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Abstract ity of intrusion alerts (i.e., missed attacks and falsetajer
make it a very challenging task for human users or intru-
sion response systems to understand the alerts and take

Several alert correlation methods were proposed in the appropriate actions. Thus, it is usually necessary to con-
past several years to construct high-level attack scesario struct high-level attack scenarios from a large collection
from low-level intrusion alerts reported by intrusion de- of low-level intrusion alerts.
tection systems (IDSs). These correlation methods have Several alert correlation techniques have been proposed
different strengths and limitations; none of them clearly to facilitate the analysis of intrusion alerts, including a
dominate the others. However, all of these methods de-proaches based on the similarity between alert attributes
pend heavily on the underlying IDSs, and perform poorly [4, 7, 25, 27], previously known (or partially known) at-
when the IDSs miss critical attacks. In order to improve tack scenarios [8, 9], and prerequisites and consequences
the performance of intrusion alert correlation and reduce of known attacks [5,19]. A common requirement of these
the impact of missed attacks, this paper presents a se-approaches is that they all depend on underlying IDSs for
ries of techniques to integrate twabmplementaryypes alerts. This means the results of alert correlation are lim-
of alert correlation methods: (1) those based on the sim- ited to the abilities of the IDSs. In particular, if the IDSs
ilarity between alert attributes, and (2) those based on miss critical attacks, the results of alert correlation nit
prerequisites and consequences of attacks. In particular, reflect the true attack scenario, and thus provide mislead-
this paper presents techniques to hypothesize and reasoting information.
about attacks possibly missed by IDSs based on the indi- In this paper, we develop a series of techniquesotio-
rect causal relationship between intrusion alerts and the struct high-level attack scenarios even if the IDSs miss
constraints they must satisfy. This paper also discussescritical attacks.Our approach is to integrate complemen-
additional techniques to validate the hypothesized aftack tary intrusion alert correlation methods and use the intrin
through raw audit data and to consolidate the hypothe- sic relationships between possibly related attacks to hy-
sized attacks to generate concise attack scenarios. The expothesize and reason about attacks missed by the IDSs.
perimental results in this paper demonstrate the potential We are particularly interested in two types of alert cor-
of these techniques in building high-level attack scersrio relation methods: correlation based on prerequisites and
and reasoning about possibly missed attacks. consequences of attacks [5, 19] (which we callisal cor-

relation methodssince they are intended to discover the

causal relationships between alerts), and correlatioedas
1. Introduction on similarity between alert attribute values [4, 7, 25, 27]

(which we callclustering correlation methdd Because

Itis well-known that current intrusion detection systems these two methods correlate alerts using different mecha-
(IDSs) produce large numbers of alerts, including both ac- nisms, combining them can potentially lead to better cor-
tual and false alerts. The high volume and the low qual- relation results. Our main contribution in this paper is a

, _ _ series of techniques to integrate the causal and the clus-
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level attack scenarios from low-level intrusion alertsitns 2. Previous Work: Alert Correlation Using
uations where the IDSs cannot guarantee to detect all at- Prerequisites of Attacks

tacks. These techniques complement the underlying IDSs . L . .
by hypothesizing and reasoning about missed attacks, and The new techmque; in this paper are buH_t on the ba.LS'S
thus can provide valuable additional evidences to supportOlc the_ causal co_rrela'uon method proposed in [19], which
further intrusion investigation and response. we briefly describe below.

Our approach starts with a straightforward combina- hThe appr(_)a_lch n 519] correlates |ntrfu5|on fle?s gs_mglg
tion of the causal and the clustering correlation methods. [N Prerequisites and consequences of attacks. Intyitive

Specifically, we first correlate the same set of intrusion theprerequisiteof an attack is the necessary COI’ld.ItIOI’] for
alerts with both methods independently, then combine re. the attack to be successful. For example, the existence of

sults from the causal correlation method (represented ad vu:c?erable SEN'C? IS thr? prere_qwsrfl?cga remote l;)uffer
correlation graphs) using results from the clustering cor- over owka_ltta;]: aga'?‘l;“ € serwce]; h seqku e: ce
relation method. For example, if the clustering correlatio an attack is the possible outcome of the attack. For exam-

method decides that two alerts in two separate correlationple’ gaining local access as root from a remote machine
graphs are very similar (e.g., same target, close times-may be the consequence of a ftp buffer overflow attack.
tamps, etc.), we combine these two correlation graphs into!n & series of attacks where earlier ones are launched to
one. We then develop techniques to hypothesize about atP'¢Pare for later ones, there are us_ually connections be-
tacks possibly missed by the IDSs, especially unknown tween the consequences of the earlier attacks and the pre-
variations of known attacks requisites of the later ones. Accordingly, we identify the
We observe that if two attacks are causally related prerequisites (e.g., exister)ce of vulnerable serviced)_an
through some intermediate attacks, they usually satisfythe consequences (e.g., discovery of vuIner_abIe services)
certain conditions (e.g., sharing the same destination pOf atta_cks, and correlate detected a_ttacks (i.e., aleyts) b
address), even if they are not directly adjacent in a Se_matchlng the consequences of previous alerts to the pre-

