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Abstract

Several alert correlation methods were proposed in the
past several years to construct high-level attack scenarios
from low-level intrusion alerts reported by intrusion de-
tection systems (IDSs). These correlation methods have
different strengths and limitations; none of them clearly
dominate the others. However, all of these methods de-
pend heavily on the underlying IDSs, and perform poorly
when the IDSs miss critical attacks. In order to improve
the performance of intrusion alert correlation and reduce
the impact of missed attacks, this paper presents a se-
ries of techniques to integrate twocomplementarytypes
of alert correlation methods: (1) those based on the sim-
ilarity between alert attributes, and (2) those based on
prerequisites and consequences of attacks. In particular,
this paper presents techniques to hypothesize and reason
about attacks possibly missed by IDSs based on the indi-
rect causal relationship between intrusion alerts and the
constraints they must satisfy. This paper also discusses
additional techniques to validate the hypothesized attacks
through raw audit data and to consolidate the hypothe-
sized attacks to generate concise attack scenarios. The ex-
perimental results in this paper demonstrate the potential
of these techniques in building high-level attack scenarios
and reasoning about possibly missed attacks.

1. Introduction

It is well-known that current intrusion detection systems
(IDSs) produce large numbers of alerts, including both ac-
tual and false alerts. The high volume and the low qual-
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ity of intrusion alerts (i.e., missed attacks and false alerts)
make it a very challenging task for human users or intru-
sion response systems to understand the alerts and take
appropriate actions. Thus, it is usually necessary to con-
struct high-level attack scenarios from a large collection
of low-level intrusion alerts.

Several alert correlation techniques have been proposed
to facilitate the analysis of intrusion alerts, including ap-
proaches based on the similarity between alert attributes
[4, 7, 25, 27], previously known (or partially known) at-
tack scenarios [8, 9], and prerequisites and consequences
of known attacks [5,19]. A common requirement of these
approaches is that they all depend on underlying IDSs for
alerts. This means the results of alert correlation are lim-
ited to the abilities of the IDSs. In particular, if the IDSs
miss critical attacks, the results of alert correlation will not
reflect the true attack scenario, and thus provide mislead-
ing information.

In this paper, we develop a series of techniques tocon-
struct high-level attack scenarios even if the IDSs miss
critical attacks.Our approach is to integrate complemen-
tary intrusion alert correlation methods and use the intrin-
sic relationships between possibly related attacks to hy-
pothesize and reason about attacks missed by the IDSs.
We are particularly interested in two types of alert cor-
relation methods: correlation based on prerequisites and
consequences of attacks [5,19] (which we callcausal cor-
relation methods, since they are intended to discover the
causal relationships between alerts), and correlation based
on similarity between alert attribute values [4, 7, 25, 27]
(which we callclustering correlation method). Because
these two methods correlate alerts using different mecha-
nisms, combining them can potentially lead to better cor-
relation results. Our main contribution in this paper is a
series of techniques to integrate the causal and the clus-
tering correlation methods, and to use the results to hy-
pothesize and reason about attacks possibly missed by the
IDSs. These techniques are critical to constructing high-

1



level attack scenarios from low-level intrusion alerts in sit-
uations where the IDSs cannot guarantee to detect all at-
tacks. These techniques complement the underlying IDSs
by hypothesizing and reasoning about missed attacks, and
thus can provide valuable additional evidences to support
further intrusion investigation and response.

Our approach starts with a straightforward combina-
tion of the causal and the clustering correlation methods.
Specifically, we first correlate the same set of intrusion
alerts with both methods independently, then combine re-
sults from the causal correlation method (represented as
correlation graphs) using results from the clustering cor-
relation method. For example, if the clustering correlation
method decides that two alerts in two separate correlation
graphs are very similar (e.g., same target, close times-
tamps, etc.), we combine these two correlation graphs into
one. We then develop techniques to hypothesize about at-
tacks possibly missed by the IDSs, especially unknown
variations of known attacks.

We observe that if two attacks are causally related
through some intermediate attacks, they usually satisfy
certain conditions (e.g., sharing the same destination IP
address), even if they are not directly adjacent in a se-
quence of attacks. The attribute values of the correspond-
ing alerts should also satisfy such conditions. This obser-
vation provides another opportunity to reason about the
hypothesized attacks by inferring their attribute values.
Moreover, the hypothesized attacks can be further vali-
dated through raw audit data. For example, we might hy-
pothesize that variations ofIMAP Authen Overflow
and/orRPC Cmsd Overflow were missed by the IDSs.
However, if during the target time frame, there is only
IMAP traffic and no RPC traffic to the target host, we
can easily conclude that the latter hypothesis is impossi-
ble. Finally, to improve the usability of the constructed
attack scenarios, we present a technique to consolidate the
hypothesized attacks and generate concise representations
of the high-level attack scenarios.

The remainder of this paper is organized as follows.
The next section briefly describes a specific causal cor-
relation method, on the basis of which our techniques
are developed. Section 3 presents our techniques to inte-
grate clustering and causal correlation methods, including
approaches to hypothesizing and reasoning about attacks
possibly missed by IDSs, methods to validate hypothe-
sized attacks using raw audit data, and ways to consolidate
hypothesized attacks. Section 4 reports our experimental
results to test the effectiveness of our techniques. Section
5 discusses related work, and Section 6 concludes this pa-
per and points out some future research directions. The
Appendix gives more information about the alert types
used in our experiments.

2. Previous Work: Alert Correlation Using
Prerequisites of Attacks

The new techniques in this paper are built on the basis
of the causal correlation method proposed in [19], which
we briefly describe below.

The approach in [19] correlates intrusion alerts using
the prerequisites and consequences of attacks. Intuitively,
theprerequisiteof an attack is the necessary condition for
the attack to be successful. For example, the existence of
a vulnerable service is the prerequisite of a remote buffer
overflow attack against the service. Theconsequenceof
an attack is the possible outcome of the attack. For exam-
ple, gaining local access as root from a remote machine
may be the consequence of a ftp buffer overflow attack.
In a series of attacks where earlier ones are launched to
prepare for later ones, there are usually connections be-
tween the consequences of the earlier attacks and the pre-
requisites of the later ones. Accordingly, we identify the
prerequisites (e.g., existence of vulnerable services) and
the consequences (e.g., discovery of vulnerable services)
of attacks, and correlate detected attacks (i.e., alerts) by
matching the consequences of previous alerts to the pre-
requisites of later ones.

The correlation method uses logical formulas, which
are logical combinations of predicates, to represent the
prerequisites and consequences of attacks. For example,
a scanning attack may discover UDP services vulnerable
to certain buffer overflow attacks. Then the predicateUD-
PVulnerableToBOF(VictimIP, VictimPort) may be used to
represent this discovery.

