. Speed limitations are also visible in the
analysis of intraprobe delay in Section 4.5.2.

4.5. The effects of other parameters

Figure 3, Figure 4 and Figure 5 display the number
of detected scanners (i.e., probing IPs) as influenced by
additional detection parameters.

Figure 3 Number of probing sources by scan length.
The inset graph is a logarithmic representation of the
same data.

4.5.1. Scan Length. Scan length is defined as the
total duration of the surveillance attempt (i.e. the time
between the first and last probes). Figure 3, "Number of
Probing Sources by Scan Length", displays the
cumulative number of scanners for each scan length.
For example, Point B indicates that 100,000 source IPs
probed for 29,242 seconds or less. This is the majority
of scanners – most scanners don't scan for longer than
that within the 3 days of data. However, 48% of
scanners spend more than one hour scanning, and 39%
of scanners spend more than one day scanning. The
sharp acceleration (even in the log view) near the end of
the graph, for scans which lasted close to three days, is
most likely not a sign that scanners only have the

patience to wait three days, but instead indicates that a
large number of scanners appeared to terminate simply
because of the limited (three day) amount of data we
received. Instead, we expect that the slowly climbing
line would extend itself far to the right, indicating that
some scanners spend enormous amounts of time
scanning this enclave.

4.5.2. Average Intraprobe Delay. Average
intraprobe delay is defined as the average time between
probes during the duration of surveillance, i.e., from the
time of a scanning IP’s first probe until its last. Figure
4, "Number of probing sources by average intraprobe
delay”, displays the cumulative number of scanners for
each intraprobe delay. That is, only probing IPs for
which the average amount of time between probes is
less than or equal to a given value along the horizontal
axis are counted as a scanner. For example, Point C
indicates that 66,814 source IPs have an average delay
of 1,000 seconds or less. The majority (87%) of
scanners has an average delay of 5,000 seconds or less –
most scanners don't wait longer than that, on average,
between probes. That is, only a small number of
scanners make their scanning stealthier than that.
However, 18% of scanners delay more than one hour
between packets, 10% of scanners delay more than two
hours between packets, 5% delay more than four hours,
and 90 (0.1%) delay more than one day. Finally we
discovered a very small number of scanners that waited
more than 70 hours between probes, indicating a strong
desire to remain unnoticed by security analysts.

Figure 4 Number of probing sources by average intraprobe delay – three views of the same data..

Figure 5 Number of probing sources by group distance,
with a probing threshold set at 14. The outer graph is in a
log scale. The inset graphs represent the same data in a
normal scale.

4.5.3. Group Distance. Group distance is the
maximum distance two IP addresses may be away from
each other (numerically, treating an IP as a literal 4 byte
number) in order for them to be considered part of the
same surveillance effort. This produces a larger number
of probing sources since nearby scanners who
individually do not produce enough traffic to exceed an
alert threshold (14 in this case4) will exceed the threshold
when grouped together. Figure 5, "Number of Probing
Sources by Group Distance", displays the number of
scanners for each of a range of group distances,
cumulatively. Given a group distance (the horizontal
axis), any group of IPs that performs more than 14 probes
is considered entirely composed of scanners. The vertical
axis represents the aggregate number of probing IPs
across all scanning groups. For example, Point D
indicates that 44,179 source IPs are counted as scanners
when the distance threshold for grouping is 256. The
graphs show that relatively small group sizes very quickly
include almost all probers (as many as are considered
scanners with a threshold of 0 and no grouping) - almost
all probers get indiscriminately grouped. Therefore, only
small group sizes can be effective, if at all.

4 The value 14 is adopted from an expert analyst at the
client site who established it as a heuristic.

Figure 6 Number of individual probes by source IP
address.