guence of attacks. The attribute values of the correspond-reqlrj]'s'teS ofllaf[er onesk.] q loaical f | hich
ing alerts should also satisfy such conditions. This obser- The corre atlon_ mc—_:‘t 0d uses logical formuias, whic
vation provides another opportunity to reason about the &€ Ioglpa_l combinations of predicates, to represent the
hypothesized attacks by inferring their attribute values. prereqm_snes and consequences of attackg. For example,
Moreover, the hypothesized attacks can be further vali- a scanning attack may discover UDP services yulnerable
dated through raw audit data. For example, we might hy- to certain buffer overfloyv attacks.. Then the predidaix
pothesize that variations ¢fMAP_Aut hen_Over f | ow PVuInerabIeToBOlE\ﬁcUmlP, VictimPor} may be used to
and/orRPC_Crrsd _Over f | owwere missed by the IDSs. represent this Q|scovery.

However, if during the target time frame, there is only The correlation model formally represents the prereq-
IMAP traffic and no RPC traffic to the target host, we uisites and consequences of known attacks as hyper-alert
can easily conclude that the latter hypothesis is impossi—types' Ahyper-alert typ_e|s a triple act, p_rereqwsne,

ble. Finally, to improve the usability of the constructed consequengewherefactis a set of alert attribute names,

attack scenarios, we present a technique to consolidate th@rerequisitels a logical formula whose free variables are

hypothesized attacks and generate concise represelstatiorf" in fact, and consequence a se_t of logical formu—
of the high-level attack scenarios. as such that all the free variablesdéonsequencare in

The remainder of this paper is organized as follows. fact. Intuitively, ahype_r-alert type encodes th_e knowledge
The next section briefly describes a specific causal cor-a:mUt the cErrfespondlng ty_p_e of attacks. Given a hyper-
relation method, on the basis of which our techniques alert typeT = (fact, prerequisite, consequenca type T

are developed. Section 3 presents our techniques to inte_hyper.-alert h|§ a f|n|t§ set O_f tuples ofact, V\(here each
grate clustering and causal correlation methods, inctudin tu_ple_ IS assoc_|ated with an mterval_—bas_ed timestalep |
approaches to hypothesizing and reasoning about attack§'n-time. endtime]. The hyper-alerh |mpl|es_ thaprereq- .
possibly missed by IDSs, methods to validate hypothe- uisitemust eva_luate to True and all the logical formulas in
sized attacks using raw audit data, and ways to consoIidateconsequencm'9ht evaluate t(_) True for eaph Of_ the tuples.
hypothesized attacks. Section 4 reports our experimental The cprrelatlon process is used to |d.e-nt;ﬁyepa.re-
results to test the effectiveness of our techniques. Sectio for_ reIatlpns _between _hyper—alerts. IntL_utlver, this re-
5 discusses related work, and Section 6 concludes this pa1at|0n e>_<|_sts if an earlier hyper-aletontributesto the
per and points out some future research directions. ThePrerequisite of a later one.  In the formal model,

Appendix gives more information about the alert types correlations are .|dent|f|ed via prerequisite and conse-
used in our experiments quence sets. Given a hyper-alert type= (fact, pre-

requisite, consequengethe prerequisite sefor conse-
quence s@tof T', denotedPrereq(T) (or Conseq(T)),



correlation graphs shown in Figures 1(a) and 1(b) (The

string inside each node is a hyper-alert type name fol-
l ' lowed by an alert ID), if the clustering method groups
SCANLNMAP_TCP2 andRsh3 in the same cluster based
on their common source and destination IP addresses, we
(@)CGy (b) CG2 consider integrating these two graphs together.