The correlation model formally represents the prereq-
uisites and consequences of known attacks as hyper-alert
types. A hyper-alert typeis a triple (fact, prerequisite,
consequence), wherefact is a set of alert attribute names,
prerequisiteis a logical formula whose free variables are
all in fact, and consequenceis a set of logical formu-
las such that all the free variables inconsequenceare in
fact. Intuitively, a hyper-alert type encodes the knowledge
about the corresponding type of attacks. Given a hyper-
alert typeT = (fact, prerequisite, consequence), a type T
hyper-alert his a finite set of tuples onfact, where each
tuple is associated with an interval-based timestamp [be-
gin time, endtime]. The hyper-alerth implies thatprereq-
uisitemust evaluate to True and all the logical formulas in
consequencemight evaluate to True for each of the tuples.

The correlation process is used to identifyprepare-
for relations between hyper-alerts. Intuitively, this re-
lation exists if an earlier hyper-alertcontributesto the
prerequisite of a later one. In the formal model,
correlations are identified via prerequisite and conse-
quence sets. Given a hyper-alert typeT = (fact, pre-
requisite, consequence), the prerequisite set(or conse-
quence set) of T , denotedPrereq(T ) (or Conseq(T )),
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is the set of all predicates that appear inprerequisite
(or consequence). The expanded consequence setof
T , denotedExpConseq(T ), is the set of all predi-
cates that are implied byConseq(T ). (This is com-
puted using the implication relationships between pred-
icates [19].) Thus,Conseq(T ) ⊆ ExpConseq(T ).
Given a typeT hyper-alerth, the prerequisite set, con-
sequence set, and expanded consequence setof h, de-
notedPrereq(h), Conseq(h), andExpConseq(h)), re-
spectively, are the predicates inPrereq(T ), Conseq(T ),
andExpConseq(T ) with arguments replaced by the cor-
responding attribute values of each tuple inh. Each el-
ement inPrereq(h), Conseq(h), or ExpConseq(h) is
associated with the timestamp of the corresponding tuple
in h. Hyper-alerth1 prepares forhyper-alerth2 if there
existp ∈ Prereq(h2) andc ∈ ExpConseq(h1) such that
p = c andc.end time < p.begin time.

A hyper-alert correlation graph is used to represent a
set of correlated hyper-alerts. Ahyper-alert correlation
graphCG = (N , E) is a connected directed acyclic graph,
whereN is a set of hyper-alerts and for each pairn1, n2 ∈
N , there is a directed edge fromn1 to n2 in E if and only
if n1 prepares forn2. For brevity, we refer to a hyper-alert
correlation graph as acorrelation graphin this paper.

3. Integrating Complementary Alert Correla-
tion Methods

To integrate the causal and the clustering correlation
methods, we combine correlation graphs generated by the
causal method using the results from the clustering meth-
ods. Intuitively, if the IDSs miss certain attacks, alerts
from the same attack scenario may be split across several
correlation graphs. The clustering methods have the po-
tential to identify the common features shared by these
alerts, and therefore to help re-integrate the relevant cor-
relation graphs together.

The integration process can be conceptually divided
into two steps: (1) identify the correlation graphs to be in-
tegrated, and (2) determine possible causal relationships
between alerts in different correlation graphs. In this pa-
per, we choose a simple technique for the first step: we
integrate two correlation graphs when they both contain
alerts from a common cluster. For example, given the two

correlation graphs shown in Figures 1(a) and 1(b) (The
string inside each node is a hyper-alert type name fol-
lowed by an alert ID), if the clustering method groups
SCAN NMAP TCP2 andRsh3 in the same cluster based
on their common source and destination IP addresses, we
consider integrating these two graphs together.

Because this simple technique works well in practice,
our main focus in this paper is on the second step: how
to identify causal relationships between alerts in differ-
ent correlation graphs. This is challenging, since we must
deal with missed attacks that cause an attack scenario to
split into multiple correlation graphs.

To meet our goal, we developed a series of techniques
to integrate multiple correlation graphs. We start with a
straightforward method, and gradually add more sophisti-
cated techniques into our approach. Without loss of gen-
erality, we assume we integrate two correlation graphs in
the following discussion.

3.1. Combining Related Correlation Graphs

A straightforward approach to combining two corre-
lation graphs is to use the prior knowledge of attacks
and the alert timestamp information to hypothesize about
the possible causal relationships between alerts in dif-
ferent correlation graphs. For example, suppose an at-
tacker usesnmap to find out a vulnerable service, then
uses a buffer overflow attack to compromise that ser-
vice, and finally installs and starts a DDOS daemon pro-
gram. When we observe an earlierSCAN NMAP TCP and
a laterMstream Zombie alert in two correlation graphs
that are identified for integration, we may hypothesize
that theSCAN NMAP TCP alert indirectly prepares for the
Mstream Zombie alert through an unknown attack (or
an unknown variation of a known attack, e.g., a variation
of the above buffer overflow attack). As a result, we would
add a hypothesized indirect causal relationship between
these two alerts.

To further characterize this intuition and facilitate later
discussion, we introduce two definitions. (Note that Def-
inition 1 is based on the model in [19], which has been
described briefly in Section 2.) For convenience, we de-
note the type of a hyper-alerth asType(h).

Definition 1 Given two hyper-alert typesT and T ′,
we sayT may prepare forT ′ if ExpConseq(T ) and
Prereq(T ′) share at least one predicate (with possibly
different arguments). Given a setT of hyper-alert types,
we sayT may indirectly prepare forT ′ w.r.t.T if there ex-
ists a sequence of hyper-alert typesT, T1, ..., Tk, T ′ such
that (1) all these hyper-alert types are inT , and (2)T
may prepare forT1, Ti may prepare forTi+1, where
i = 1, 2, ..., k − 1, andTk may prepare forT ′.

Intuitively, given two hyper-alert typesT andT ′, T may
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prepare forT ′ if there exist a typeT hyper-alerth and a
typeT ′ hyper-alerth′ such thath prepares forh′.

Definition 2 Given a setT of hyper-alert types and two
hyper-alertsh andh′, whereType(h) andType(h′) ∈
T and h′.begin time > h.end time, h may indirectly
prepare for h′ if Type(h) may indirectly prepare for
Type(h′) w.r.t. T . Given a sequence of hyper-alertsh,
h1, ...,hk, h′ wherek > 0, h indirectly prepares forh′ if
h prepares forh1, hi prepares forhi+1 for i = 1, ..., k−1,
andhk prepares forh′.