4.5.4. Additional Analyses. Figure 6, Figure 7 and
Figure 8 provide additional analyses. Figure 6 and Figure
7, which are complementary, illustrate that there are
fewer source hosts than target hosts, and that each source
host scans more frequently than each target host is
scanned. This is to be expected if there are more "good
guys" than "bad guys." The wide target distribution also
indicates that this enclave has a large number of IP
addresses assigned to it, and that the enclave was in fact
itself the source of scanning activity. Figure 8 displays
the number of IP addresses seen in the dataset. While this
is related to the distribution of source and target hosts, it
is also interesting to note the acceleration of IP addresses
seen at 10 hours, 56 hours, and 70 hours. This seems
likely to be caused by address spoofing in an attempt to
hide the wheat in the chaff. Backscatter from address
spoofing could be a possibility, but manual analysis tends
to show that the packets which were received do not
correspond to this thesis. These points of acceleration are
worthy of further analysis.

Figure 7 Number of individual probes by target IP
address.

Figure 8 Number of IP address observed by time.

5. PSD Evaluation and Results

PSD was applied to 5 hours of logged traffic data
from a peering point at a large, multinational, very
security conscious, ISP. This data set contains 110
million packets (8 GB of headers). The average
bandwidth during the capture of this data was 2.6
megabytes per second, with a 5.7 megabyte per second
peak (as measured over a one second sliding window). A
total of 81,000 unique IP addresses were seen. An
estimated 5.4 million connections were extrapolated by
PSD, of which 8% were determined to be probes. As
with the data analyzed with ESD, it is probable that hosts
that were infected by worms were performing much of
the probing activity.

A manual analysis of the alerts generated by PSD
was performed to help determine how many surveillance
alerts were correctly and incorrectly generated. From the
filtered list of 2,670 alerts representing potential scanners
who sent fourteen or more probing connections, 652
(24%) alerts were selected to undergo human analysis.
The sample of alerts which were manually analyzed was
gathered from all alerts generated from traffic during one
of the five hours, plus all alerts from the twenty most
active scanning sources.

PSD performs with reasonable precision, depending
on security task and needs. From the set of 652 alerts, we
discovered 95 (14.6%) which we believed were false
positives. This investigative procedure was far more
difficult than what we encountered during ESD testing, as
the asymmetric nature of the dataset (30% of the
connections involved traffic for which we only saw one
of the two participants’ packet transmissions), which
caused even experienced human analysis great difficulty
in deciding whether or not an alert was valid. While this
percentage of false positives is high, it is solely a result of
the asymmetric nature of the traffic. Additionally, when
considering only alerts which involved sources outside
the range of addresses administered by this particular

environment, the false positive rate fell to 4%. It is hoped
that further research and characterization of the data set
and results will provide more opportunities for false
positive reduction.

While the precision of this technique is less than that
of ESD, it provides a valuable tool for detection of
surveillance activity at a point in the network hierarchy
on the Internet backbone. The precision degradation is
primarily caused by the asymmetric nature of the traffic
flow. Even highly experienced human analysts looking at
the asymmetric data frequently do not have enough
information to adequately determine whether or not a
particular packet trace represents a scan or not.

We were given access to the alerts generated by the
installed system at the peering site, but we quickly
discovered that this system simply produced a list of
every single source which produced connections to N or
more unique destinations over a given time window. This
obviously included every scan we detected, and some
12,000 other perfectly innocuous hosts. Human analysts
at the site were responsible for manually discovering the
scans from this candidate pool.

A C implementation of PSD is estimated to perform
with the same speed as ESD (current results were
gathered using a Perl prototype).

6. Conclusions and Future Work

Both ESD and PSD have proven successful at
detecting the wide range of surveillance activity within
large, realistic data archives; ESD has done so with a
particularly high degree of precision, and hundreds of
times faster than observed wire speed.

The example analyses performed in this paper over
detected surveillance activity serve to:
• Illustrate detection performance over various

parameter values.
• Reveal characteristics of today’s network and

scanning behavior.
• Enable analysts to select parameter values

appropriate for the specific network behavior and
security concerns at the enclave.

These analyses lead to the following conclusions:
• Surveillance activity is very prevalent.
• Since even a low detection threshold can drastically

reduce alerts, fewer false negatives may be
generated.

• Grouping scanners reduces alerts, but must be limited
in range to remain effective.

The cascading filter design of our surveillance

detection algorithm enhances its extensibility, with the
expectation that future versions must scale and evolve to
match increasing bandwidths and to match the continued

arms race of surveillance methods. For example, the
detection filters can be deployed in a parallel pipelined
fashion for a linear increase in execution speed.
Additionally, improved, specialized or refined detection
techniques and heuristics can be integrated at each level
by modifying the corresponding filter, matching specific
advances in the arms race.