Because this simple technique works well in practice,
our main focus in this paper is on the second step: how
to identify causal relationships between alerts in differ-

is the set of all predicates that appear prerequisite ent correlation graphs. This is challenging, since we must
(or consequende The expanded consequence St deal with missed attacks that cause an attack scenario to

T, denoted EzpConseq(T), is the set of all predi- SPlitinto multiple correlation graphs. ,
cates that are implied b@onseq(T). (This is com- 'I_'o meet our g(_)al, we developed a series of techn_|ques
puted using the implication relationships between pred- to mtegrate multiple correlation graphs. We start Wlth a
icates [19]) Thus,Conseq(T) C ExzpConseq(T). stralghtforwgrd mgthod, and gradually gdd more sophisti-
Given a typel’ hyper-alerth, the prerequisite set, con- cate_d technigues into our approach. WI'[hOU.t loss of gen-
sequence setand expanded consequence sdth, de- erality, we assume we integrate two correlation graphs in
noted Prereq(h), Conseq(h), and ExpConseq(h)), re- the following discussion.
spectively, are the predicatesRrereq(T), Conseq(T),
andExzpConseq(T) with arguments replaced by the cor-
responding attribute values of each tuplehin Each el- A straightforward approach to combining two corre-
ement inPrereq(h), Conseq(h), or ExpConseq(h) is lation graphs is to use the prior knowledge of attacks
associated with the timestamp of the corresponding tupleand the alert timestamp information to hypothesize about
in h. Hyper-alerth, prepares fohyper-alerth, if there  the possible causal relationships between alerts in dif-
existp € Prereq(hy) andc € ExpConseq(hy) suchthat  ferent correlation graphs. For example, suppose an at-
p = candc.end_time < p.begin_time. tacker usesxmapto find out a vulnerable service, then
A hyper-alert correlation graph is used to represent auses a buffer overflow attack to compromise that ser-
set of correlated hyper-alerts. Wyper-alert correlation  vice, and finally installs and starts a DDOS daemon pro-
graphCG = (N, E) is a connected directed acyclic graph, gram. When we observe an earlREAN_NVAP_TCP and
whereN is a set of hyper-alerts and for each pairn, € alaterMst r eamZonbi e alert in two correlation graphs
N, there is a directed edge from tons in Eifandonly  that are identified for integration, we may hypothesize
if n, prepares fon,. For brevity, we refer to a hyper-alert  that theSCAN_NVAP_TCP alert indirectly prepares for the

Figure 1. Two correlation graphs

3.1. Combining Related Correlation Graphs

correlation graph as eorrelation graphin this paper. Mt r eamZonbi e alert through an unknown attack (or
an unknown variation of a known attack, e.g., a variation
3. Integrating Complementary Alert Correla- of the above buffer overflow attack). As a result, we would
tion Methods add a hypothesized indirect causal relationship between

these two alerts.
To integrate the causal and the C|ustering correlation To further characterize this intuition and facilitate late

methods, we combine correlation graphs generated by thediscussion, we introduce two definitions. (Note that Def-
causal method using the results from the clustering meth-inition 1 is based on the model in [19], which has been
ods. Intuitively, if the IDSs miss certain attacks, alerts described briefly in Section 2.) For convenience, we de-
from the same attack scenario may be split across severaiote the type of a hyper-aleitasType(h).

correlation graphs. The clustering methods have the po-p.sinition 1 Given two hyper-alert types’ and T’
telntlal to (deehntlfyf the cor:n:non features szaredI by these, . sayT may prepare fofl” if ExpConseq(T) and
alerts, and therefore to help re-integrate the relevant cor Prereq(T’) share at least one predicate (with possibly

relation graphs together. different arguments). Given a sg&tof hyper-alert types,

. The integra.tioln _zrocgsshcan bel cpnceptuﬁlly dl;vic_ied we sayl’ may indirectly prepare fdf’ w.r.t. T if there ex-
into two steps: (1) identify the correlation graphs to be in- ists a sequence of hyper-alert tygBs7, ..., Ty, T’ such

tegrated, and (2) determine possible causal relationship§halt (1) all these hyper-alert types are and (2)T

between alerts in different correlation graphs. In this pa- may prepare fofly, T; may prepare fofl} where
per, we choose a simple technique for the first step: we. 19 L alr,ldizk may prepare fof” w

integrate two correlation graphs when they both contain
alerts from a common cluster. For example, given the two  Intuitively, given two hyper-alert typeg and7’, T may



ICMP_PING_NMAP1
SCAN_NMAP_TCP2

Mstream_Zombie4

Figure 2. A straightforward combination of CG,
and CGs

prepare fofT”’ if there exist a typ&l” hyper-alerth and a
typeT’ hyper-alerty’ such that, prepares foh'.

Definition 2 Given a set7 of hyper-alert types and two
hyper-alertsh and '/, whereType(h) and Type(h') €
T and I/.begin_time > h.end_time, h may indirectly
prepare for b’ if Type(h) may indirectly prepare for
Type(h') w.r.t. 7. Given a sequence of hyper-aletts
hi, ..., hi, k' wherek > 0, h indirectly prepares foh’ if

h prepares foh,, h; prepares foh;, fori =1, ..., k—1,
andh,, prepares foh/’.