Intuitively, h may indirectly prepare forh′ if therecould
exist a path fromh to h′ in a correlation graph (with ad-
ditional hyper-alerts), whileh indirectly prepares forh′ if
such hyper-alerts do exist. We are particularly interested
in the case whereh may indirectly prepare forh′ but there
do not exist additional hyper-alerts showing thath indi-
rectly prepares forh′. Indeed, a possible reason for such a
situation is that the IDSs miss some critical attacks, which,
if detected, would lead to additional hyper-alerts showing
thath indirectly prepares forh′.

A simple way to take advantage of the above observa-
tion is to assume a possible causal relationship between
hyper-alertsh andh′ if they belong to different correla-
tion graphs andh may indirectly prepare forh′. Let us
continue the example in Figure 1. IfSCAN NMAP TCP
may prepare forFTP Glob Expansion, which may
prepare forRsh, then we haveSCAN NMAP TCP may
indirectly prepare forRsh. Thus, we may hypothesize
that SCAN NMAP TCP2 indirectly prepares forRsh3.
We add avirtual edge, displayed in a dashed line, from
SCAN NMAP TCP2 to Rsh3 in Figure 2, indicating that
there may be some attacks between them that are missed
by the IDSs.

Though this simple approach can integrate related
hyper-alert correlation graphs and hypothesize about pos-
sible causal relationships between alerts, it is limited in
several ways. First, the virtual edges generated with this
approach provide no information about attacks possibly
missed by the IDSs. Second, the virtual edges are deter-

ICMP_PING_NMAP1

SCAN_NMAP_TCP2

IMAP_Authen_Overflow5 FTP_Glob_Expansion6

Rsh3

Mstream_Zombie4

Figure 3. Integration of CG1 and CG2 with hy-
potheses of missed attacks

mined solely on the basis of prior knowledge about at-
tacks. There is no “reality check.” Though a clustering
correlation method combines several hyper-alert correla-
tion graphs together, the hypothesized virtual edges are
not necessarily true due to the limitations of the clustering
correlation method and the lack of information about the
missed attacks.

3.2. Hypothesizing Missed Attacks

Themay-prepare-forandmay-indirectly-prepare-forre-
lations identified in Definitions 1 and 2 provide additional
opportunities to hypothesize and reason about missed at-
tacks, especially unknown variations of known attacks.

Consider two hyper-alertsh andh′ that belong to dif-
ferent correlation graphs prior to integration. Ifh may
indirectly prepare forh′, we can then identify possible se-
quences of hyper-alert types in the form ofT1, T2, ..., Tk

such thatType(h) may prepare forT1, Ti may prepare for
Ti+1, i = 1, 2, ..., k−1, andTk may prepare forType(h′).
These sequences of hyper-alert types are candidates of at-
tacks possibly missed by the IDSs. (More precisely, vari-
ations of these attacks, which could be used by an at-
tacker and then missed by the IDSs, are the actual candi-
dates of missed attacks.) We can then search in the alerts
and/or the raw audit data betweenh andh′ to check for
signs of these attacks (or their variations). For example,
to continue the example in Figure 2, we may hypothesize
that variations of eitherIMAP Authen Overflow, or
FTP Glob Expansion, or both may have been missed
by the IDSs based on our prior knowledge about attacks.
To better present these hypotheses, we may add the hy-
pothesized attacks into the correlation graph as virtual
nodes (displayed in gray). Figure 3 shows the resulting
correlation graph.

To facilitate hypothesizing about missed attacks, we en-
code our knowledge of the relationships between hyper-
alert types in ahyper-alert type graph, or simply atype
graph. Let us first introduce the concept ofequality con-
straint, which was originally defined in [20], to help for-



mally describe the notion of type graph.

Definition 3 (equality constraint [20]) Given a pair of
hyper-alert types(T1, T2), an equality constraint for
(T1, T2) is a conjunction of equalities in the form of
u1 = v1 ∧ · · · ∧ un = vn, whereu1, · · · , un are attribute
names inT1 andv1, · · · , vn are attribute names inT2, such
that there existp(u1, · · · , un) and p(v1, · · · , vn), which
are the same predicate with possibly different arguments,
in ExpConseq(T1) andPrereq(T2), respectively. Given
a typeT1 hyper-alerth1 and a typeT2 hyper-alerth2, h1

andh2 satisfy the equality constraintif there existt1 ∈ h1

andt2 ∈ h2 such thatt1.u1 = t2.v1 ∧ · · · ∧ t1.un = t2.vn

evaluates to True.

An equality constraint characterizes the relationships
between the attribute values of two hyper-alerts when one
of them prepares forthe other. There may be several
equality constraints for a pair of hyper-alert types. How-
ever, if a typeT1 hyper-alerth1 prepares fora typeT2

hyper-alerth2, thenh1 andh2 must satisfy at least one
equality constraint. Indeed,h1 preparing forh2 is equiva-
lent to the conjunction ofh1 andh2 satisfying at least one
equivalent constraint andh1 occurring beforeh2 [20].

Given a set of hyper-alert types (representing the known
attacks), we can derive all possiblemay-prepare-forre-
lations between them together with the corresponding
equality constraints. This information can help us un-
derstand how these known attacks may be combined to
launch sequences of attacks, and thus hypothesize about
which attacks (more precisely, their variations) may be
missed when we observe alerts thatmay indirectly prepare
for each other. The following definition formally captures
this intuition.

Definition 4 Given a setT of hyper-alert types, a(hyper-
alert) type graphTG overT is a quadruple(N, E, T, C),
where

(1) (N, E) is a directed graph,

(2) T is a bijective mapping fromN to T , which maps
each node inN to a hyper-alert type inT ,

(3) there is an edge(n1, n2) in E if and only if T (n1)
may prepare forT (n2), and

(4) C is a mapping that maps each edge(n1, n2) in
E to a set of equality constraints associated with
(T (n1), T (n2)).

Example 1 Consider the following set of
hyper-alert types: T ={ICMP PING NMAP,
SCAN NMAP TCP, IMAP Authen Overflow,
FTP Glob Expansion, Rsh,

n1:ICMP_PING_NMAP

n2:SCAN_NMAP_TCP

{n1.DestIP=n2.DestIP}

n3:IMAP_Authen_Overflow

{n2.DestIP=n3.DestIP}

n4:FTP_Glob_Expansion

{n2.DestIP=n4.DestIP}

n5:Rsh

{n3.DestIP=n5.SrcIP,
n3.DestIP=n5.DestIP}

n6:Mstream_Zombie

{n3.DestIP=n6.SrcIP,
n3.DestIP=n6.DestIP}

{n4.DestIP=n5.SrcIP,
n4.DestIP=n5.DestIP}

{n4.DestIP=n6.SrcIP,
n4.DestIP=n6.DestIP}

{n5.SrcIP=n6.SrcIP,
n5.DestIP=n6.DestIP,
n5.SrcIP=n6.DestIP,
n5.DestIP=n6.SrcIP}

Figure 4. An example type graph

Mstream Zombie}. (We include the specifica-
tions of these hyper-alert types in Appendix A.) We can
compute the type graph overT as shown in Figure 4.
The string inside each node is the node name followed by
the hyper-alert type name. The label of each edge is the
corresponding set of equality constraints.