Future deployments of this technology will display,
through the Hawkeye IDSWatch UI, complete
intelligence profiles of surveillance activities, including
graphical trend depictions such as those shown above in
Section 4 for ESD. This profile consists of a range of
measures and statistics that characterize surveillance
trends, such as the number of scans per time unit, the
number of scanners, the percentage of activity that is
surveillance, the breakdown of source country
frequencies, the most frequently targeted IPs, the
breakdown of surveillance and surveillance-related
activities (i.e., probes, scans, etc.), and temporal
frequency trends (e.g., “stealthiness”) of individual
scanners.

Future enhancements and research will also include:
• Sharing and cross-referenced correlation of

surveillance detection across distributed sites.
Evidence of malicious or electronically captured
probing source IPs detected by ESD and PSD
installations will be shared in order to increase
detection confidence, determine target ranges and
distributions, and create a global view.

• Divide scanning analysis data by originating
countries or infected domain hosts controlled by a
client or affiliates, and visually represent it in
graphical or geographical formats, i.e., a “Big Board”
alert display. This process was performed manually
for the example data sets.

• Inference of quantity of undetected stealthy scans,
i.e., scanning activity too slow to be detected within a
given time span of analyzed network behavior. This
inference will be based on the falloff rate of, for
example, average intra-probe delay.

• Efforts to aggregate and correlate alert streams in
order to reduce analyst workload and provide
intelligence discovery that reveals alert trends and
enemy assessment and fingerprinting. Efforts
include:
• “Watchlist” generation of frequent offenders.

As surveillance alerts are generated over days,
weeks, and months, it is expected (and human
analysts interviewed agree) that trends quickly
emerge as to certain sources which scan
continually. Additional analysis modules which
score scanners and attackers by their long-term
scanning (or indeed, attack) patterns will create a
database of addresses which bear additional
scrutiny or indeed may be passed to law

enforcement for traditional prosecution (though
this is frequently difficult for foreign sourced
scans and attacks).

• “Danger” assessment of protected hosts. An
additional analysis module will report which IPs
are most frequently targeted by watchlist-tracked
IPs that are considered dangerous with respect to
their originating country, organization or
behavior (inferred intention). Response will
include reassignment of target IPs or proactive
security responses to tighten security on
machines that are frequently targeted

• Automatic clustering of scanning activities
according to temporal behavior patterns to
categorize activity by its source hacker method,
tool or script employed, or worm incarnation.
This can be considered a generalized form of
passive fingerprinting. Results will in turn
inform intention inference.

7. References

[1] P.K. Chan and M.V. Mahoney, “Detecting Novel

Attacks by Identifying Anomalous Network Packet
Headers”. Florida Tech. technical report CS-2001-2,
2001.

[2] CERT, “CERT® Advisory CA-2001-23 Continued
Threat of the ‘Code Red’ Worm”.
http://www.cert.org/advisories/CA-2001-23.html

[3] CERT, “CERT® Advisory CA-2001-26 Nimda
Worm”. http://www.cert.org/advisories/CA-2001-
26.html

[4] Fyodor. “The Art of Port Scanning.” Phrack 51,
volume 7. September 1, 1997.
http://www.phrack.com/phrack/51/P51-11

[5] W. Lee and S. Stolfo. “Data Mining Approaches for
Intrusion Detection”. In Proceedings of the Seventh
USENIX Security Symposium (SECURITY '98), San
Antonio, TX, January 1998.

[6] S. Northcutt. “Network Intrusion Detection: An
Analyst’s Handbook”. New Riders, Indianapolis,
1999. pp.122-139.

[7] Openwall Project, “scanlogd: a port scan detection
tool”. http://www.openwall.com/scanlogd/

[8] M. Roesch. http://www.snort.org/
[9] S. Staniford, J. A. Hoagland, J. M. McAlerney,

“Practical Automated Detection of Stealthy
Portscans”, Seventh ACM Conference on Computer
and Communications Security, Athens, Greece, 2000.