Intuitively, h may indirectly prepare fdr' if therecould
exist a path fron, to &’ in a correlation graph (with ad-
ditional hyper-alerts), whilé indirectly prepares fok’ if

ICMP_PING_NMAP1

SCAN_NMAP_TCP2
P ~
~ S

IMAP_Authen_Overflow5 FTP_Glob_Expansion6
A -7

s
N
Mstream_Zombie4

Figure 3. Integration of CG; and C'G5 with hy-
potheses of missed attacks

mined solely on the basis of prior knowledge about at-
tacks. There is no “reality check.” Though a clustering
correlation method combines several hyper-alert correla-
tion graphs together, the hypothesized virtual edges are
not necessarily true due to the limitations of the clustgrin
correlation method and the lack of information about the
missed attacks.

3.2. Hypothesizing Missed Attacks

Themay-prepare-faandmay-indirectly-prepare-fae-
lations identified in Definitions 1 and 2 provide additional
opportunities to hypothesize and reason about missed at-
tacks, especially unknown variations of known attacks.

such hyper-alerts do exist. We are particularly interested Consider two hyper-alerts and /' that belong to dif-

in the case wherk may indirectly prepare fdr' but there
do not exist additional hyper-alerts showing tthaindi-

ferent correlation graphs prior to integration. Hfmay
indirectly prepare foh’, we can then identify possible se-

rectly prepares foli’. Indeed, a possible reason for such a quences of hyper-alert types in the form®f, s, ..., T}
situation is that the IDSs miss some critical attacks, which such thaf'ype(h) may prepare fof, T; may prepare for
if detected, would lead to additional hyper-alerts showing T;11,7 = 1,2, ..., k—1, andT may prepare fofype(h').

thath indirectly prepares foli'.

These sequences of hyper-alert types are candidates of at-

A simple way to take advantage of the above observa-tacks possibly missed by the IDSs. (More precisely, vari-
tion is to assume a possible causal relationship betweerations of these attacks, which could be used by an at-

hyper-alertsh and?’ if they belong to different correla-
tion graphs andv may indirectly prepare foh’. Let us
continue the example in Figure 1. SCAN.NVAP_TCP
may prepare foFFTP_A ob_Expansi on, which may
prepare foRsh, then we haveSCAN.NVAP_TCP may
indirectly prepare foRsh. Thus, we may hypothesize
that SCAN.NVAP_TCP2 indirectly prepares foRsh3.
We add avirtual edge displayed in a dashed line, from
SCANLNMAP_TCP2 to Rsh3 in Figure 2, indicating that

tacker and then missed by the IDSs, are the actual candi-
dates of missed attacks.) We can then search in the alerts
and/or the raw audit data betwegrand?’ to check for
signs of these attacks (or their variations). For example,
to continue the example in Figure 2, we may hypothesize
that variations of eithel MAP_Aut hen_Over f | ow, or
FTP_A ob_Expansi on, or both may have been missed
by the IDSs based on our prior knowledge about attacks.
To better present these hypotheses, we may add the hy-

there may be some attacks between them that are missegothesized attacks into the correlation graph as virtual

by the IDSs.

nodes (displayed in gray). Figure 3 shows the resulting

Though this simple approach can integrate related correlation graph.
hyper-alert correlation graphs and hypothesize about pos- To facilitate hypothesizing about missed attacks, we en-
sible causal relationships between alerts, it is limited in code our knowledge of the relationships between hyper-
several ways. First, the virtual edges generated with thisalert types in ehyper-alert type graphor simply atype
approach provide no information about attacks possibly graph Let us first introduce the concept efuality con-
missed by the IDSs. Second, the virtual edges are deterstraint, which was originally defined in [20], to help for-



mally describe the notion of type graph.

Definition 3 (equality constraint [20]) Given a pair of
hyper-alert types(7i,7>), an equality constraint for
(Th,T») is a conjunction of equalities in the form of
uy = v1 A Auy = vg, Whereuq, - - -, u,, are attribute
namesirl; andvy, - - -, v, are attribute names if,, such
that there exisp(uq,- - -,u,) andp(vy,-- -, v,), which
are the same predicate with possibly different arguments,
in ExpConseq(Ty) andPrereq(T>), respectively. Given
a typeT’ hyper-alerth, and a typel, hyper-alerths, hy
andhs satisfy the equality constraiiftthere existt; € hq
andty € ho suchthat,.u; = ta.v1 A--- At1.uy, = ta.v,
evaluates to True.

An equality constraint characterizes the relationships
between the attribute values of two hyper-alerts when one
of them prepares fothe other. There may be several
equality constraints for a pair of hyper-alert types. How-
ever, if a typeT; hyper-alerth, prepares fom typeTs
hyper-alerths, thenh; and ho must satisfy at least one
equality constraint. Indeedy preparing forh is equiva-
lent to the conjunction of; andh satisfying at least one
equivalent constraint and, occurring beforéi, [20].