Obviously, given multiple correlation graphs that may
be integrated together, we can hypothesize about pos-
sibly missed attacks that break the attack scenario ac-
cording to the type graph. Let us revisit the exam-
ple in Figure 1. Given the type graph in Figure 4, we
can systematicallyhypothesize that the IDSs may have
missed variations ofIMAP Authen Overflow and/or
FTP Glob Expansion attacks. As a result, we obtain
the integrated correlation graph shown in Figure 3.

3.3. Reasoning about Missed Attacks

Consider nodesn2, n3, andn5 in Figure 4. There is an
equality constraintn2.DestIP = n3.DestIP associated
with (n2, n3), and two equality constraintsn3.DestIP =
n5.SrcIP and n3.DestIP = n5.DestIP associated
with (n3, n5). These imply thatn2.DestIP =
n5.SrcIP or n2.DestIP = n5.DestIP . In other
words, if a typeSCAN NMAP TCP hyper-alertindirectly
prepares fora type Rsh hyper-alert (through a type
IMAP Authen Overflow hyper-alert), they must sat-
isfy one of these two equations. We obtain the same
equations if we consider nodesn2, n4, andn5 in Figure
4. In general, we can derive constraints for two hyper-
alert types when one of themmay indirectly prepare for
the other. Informally, we call such a constraint anindi-
rect equality constraint. These constraints can be used to
study whether two hyper-alerts in two different correlation



graphs could be indirectly related. This in turn allows us
to filter out incorrectly hypothesized attacks.

Indirect equality constraints can be considered a gener-
alization of the equality constraints specified in Definition
3. In this paper, we combine the terminology and sim-
ply refer to an indirect equality constraint as an equality
constraint when it is not necessary to distinguish between
them.

To take advantage of the above observation, we must
derive indirect equality constraints. Algorithm 1 (shown
in Figure 5) outlines an approach for generating the set
of indirect equality constraints between two hyper-alert
typesT andT ′ whereT may indirectly prepare forT ′.
Intuitively, for each pair of hyper-alert typesT andT ′,
Algorithm 1 identifies all paths fromT to T ′ in the type
graph, and computes an indirect equality constraint for
each combination of equality constraints between consec-
utive hyper-alert types along the path. The basic idea is to
propagate the equality relationships between attributes of
hyper-alert types. Each indirect equality constraint is la-
beled with the corresponding path that produces the con-
straint. This information provides further guideline in hy-
pothesizing missed attacks. The usefulness of Algorithm
1 is guaranteed by Lemma 1.

Lemma 1 Consider a type graphTG and two hyper-
alerts h and h′, whereType(h) and Type(h′) are in
TG. Assume Algorithm 1 outputs a setC of equality con-
straints forType(h) andType(h′). If C is non-empty and
h indirectly prepares forh′, thenh andh′ must satisfy at
least one equality constraint inC.

PROOF. According to Definition 2, ifh indirectly pre-
pares forh′, there must exists a sequence of hyper-alerts
h1, ..., hk, wherek > 0, such thath prepares forh1, hi

prepares forhi+1 for i = 1, ..., k − 1, andhk prepares for
h′. Thus, we haveType(h) may prepare forType(h1),
Type(hi) may prepare forType(hi+1) for i = 1, ..., k−1,
andType(hk) may prepare forType(h′). Following the
convention of Algorithm 1, we denoteType(h) as T0,
Type(hi) as Ti, where i = 1, ..., k, and Type(h′) as
Tk+1. It is easy to see there must be a pathT0, T1, ...,Tk+1

in the corresponding type graphTG. For convenience, we
also denoteh ash0, andh′ ashk+1.

According to [20], if hi prepares forhi+1, then hi

andhi+1 must satisfy at least one equality constraint for
(Ti, Ti+1). For i = 0, 1, ..., k, we denote the constrainthi

andhi+1 satisfy asCi. According to Figure 5, Algorithm
1 will process the pathT0, T1, ...,Tk+1 (in step 2) and the
combination of equality constraintsC0, C1, ...,Ck+1 that
h0, h1, ...,hk+1 satisfy (in step 4).

Now consider steps 5 to 9. For eachS(T0.ai), we
can prove by induction that all attributesTj.b added into

S(T0.ai) are equal toT0.ai, since each addition is based
on a conjunctTj−1.a = Tj .b, whereTj−1.a is already in
S(T0.a). Further because step 9 removes the attributes
of Tj−1, only attributes ofTk+1 remain in S(T0.ai),
i = 1, 2, ..., l. Thus, after step 9, eachS(T0.ai) includes
all the attributes ofTk+1 that are equal toT0.ai, where
i = 1, 2, ..., l. Steps 10 to 13 then transform these equal-
ity relations into a conjunctive formulaec. Since the se-
quence of constraintsCi, i = 0, 1, ..., k, where eachCi is
satisfied byhi andhi+1, is used in the above process, we
can easily conclude thath0 (h) andhk+1 (h′) satisfyec.
Thus, if h indirectly prepares forh′, they must satisfy at
least one equality constraint inC. 2

Note that Algorithm 1 is meant to illustrate the basic
idea behind computing indirect equality constraints. In
practice, we compute the indirect equality constraints for
all pairs of hyper-alert types simultaneously as we traverse
through the paths between a pair of hyper-alert types, and
thus significantly reduce the required computation time.
Moreover, we need to perform this computation only once
after we determine the set of known attacks. Thus, the
performance of this algorithm will not impact the perfor-
mance of intrusion analysis greatly.

Example 2 Consider the type graph in Figure 4 and two
hyper-alert typesSCAN NMAP TCP (noden2) andRsh
(noden5). Using Algorithm 1, we can easily compute
the indirect equality constraints for them:{n2.DestIP =
n5.DestIP , n2.DestIP = n5.SrcIP}. Both indirect
equality constraints are labeled with the following two
paths: 〈SCAN NMAP TCP, IMAP Authen Overflow,
Rsh〉 and〈SCAN NMAP TCP, FTP Glob Expansion,
Rsh〉. Moreover, we can derive the sets of equality con-
straints for all pairs of hyper-alert types in Figure 4 where
one of the pairmay (indirectly) prepare forthe other. Ta-
ble 1 shows the results. (To save space, we use node
names to represent the corresponding hyper-alert types.)
Each cell in the table contains the equality constraints for
the hyper-alert types in the given row and the column,
where the rowmay (indirectly) prepare forthe column.