Given a set of hyper-alert types (representing the known
attacks), we can derive all possibteay-prepare-fore-
lations between them together with the corresponding
equality constraints. This information can help us un-

derstand how these known attacks may be combined to

nl:ICMP_PING_NMAP

{n1.DestlP=n2.DestIP}

n2:SCAN_NMAP_TCP

{n2.DestIP=n3.DestIP}

n3:IMAP_Authen_Overflow n4:FTP_Glob_Expansion

{n3.DestIP=n5.SrcIP,
n3.DestIP=n5.DestIP}

{n2.DestIP=n4.DestIP}

{n4.DestIP=n5.SrclIP,
n4.DestIP=n5.DestIP}

{n3.DestIP=n6.SrcIP,
n3.DestIP=n6.DestIP}

{n4.DestIP=n6.SrcIP,
n4.DestIP=n6.DestIP}

{n5.SrcIP=n6.SrcIP,
n5.DestIP=n6.DestIP,
n5.SrclP=n6.DestIP,
n5.DestIP=n6.SrcIP}

n6:Mstream_Zombie

Figure 4. An example type graph

Mst r eamZonbi e}. (We include the specifica-
tions of these hyper-alert types in Appendix A.) We can
compute the type graph ovér as shown in Figure 4.
The string inside each node is the node name followed by
the hyper-alert type name. The label of each edge is the
corresponding set of equality constraints.

Obviously, given multiple correlation graphs that may
be integrated together, we can hypothesize about pos-

launch sequences of attacks, and thus hypothesize abOLﬁ'bly missed attacks that break the attack scenario ac-

which attacks (more precisely, their variations) may be
missed when we observe alerts thray indirectly prepare
for each other. The following definition formally captures
this intuition.

Definition 4 Given a sefl of hyper-alert types, éhyper-
alert) type graphl’G overT is a quadruplé N, E, T, C),
where

(1) (N, E) is a directed graph,

(2) T is a bijective mapping froniV to 7, which maps
each node inV to a hyper-alert type iff",

(3) there is an edgén,ns2) in E if and only if T'(ny)
may prepare fof (nz), and

(4) C is a mapping that maps each ed@e,n2) in
E to a set of equality constraints associated with
(T(n1), T'(n2)).

Example 1 Consider  the following set  of
hyper-alert types: T7={1 CVMP_PI NG_NVAP,
SCANLNVAP_TCP, | MAP_Aut hen_Over f | ow,

FTP_A ob_Expansi on, Rsh,

cording to the type graph. Let us revisit the exam-
ple in Figure 1. Given the type graph in Figure 4, we
can systematicallyhypothesize that the IDSs may have
missed variations of MAP_Aut hen_Over f | ow and/or
FTP_A ob_Expansi on attacks. As a result, we obtain
the integrated correlation graph shown in Figure 3.

3.3. Reasoning about Missed Attacks

Consider nodes2, n3, andn5 in Figure 4. There is an
equality constraint2. DestI P = n3.DestI P associated
with (n2, n3), and two equality constraints3. DestI P =
nb.SrcIP and n3.DestIP = nb.DestI P associated
with (n3, n5). These imply thatn2.DestIP
n5.SrcIP or n2.Destl P nb.DestIP. In other
words, if a typeSCAN_.NMAP_TCP hyper-alertindirectly
prepares fora type Rsh hyper-alert (through a type
| MAP_Aut hen_Over f | ow hyper-alert), they must sat-
isfy one of these two equations. We obtain the same
equations if we consider nodeg, n4, andnb5 in Figure
4. In general, we can derive constraints for two hyper-
alert types when one of themay indirectly prepare for
the other. Informally, we call such a constraintiadi-
rect equality constraintThese constraints can be used to
study whether two hyper-alerts in two different correlatio



graphs could be indirectly related. This in turn allows us S(7Ty.a;) are equal tdly.a;, since each addition is based
to filter out incorrectly hypothesized attacks. on a conjunctl’;_;.a = T;.b, whereT)_;.a is already in
Indirect equality constraints can be considered a gener-S(7y.a). Further because step 9 removes the attributes
alization of the equality constraints specified in Definitio  of T,_;, only attributes ofT}; remain inS(Ty.a;),
3. In this paper, we combine the terminology and sim- i = 1,2, ...,1. Thus, after step 9, ead$i{7y.a;) includes
ply refer to an indirect equality constraint as an equality all the attributes ofl},; that are equal tdj.a;, where
constraint when it is not necessary to distinguish between: = 1,2, ...,1. Steps 10 to 13 then transform these equal-
them. ity relations into a conjunctive formulec. Since the se-
To take advantage of the above observation, we mustquence of constraints;, i = 0, 1, ..., k, where eaclt; is
derive indirect equality constraints. Algorithm 1 (shown satisfied byh; andh;, 1, is used in the above process, we
in Figure 5) outlines an approach for generating the setcan easily conclude thai, (h) andhy.1 (h') satisfyec.
of indirect equality constraints between two hyper-alert Thus, if i indirectly prepares foh’, they must satisfy at