The equality constraints derived for indirectly related
hyper-alert types can be used to improve the hypotheses
of missed attacks. Given two correlation graphsG and
G′ that may be integrated together, we can check each
pair of hyper-alertsh andh′, whereh may indirectly pre-
pare forh′, andh and h′ belong toG and G′, respec-
tively. If h andh′ satisfy at least one equality constraint
for (Type(h), T ype(h′)), then we have consistent evi-
dence that supports the hypothesis thath indirectly pre-
pares forh′ (through some missed attacks). Moreover,
for each equality constraintec that h andh′ satisfy, we



Algorithm 1. Computation of Indirect Equality Constraints
Input: A type graphTG, and two hyper-alert typesT andT ′ in TG, whereT may indirectly prepare forT ′.
Output: A set of equality constraints forT andT ′.
Method:

1. LetResult = ∅.
2. For each pathT , T1, ...,Tk, T ′ from T to T ′ in TG

3. DenoteT asT0, andT ′ asTk+1.
4. For each combination of constraintsC1, C2, ...,Ck+1, whereCi is an equality constraint for (Ti−1, Ti)
5. LetS(T0.ai) = {T0.ai}, whereT0.ai, i = 1, 2, ..., l, are all the attributes ofT0 that appear inC1.
6. Forj = 1 to k + 1
7. For each conjunctTj−1.a = Tj .b in Cj

8. For eachS(T0.ai) that containsTj−1.a, let S(T0.ai) = S(T0.ai) ∪ {Tj .b}.
9. Remove variables ofTj−1 from eachS(T0.ai), i = 1, 2, ..., l.
10. Lettemp = ∅.
11. For each non-emptyS(T0.ai) and eachTk+1.b in S(T0.ai)
12. Lettemp = temp ∪ {T0.ai = Tk+1.b}.
13. Letec be the conjunction of all elements intemp.
14. If ec is in Result then
15. LetLabel(ec) = Label(ec) ∪ {〈T, T1, ..., Tk, T ′〉}
16. else LetLabel(ec) = {〈T, T1, ..., Tk, T ′〉}, andResult = Result ∪ {ec}.
17. ReturnResult.

Figure 5. Algorithm to compute indirect equality constraints for two hyper-alert types

Table 1. Equality constraints for hyper-alert types in Figure 4 where onemay (indirectly) prepare forthe other.
n1 n2 n3 n4 n5 n6

n1 / {n1.DestIP=n2.DestIP} {n1.DestIP=n3.DestIP} {n1.DestIP=n4.DestIP} {n1.DestIP=n5.DestIP,
n1.DestIP=n5.SrcIP}

{n1.DestIP=n6.DestIP,
n1.DestIP=n6.SrcIP}

n2 / / {n2.DestIP=n3.DestIP} {n2.DestIP=n4.DestIP} {n2.DestIP=n5.DestIP,
n2.DestIP=n5.SrcIP}

{n2.DestIP=n6.DestIP,
n2.DestIP=n6.SrcIP}

n3 / / / / {n3.DestIP=n5.DestIP,
n3.DestIP=n5.SrcIP}

{n3.DestIP=n6.DestIP,
n3.DestIP=n6.SrcIP}

n4 / / / / {n4.DestIP=n5.DestIP,
n4.DestIP=n5.SrcIP}

{n4.DestIP=n6.DestIP,
n4.DestIP=n6.SrcIP}

n5 / / / / / {n5.SrcIP=n6.SrcIP,
n5.DestIP=n6.DestIP,
n5.SrcIP=n6.DestIP,
n5.DestIP=n6.SrcIP}

n6 / / / / / /

can add the paths inLabel(ec) into the integrated correla-
tion graph. Note that each path inLabel(ec) is in the form
of Type(h), T1, ..., Tk, T ype(h′). Type(h) andType(h′)
are then merged withh andh′, respectively, and the rest
of the path is added as a virtual path (i.e., virtual nodes
and edges) fromh to h′.

3.4. Validating through Raw Audit Data

The hypothesized attacks can be further validated using
raw audit data. For example, we may hypothesize there is
a variation ofFTP Glob Expansion attack between a
SCAN NMAP TCP alert and aRsh alert. However, if there
is no ftp activity related to the victim host between these
two alerts, we can easily conclude that our hypothesis is
incorrect. By doing so we can further narrow the hypoth-
esized attacks down to meaningful ones.

To take advantage of this observation, we extend our
model to associate a “filtering condition” with each hyper-

alert type. Assume that the raw audit data set consists of
a sequence of audit records, and we can extract a set of
attributes from each audit record directly, or through in-
ference. For example, we may extract the source IP ad-
dress from a tcpdump record directly, or infer the type of
service using the port and payload information. For the
sake of presentation, we call such attributes obtained from
the raw audit dataaudit attributes. Given a setA of au-
dit attributes and a hyper-alert typeT , afiltering condition
for T w.r.t.A is a logical formula involving audit attribute
names inA, which evaluates to True or False if the audit
attribute names are replaced with specific values. Intu-
itively, a filtering condition forT w.r.t. A must be True if
an attack corresponding toT or its variations indeed hap-
pen.

Using filtering conditions is indeed straightforward.
When we hypothesize a sequence of missed attacks based
on two hyper-alertsh andh′, we know that all the times-
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Figure 6. Integration of CG1 and CG2 after re-
finement with raw audit data

tamps of the hypothesized attacks are between those of
h and h′. Thus, to validate a hypothesized attack, we
can search through the raw audit records during the afore-
mentioned time period, and evaluate the filtering condi-
tion for the hypothesized attack using the values of the
audit attributes extracted from each raw audit record. To
continue the earlier example, we may associate a fil-
tering conditionprotocol=ftp with the hyper-alert type
FTP Glob Expansion. If there is no ftp traffic be-
tween the hyper-alertsSCAN NMAP TCP2 andRsh3, this
condition will evaluate to False for all audit records, and
we can conclude that no ftp based attack is missed by the
IDSs. As a result, the integrated correlation graph in Fig-
ure 3 can be refined to the one in Figure 6.

A limitation of using filtering conditions is that human
users must specify the conditions associated with each
hyper-alert type. It has at least two implications. First,
it could be time consuming to specify such conditions for
every known attack. Second, human users may make mis-
takes during the specification of filtering conditions. In
particular, a filtering condition could be too specific to
capture the invariant among the variations of a known at-
tack, or too general to filter out enough incorrect hypothe-
ses. Nevertheless, we observe that any filtering condition
may help reduce incorrectly hypothesized attacks, even if
it is very general. In our experiments, we simply use the
protocols over which the attacks are carried out as filtering
conditions. It is interesting to study how to get the “right”
way to specify filtering conditions. We consider this prob-
lem outside of the scope of this paper; we will investigate
it in our future work.

Another issue is the execution cost. To filter out a hy-
pothesized attack with a filtering condition, we have to ex-
amine every audit record during the period of time when
the attack could have happened. Though there are many
ways to optimize the filtering process (e.g., indexing, con-
current examination), the cost is not negligible, especially
when the time period is large. Thus, filtering conditions
are more suitable for off-line analysis such as forensic
analysis.

3.5. Consolidating Hypothesized Attacks

In the earlier discussion, we focused on hypothesiz-
ing and reasoning about missed attacks. However, this
method does not consider the possibility that the same
hypothesized attack could be related to multiple hyper-
alerts in different correlation graphs. As a result, the inte-
grated correlation graph with hypothesized attacks could
be overly complex. In particular, there could be multiple
hypothesized attacks for one missed attack. Though it is
possible that the same hypothesized attacks are repeated
multiple times, having too many uncertain details reduces
the usability of the integrated correlation graph.

To deal with the above problem, we consolidate the hy-
pothesized attacks based on their types and their inferred
attribute values. The general idea is to merge the hypoth-
esized attacks (and thus reduce the complexity of the inte-
grated correlation graph) as long as it is possible that the
hypothesized attacks to be merged are the same attack. In
other words, we aggregate the same type of hypothesized
attacks if their inferable attribute values are consistent.

The attribute values of a hypothesized attack
can be inferred from the hyper-alerts that lead
to this hypothesis. For example, if we hypoth-
esize that an IMAP Authen Overflow attack
after a SCAN NMAP TCP alert and before aRsh
alert such that SCAN NMAP TCP prepares for
IMAP Authen Overflow, which then prepares for
Rsh, then from Table 1 we know thatSCAN NMAP TCP
andIMAP Authen Overflow have the same destina-
tion IP address, and the destination IP address involved
in IMAP Authen Overflow is the same as either
the source or the destination IP address inRsh. In
general, we can use the equality constraints between the
actual alerts and the hypothesized attacks to infer the
possible attribute values of these attacks. As a special
attribute, we estimate the timestamp of a hypothesized
attack with a possible range. If an attackT is hypoth-
esized with two actual alertsh and h′, whereh occurs
beforeh′, then the possible range ofT ’s timestamp is
(h.end time, h′.begin time).

To reduce the number of hypothesized attacks and make
the integrated correlation graph easy to understand, we
take an aggressive approach. Specifically, we aggregate
two hypothesized attacks together if they (1) belong to the
same type, (2) share the same values on their common in-
ferable attributes, and (3) the ranges of their timestamps
overlap. An example of consolidation is what we per-
formed in our experiments, which consolidated about 300
hypothesized attacks into 16. In the following, we outline
the approach to consolidating hypothesized attacks.

The consolidation process is performed in three steps.
First, we get the inferable attribute values for all hypothe-
sized attacks. Second, we partition the hypothesized at-



tacks into groups such that all hypothesized attacks in
the same group have the same hyper-alert type, their at-
tribute values do not have conflict values (i.e., if two hy-
pothesized attacks have inferable values on the same at-
tribute, these two values should be the same), and possi-
ble ranges of their timestamps overlap. We then aggregate
each group into one hypothesized attack. Third, we merge
virtual edges between the same pair of (aggregated) hy-
pothesized attacks. The resulting correlation graph is the
final integrated correlation graph.

Among the three steps, the only non-trivial step is the
inference of attribute values for hypothesized attacks. We
achieve this by revising Algorithm 1. In Steps 5 o 9, in ad-
dition to maintaining the setsS(T0.ai) only for attributes
of T0, we construct such sets for all attributes of each
hyper-alert typeTj−1 that appear in the equality constraint
Cj . As a result, for each combination of equality con-
straints mentioned in Step 4 and eachTj , j = 1, 2, ..., k,
we can get an equality constraint forT and eachTj, de-
notedecj , and another equality constraint forTj andT ′,
denotedec′j. Given a typeT hyper-alerth and a typeT ′

hyper-alerth′, if T , T1, ..., Tk, T ′ are the hypothesized
path that leads toh indirectly preparing forh′ and C1,
C2, ..., Ck+1 are the corresponding sequence of equality
constraints, then for each hypothesized attackTj , Tj must
satisfy bothecj andec′j. Thus, we can infer the attributes
involved inecj andec′j usingh andh′. To keep this infor-
mation, eachTj should maintainecj andec′j w.r.t. T and
T ′.

We shall point out that each hypothesized attack may
correspond to multiple actual attacks in the consolidated
correlation graph. In other words, each hypothesized at-
tack in an integrated correlation graph is indeed a place
holder for one or several possible attacks.

4. Experimental Results

To examine the effectiveness of the proposed tech-
niques, we performed a series of experiments using one
of the 2000 DARPA intrusion detection scenario specific
data sets, LLDOS 1.0 [15]. LLDOS 1.0 contains a series
of attacks in which an attacker probed, broke-in, installed
the components necessary to launch a Distributed Denial
of Service (DDOS) attack, and actually launched a DDOS
attack against an off-site server. The network audit data
were collected in both the DMZ and the inside parts of the
evaluation network. We used RealSecure Network Sen-
sor 6.0 [11] as the IDS sensor to generate alerts, and the
NCSU Intrusion Alert Correlator [18] to correlate these
alerts into correlation graphs. To validate the hypothe-
sized attacks using raw audit data, we used Ethereal [3], a
network protocol analyzer, to extract information from the
raw tcpdump file (i.e., the network audit data). We used
Graphviz [2] to visualize correlation graphs.
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Figure 7. Two correlation graphs constructed
from LLDOS 1.0 inside traffic

Our current implementation is still semi-automatic. Our
prototype can automatically decide what hyper-alert cor-
relation graphs to integrate, hypothesize possibly missed
attacks, and consolidate the hypothesized attacks. How-
ever, the validation of hypothesized attacks with raw audit
data still has to be handled semi-manually. Specifically,
we use Ethereal [3] to extract the protocol information for
each packet, and then validate the hypothesized attacks
accordingly. We are currently refining our implementa-
tion so that all steps can be automated.

In our experiments, we use a simple clustering corre-
lation method. That is, we cluster alerts together as long
as they involve the same destination IP address. Since
our goal is to examine the effectiveness of the integration
techniques, we believe this is acceptable for our experi-
ments. In practice, more sophisticated clustering correla-
tion methods (e.g., those proposed in [27]) are certainly
needed for better performance.

To test the ability of our techniques to hypothe-
size and reason about missed attacks, we dropped
all Sadmind Amslverify Overflow alerts that Re-
alSecure Network Sensor detected in LLDOS1.0. As a



result, the attack scenarios that the Intrusion Alert Corre-
lator output before dropping these alerts are all split into
multiple parts, some of which become individual, uncor-
related alerts. Figure 7 shows two of these correlation
graphs constructed from the inside traffic in LLDOS 1.0.