typesT andT’ whereT may indirectly prepare for”. least one equality constraint . m]
Intuitively, for each pair of hyper-alert typeg and7”,
Algorithm 1 identifies all paths frori” to 7" in the type Note that Algorithm 1 is meant to illustrate the basic

graph, and computes an indirect equality constraint for idea behind computing indirect equality constraints. In
each combination of equality constraints between consec-practice, we compute the indirect equality constraints for
utive hyper-alert types along the path. The basic idea is toall pairs of hyper-alert types simultaneously as we travers
propagate the equality relationships between attributes o through the paths between a pair of hyper-alert types, and
hyper-alert types. Each indirect equality constraint is la thus significantly reduce the required computation time.
beled with the corresponding path that produces the con-Moreover, we need to perform this computation only once
straint. This information provides further guideline in-hy  after we determine the set of known attacks. Thus, the
pothesizing missed attacks. The usefulness of Algorithm performance of this algorithm will not impact the perfor-
1is guaranteed by Lemma 1. mance of intrusion analysis greatly.

Lemma 1 Consider a type grapi’'G and two hyper-  Example 2 Consider the type graph in Figure 4 and two
alerts h and i/, where T'ype(h) and Type(h') are in hyper-alert typeSCAN.NMAP_TCP (noden2) andRsh
TG. Assume Algorithm 1 outputs a €gof equality con-  (nodenb). Using Algorithm 1, we can easily compute
straints forT'ype(h) andType(h’). If C'is non-empty and  the indirect equality constraints for the§n2. DestI P =
h indirectly prepares fol', thenh andh’ must satisfy at ~ n5.DestI P, n2.DestIP = n5.SrcIP}. Both indirect
least one equality constraint it equality constraints are labeled with the following two
paths: (SCAN.NMVAP_TCP, | MAP_Aut hen_Over f | ow,
PROOF. According to Definition 2, ifk indirectly pre- ~ Rsh) and (SCAN.-NMAP_TCP, FTP_G ob_Expansi on,
pares forh/, there must exists a sequence of hyper-alerts Rsh). Moreover, we can derive the sets of equality con-

hi, ..., hi, wherek > 0, such thath prepares foh,, h; straints for all pairs of hyper-alert types in Figure 4 where
prepares foh; .1 fori = 1,....k — 1, andh,, prepares for ~ one of the paimay (indirectly) prepare fahe other. Ta-

h'. Thus, we have'ype(h) may prepare fol'ype(h,), ble 1 shows the results. (To save space, we use node
Type(h;) may prepare fdfype(h;y1) fori = 1,.... k—1, names to represent the corresponding hyper-alert types.)
andType(hy) may prepare fol'ype(h'). Following the Each cell in the table contains the equality constraints for
convention of Algorithm 1, we denot&ype(h) as Ty, the hyper-alert types in the given row and the column,

Type(h;) asT;, wherei = 1,...,k, and Type(h’) as where the rowmay (indirectly) prepare fothe column.
Ty41. Itis easyto see there mustbe a pBhT, ..., Tk 11

in the corresponding type grafitG. For convenience, we
also denoté ashg, andh’ ashy. 1.

According to [20], if h; prepares forh;1, then h;
andh; 1, must satisfy at least one equality constraint for
(T;,Ti+1). Fori = 0,1, ..., k, we denote the constraihf
andh;; satisfy asC;. According to Figure 5, Algorithm
1 will process the patfdy, 71, ..., Tx+1 (in step 2) and the
combination of equality constraint%, C1, ...,Cx+1 that
ho, h1, ..., hiy1 satisfy (in step 4).

Now consider steps 5 to 9. For ea®{Tj.q;), we
can prove by induction that all attributé$.b added into

The equality constraints derived for indirectly related
hyper-alert types can be used to improve the hypotheses
of missed attacks. Given two correlation grafgksand
G’ that may be integrated together, we can check each
pair of hyper-alert& andh’, whereh may indirectly pre-
pare forh/, andh and h’ belong toG and G’, respec-
tively. If h andh’ satisfy at least one equality constraint
for (T'ype(h), Type(h')), then we have consistent evi-
dence that supports the hypothesis thahdirectly pre-
pares forh' (through some missed attacks). Moreover,
for each equality constrairt: that h and i’ satisfy, we



Algorithm 1. Computation of Indirect Equality Constraints
Input: A type graphl'G, and two hyper-alert typeg andT” in T'G, whereT may indirectly prepare fof”’.
Output: A set of equality constraints faf and7"”.
Method:
1. Let Result = ().
2. For each pati’, Ty, ..., Ty, T' fromT to T’ in TG
3. Denotel” asTp, andT” asTy. 1.