Now let us focus on the correlation graphs in Figure
7. As mentioned earlier, we cluster alerts together if
they share the same destination IP address. Since the
destination IP addresses of bothSadmind Ping67343
(in Figure 7(a)) andRsh67553 (in Figure 7(b)) are
172.16.112.50, they belong to the same cluster. We in-
tegrate two correlation graphs as long as they both have
alerts in the same cluster. Thus, Figures 7(a) and 7(b)
should be integrated together.

We consider all types of alerts generated by the RealSe-
cure Network Sensor 6.0 in our type graph. The speci-
fication of the corresponding hyper-alert types are given
in Appendix A, and the type graph is given in Figure 8.
For space reasons, we did not put the isolated nodes (the
nodes which do not have edges connecting to them) into
the type graph. Based on the type graph, we can easily hy-
pothesize that variations ofFTP Syst, HTTP Shells,
and Sadmind Amslverify Overflow could have
been missed by the IDS. For example, there could be
variations ofSadmind Amslverify Overflow be-
tween Sadmind Ping and any laterRsh alert. By
reasoning about the hypothesized attacks using equal-
ity constraints, we rule out some of these hypothesized
attacks. For example, the destination IP address of
Sadmind Ping67343 is 172.16.112.50, which is dif-
ferent from either the source or the destination IP address
of Rsh67543. Thus, Sadmind Ping67343 cannot
indirectly prepare forRsh67543 through a variation of
Sadmind Amslverify Overflow.

The hypothesized attacks are further validated using
the raw audit data. In our experiments, we use the
inferred attribute values and the protocol that carries
the corresponding attack as the filtering condition for
each hyper-alert type. For example, the filtering con-
dition for (variations of)FTP Put is protocol = ftp

plus all the inferable attributes. All the hypothesized
attacks are then checked using the audit records be-
tween the hyper-alerts that result in the hypothesized at-
tacks. For example, we search all the IP packets be-
tweenSadmind Ping67343 andRsh67560 for RPC
packets in order to validate a hypothesized (variation of)
Sadmind Amslverify Overflow attack (which is a
RPC based attack).

We continue the above process to integrate the re-
sulting correlation graph with additional ones generated
by the Intrusion Alert Correlator. We are able to fur-
ther integrate hyper-alertsSadmind Ping67286 and
Sadmind Ping67341, which are both uncorrelated

alerts. As a slight difference,FTP Put are hypothe-
sized during both integration processes, but all hypothe-
sizedFTP Put attacks are invalidated later using raw au-
dit data. In other words, we find no ftp activities involving
the corresponding host during the time frame when the hy-
pothesized attacks might happen. Figure 9 shows the inte-
grated correlation graph after the hypothesized attacks are
consolidated. The hypothesized attacks are shown in gray,
and are labeled by the corresponding hyper-alert type fol-
lowed by an ID to distinguish between different instances
of the same type of attacks.

Now let us examine the integrated correlation graph in
Figure 9. According to the description of the data sets
[15], the threeSadmind Amslverify Overflow at-
tacks and theprepare-forrelations between these attacks
and the other alerts are all hypothesized correctly. How-
ever, theFTP Put andHTTP Shells attacks are hy-
pothesized incorrectly. In addition, the grayRsh nodes in
Figure 9 result from the different combinations of equality
constraints between hyper-alert types (Their attribute val-
ues were inferred through existing alerts, and they cannot
be further consolidated with other alerts or hypothesized
attacks. In our future work, we may look for a way to
further reduce them).

We also performed the experiments using
the DMZ data set in LLDOS 1.0. Similar to
the inside data set, we deliberately dropped all
Sadmind Amslverify Overflow alerts from those
generated by RealSecure Network Sensor 6.0. Using the
type graph in Figure 8, we generated three integrated
correlation graphs in Figure 10, in which hypothesized
attacks are shown in gray. Based on the reasoning of
the hypothesized attacks, we know the destination IP ad-
dresses of Sadmind Amslverify Overflow4,
Sadmind Amslverify Overflow5 and
Sadmind Amslverify Overflow6 are
172.16.115.20, 172.16.112.10 and 172.16.112.50,
respectively. Similarly, the destination IP address
of HTTP Shells2 is 172.16.112.50. Accord-
ing to the description of the data sets [15], the
Sadmind Amslverify Overflow attacks are
all hypothesized correctly, while theHTTP Shells
attack is hypothesized incorrectly. These experiment
results (including LLDOS 1.0 inside and DMZ data sets)
indicate that though the proposed techniques can identify
missed attacks, they are still not perfect. Nevertheless, the
proposed techniques have already exceeded the limitation
of IDSs.

The experimental evaluation reported in this paper is
still preliminary, though they have demonstrated the po-
tential of the proposed techniques. To further understand
the capability of these techniques, a more detailed, quan-
titative evaluation is required. We will perform such eval-
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Figure 9. The integrated correlation graph constructed from LLDOS 1.0 inside traffic

uations in our future research.

5. Related Work

Our work in this paper is closely related to the recent re-
sults in intrusion alert correlation. In particular, our tech-
niques integrate the causal correlation methods in [5, 19]
and the clustering correlation methods in [4, 7, 25, 27]. In
addition to correlating intrusion alerts, our techniques al-
low to further hypothesize and reason about attacks pos-
sibly missed by the IDSs, and thus can potentially exceed
the limitation of IDSs.

There are other alert correlation techniques. The Tivoli
approach correlates alerts based on the observation that
some alerts usually occur in sequence [9]. M2D2 corre-
lates alerts by fusing information from multiple sources
besides intrusion alerts, such as the characteristics of the
monitored systems and the vulnerability information [17],
thus having a potential to result in better results than those
simply looking at intrusion alerts. The mission-impact-
based approach correlates alerts raised by INFOSEC de-

vices such as IDSs and firewalls with the importance of
system assets [21]. The alert clustering techniques in
[13, 14] use conceptual clustering and generalization hi-
erarchy to aggregate alerts into clusters. An interesting
approach was proposed recently to apply statistical tests to
identify causal relationships among aggregated alerts [22].
Alert correlation may also be performed by matching at-
tack scenarios specified by attack languages. Examples of
such languages include STATL [10], LAMBDA [6], JIG-
SAW [26] and Chronicles [16]. We consider these tech-
niques as complementary to ours.