4, For each combination of constrairits, Ca, ...,Cr+1, whereC; is an equality constraint foff{_1, T;)
5. LetS(Ty.a:) = {Tv.a:}, whereTy.a;, ¢ = 1,2, ..., 1, are all the attributes df; that appear irC.
6. Forj=1tok+1

7. For each conjundt;_1.a = 7.0 in C;

8. For eachS(Tp.a;) that containd’;_1.a, let S(Tv.a;) = S(To.a:) U {T}.b}.

9. Remove variables @f;_; from eachS(Tv.a:),1 = 1,2, ..., L.

10. Lettemp = 0.

11. For each non-empt§(7y.a;) and eacl%1.b in S(To.a;)

12. Lettemp = temp U {Tp.a; = Tk41.b}.

13. Letec be the conjunction of all elementsiamp.

14. If eciis in Result then

15. LetLabel(ec) = Label(ec) U {{T, T1, ..., T, T')}

16. else LetLabel(ec) = {(T,T1, ..., Tk, T') }, and Result = Result U {ec}.

17. ReturnResult.

Figure 5. Algorithm to compute indirect equality consttaifor two hyper-alert types

Table 1. Equality constraints for hyper-alert types in Fegd where onenay (indirectly) prepare fahe other.
nl n2 n3 n4 n5 n6

n4.DestIP=n5.SrclpP

nl ! {n1.DestIP=n2.DestIP {n1.DestIP=n3.DestIP {n1.DestIP=n4.DestIP {n1.DestIP=n5.DestIP, | {nl.DestlP=n6.DestlP,
nl.DestIP=n5.SrclpP nl.DestIP=n6.SrclpP
n2 / i {n2.DestIP=n3.DestIP {n2.DestIP=n4.DestIP {n2.DestIP=n5.DestIP, | {n2.DestIP=n6.DestIP,
n2.DestIP=n5.SrclpP n2.DestIP=n6.SrclpP
n3 / / / / {n3.DestIP=n5.DestIP, | {n3.DestIP=n6.DestIP,
n3.DestIP=n5.SrclpP n3.DestIP=n6.SrclpP
n4 / / / / {n4.DestIP=n5.DestIP, | {n4.DestIP=n6.DestIP,

n4.DestIP=n6.SrclpP

n5 / / / / / {n5.SrcIP=n6.SrcIP,
n5.DestIP=n6.DestIP,
n5.SrclP=n6.DestIP,
n5.DestIP=n6.SrclP

n6 / / / / / /

can add the paths ihabel(ec) into the integrated correla-
tion graph. Note that each pathimbel(ec) is in the form

alert type. Assume that the raw audit data set consists of
a sequence of audit records, and we can extract a set of
of Type(h), T1, ..., T, Type(h'). Type(h) andType(h’) attributes from each audit record directly, or through in-
are then merged with andh/, respectively, and the rest ference. For example, we may extract the source IP ad-
of the path is added as a virtual path (i.e., virtual nodes dress from a tcpdump record directly, or infer the type of
and edges) from to h'. service using the port and payload information. For the
sake of presentation, we call such attributes obtained from
the raw audit dataudit attributes Given a setd of au-

) _ _ditattributes and a hyper-alert tyfie afiltering condition
The hypothesized attacks can be further validated usingor 7\ rt. 4 is a logical formula involving audit attribute
raw audit data. For example, we may hypothesize there is,ames ind, which evaluates to True or False if the audit
a variation ofFTP_G ob_Expansi on attack between a  gibyte names are replaced with specific values. Intu-
SCAN.NMAP_TCP alert and &Rsh alert. However, ifthere ey, a filtering condition forZ” w.r.t. A must be True if

is no ftp activity related to the victim host between these 5, attack corresponding 1 or its variations indeed hap-
two alerts, we can easily conclude that our hypothesis is o
incorrect. By doing so we can further narrow the hypoth-  sing filtering conditions is indeed straightforward.

esized attacks down to meaningful ones. When we hypothesize a sequence of missed attacks based
To take advantage of this observation, we extend our 5, two hyper-alerté andh’, we know that all the times-
model to associate a “filtering condition” with each hyper-

3.4. Validating through Raw Audit Data



3.5. Consolidating Hypothesized Attacks
'

In the earlier discussion, we focused on hypothesiz-
' ing and reasoning about missed attacks. However, this
'MAP_Auth/eT_Overﬂows method does not consider the possibility that the same
' hypothesized attack could be related to multiple hyper-

alerts in different correlation graphs. As a result, the-int
grated correlation graph with hypothesized attacks could

be overly complex. In particular, there could be multiple
) ) hypothesized attacks for one missed attack. Though it is
Figure 6. Integration of CG, and CG after re- possible that the same hypothesized attacks are repeated
finement with raw audit data multiple times, having too many uncertain details reduces
the usability of the integrated correlation graph.