Our approach is also related to techniques for static vul-
nerability analysis (e.g., [1, 12, 23, 24]). In particular,the
methods in [1, 24] also use a model of exploits (possi-
ble attacks) in terms of their pre-conditions (prerequisites)
and post-conditions (consequences) to construct possible
sequences of attacks. However, our method aims to con-
struct high-level attack scenarios from low-level intrusion
alerts and reason about attacks possibly missed by the
IDSs, while the vulnerability analysis techniques are in-
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Figure 10. Experimental results using the DMZ data set in LLDOS 1.0

tended to understand possible ways of combining differ-
ent attacks. In our method, the investigation of the ac-
tual alerts and raw audit data presents more opportunities
that cannot be provided by static vulnerability analysis.
Thus, we believe that our techniques are more suitable
than static vulnerability analysis when real intrusion data
is available.

6. Conclusion and Future Work

In this paper, we presented a series of techniques to con-
struct high-level attack scenarios even if the underlying
IDSs miss critical attacks. Our approach integrates two
complementary intrusion alert correlation methods: (1)
correlation based on similarity between alert attributes,
and (2) correlation based on prerequisites and conse-
quences of attacks. Moreover, our approach uses the in-
trinsic relationships between possibly related attacks to
hypothesize missed attacks. To reason about hypothesized
attacks, we developed techniques to compute constraints
that indirectly related attacks must satisfy and proposed
to further validate hypothesized attacks through raw au-
dit data. Finally, we presented a technique to consolidate
hypothesized attacks to generate concise representations
of constructed attack scenarios. Our experimental results
demonstrated the potential of these techniques.

The proposed techniques can provide meaningful
“guesses” of attacks possibly missed by the IDSs, and
thus supply good starting points as well as supporting ev-
idences to facilitate investigation of unknown intrusions.
A limitation of these techniques is that they depend on

known attacks used together with unknown attacks to
identify those unknown ones. These techniques will fail
if all attacks involved in a sequence attacks are unknown.
Moreover, the effectiveness of these techniques for differ-
ent mixtures of known and unknown attacks still requires
further investigation.

This paper is a starting point for improving intrusion
detection through alert correlation. In our future research,
we plan to continue our investigation in this direction. In
particular, we will develop additional techniques to vali-
date and reason about hypothesized attacks and perform
a more thorough, quantitative evaluation of the proposed
techniques.
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A. The Hyper-alert Types

In this appendix, we give more information about the
hyper-alert types used in our examples and experiments.
We present the implication relationships between pred-
icates in Table 2. Table 3 shows all hyper-alert types
used in our examples, and Table 4 describes all hyper-alert
types used in our experiments. In both Tables 3 and 4, the
set of fact attributes for each hyper-alert type is{SrcIP,
SrcPort, DestIP, DestPort}.

Table 2. Implication relationships between the
predicates

Predicate Implied Predicate
ExistService(IP,Port) GainInformation(IP)
GainOSInfo(IP) GainInformation(IP)
GainOSInfo(IP) OSSolaris(IP)
OSSolaris(IP) OSUNIX(IP)
GainSMTPInfo(SrcIP,DestIP) SMTPSupportTurn(SrcIP,DestIP)
GainAccess(IP) SystemCompromised(IP)
SystemCompromised(IP) SystemAttack(IP)
ReadyForDDOSAttack(IP) ReadyForDDOSAttack



Table 3. Hyper-alert types used in the examples
Hyper-alert Type Prerequisite Consequence
ICMP PING NMAP ExistHost(DestIP)
SCAN NMAP TCP ExistHost(DestIP) {ExistService(DestIP,DestPort)}
IMAP Authen Overflow ExistService(DestIP,DestPort)

∧VulnerableAuthenticate(DestIP)
{GainAccess(DestIP)}

FTP Glob Expansion ExistService(DestIP,DestPort)
∧VulnerableFTPRequest(DestIP)

{GainAccess(DestIP)}

Rsh GainAccess(DestIP)∧GainAccess(SrcIP) {SystemCompromised(DestIP),
SystemCompromised(SrcIP)}

MstreamZombie SystemCompromised(DestIP)
∧SystemCompromised(SrcIP)

{ReadyForDDOSAttack(DestIP),
ReadyForDDOSAttack(SrcIP)}

Table 4. Hyper-alert types used in our experiments
Hyper-alert Type Prerequisite Consequence
Admind
DNS HInfo ExistService(DestIP,DestPort) {GainOSInfo(DestIP)}
Email Almail Overflow ExistService(DestIP,DestPort)

∧VulnerableAlMailPOP3Server(DestIP)
{GainAccess(DestIP)}

Email Debug ExistService(DestIP,DestPort)
∧SendMailInDebugMode(DestIP)

{GainAccess(DestIP)}

Email Ehlo ExistService(DestIP,DestPort)
∧SMTPSupportEhlo(DestIP)

{GainSMTPInfo(SrcIP,DestIP)}

Email Turn ExistService(DestIP,DestPort)
∧SMTPSupportTurn(SrcIP,DestIP)

{MailLeakage(DestIP)}

FTP Pass ExistService(DestIP,DestPort)
FTP Put ExistService(DestIP,DestPort)

∧GainAccess(DestIP)
{SystemCompromised(DestIP)}

FTP Syst ExistService(DestIP,DestPort) {GainOSInfo(DestIP)}
FTP User ExistService(DestIP,DestPort)
HTTP ActiveX ActiveXEnabledBrowser(SrcIP) {SystemCompromised(SrcIP)}
HTTP Cisco CatalystExec CiscoCatalyst3500XL(DestIP) {GainAccess(DestIP)}
HTTP Java JavaEnabledBrowser(SrcIP) {SystemCompromised(SrcIP)}
HTTP Shells VulnerableCGIBin(DestIP)

∧OSUNIX(DestIP)
{GainAccess(DestIP)}

MstreamZombie SystemCompromised(DestIP)
∧SystemCompromised(SrcIP)

{ReadyForDDOSAttack(SrcIP),
ReadyForDDOSAttack(DestIP)}

Port Scan {ExistService(DestIP,DestPort)}
RIPAdd
RIPExpire
Rsh GainAccess(DestIP)∧GainAccess(SrcIP) {SystemCompromised(DestIP),

SystemCompromised(SrcIP)}
SadmindAmslverify Overflow VulnerableSadmind(DestIP)

∧OSSolaris(DestIP)
{GainAccess(DestIP)}

SadmindPing OSSolaris(DestIP) {VulnerableSadmind(DestIP)}
SSH Detected
StreamDoS ReadyForDDOSAttack {DDOSAgainst(DestIP)}
TCP Urgent Data {SystemAttacked(DestIP)}
TelnetEnvAll {SystemAttacked(DestIP)}
TelnetTerminaltype {GainTerminalType(DestIP)}
TelnetXdisplay {SystemAttacked(DestIP)}
UDP Port Scan {ExistService(DestIP,DestPort)}