To deal with the above problem, we consolidate the hy-
tamps of the hypothesized attacks are between those opothesized attacks based on their types and their inferred
h andh’. Thus, to validate a hypothesized attack, we attribute values. The general idea is to merge the hypoth-
can search through the raw audit records during the afore-esized attacks (and thus reduce the complexity of the inte-
mentioned time period, and evaluate the filtering condi- grated correlation graph) as long as it is possible that the
tion for the hypothesized attack using the values of the hypothesized attacks to be merged are the same attack. In
audit attributes extracted from each raw audit record. To other words, we aggregate the same type of hypothesized
continue the earlier example, we may associate a fil- attacks if their inferable attribute values are consistent
tering conditionprotocol=ftp with the hyper-alert type The attribute values of a hypothesized attack
FTP_A ob_Expansi on. If there is no ftp traffic be- can be inferred from the hyper-alerts that lead
tween the hyper-aler&@CAN_NMAP_TCP2 andRs h3, this to this hypothesis. For example, if we hypoth-
condition will evaluate to False for all audit records, and esize that an | MAP_Aut hen_Overfl ow attack
we can conclude that no ftp based attack is missed by theafter a SCAN.NMAP_TCP alert and before aRsh
IDSs. As a result, the integrated correlation graph in Fig- alert such that SCAN.NMAP_TCP prepares for
ure 3 can be refined to the one in Figure 6. | MAP_Aut hen_Over f | ow, which then prepares for

A limitation of using filtering conditions is that human Rsh, then from Table 1 we know th&CAN_NVAP_TCP
users must specify the conditions associated with eachand| MAP_Aut hen_Over f | ow have the same destina-
hyper-alert type. It has at least two implications. First, tion IP address, and the destination IP address involved
it could be time consuming to specify such conditions for in | MAP_Aut hen_Over f| ow is the same as either
every known attack. Second, human users may make misthe source or the destination IP addressRgh. In
takes during the specification of filtering conditions. In general, we can use the equality constraints between the
particular, a filtering condition could be too specific to actual alerts and the hypothesized attacks to infer the
capture the invariant among the variations of a known at- possible attribute values of these attacks. As a special
tack, or too general to filter out enough incorrect hypothe- attribute, we estimate the timestamp of a hypothesized
ses. Nevertheless, we observe that any filtering conditionattack with a possible range. If an atta€kis hypoth-
may help reduce incorrectly hypothesized attacks, even ifesized with two actual alerts and »’, whereh occurs
it is very general. In our experiments, we simply use the beforeh’, then the possible range @f's timestamp is
protocols over which the attacks are carried out as filtering (h.end_time, b’ .begin_time).
conditions. Itis interesting to study how to get the “right”  To reduce the number of hypothesized attacks and make
way to specify filtering conditions. We consider this prob- the integrated correlation graph easy to understand, we
lem outside of the scope of this paper; we will investigate take an aggressive approach. Specifically, we aggregate
it in our future work. two hypothesized attacks together if they (1) belong to the

Another issue is the execution cost. To filter out a hy- same type, (2) share the same values on their common in-
pothesized attack with a filtering condition, we have to ex- ferable attributes, and (3) the ranges of their timestamps
amine every audit record during the period of time when overlap. An example of consolidation is what we per-
the attack could have happened. Though there are manyormed in our experiments, which consolidated about 300
ways to optimize the filtering process (e.g., indexing, con- hypothesized attacks into 16. In the following, we outline
current examination), the cost is not negligible, espicial the approach to consolidating hypothesized attacks.
when the time period is large. Thus, filtering conditions  The consolidation process is performed in three steps.
are more suitable for off-line analysis such as forensic First, we get the inferable attribute values for all hypethe
analysis. sized attacks. Second, we partition the hypothesized at-



tacks into groups such that all hypothesized attacks in
the same group have the same hyper-alert type, their at-
tribute values do not have conflict values (i.e., if two hy-
pothesized attacks have inferable values on the same at-
tribute, these two values should be the same), and possi-
ble ranges of their timestamps overlap. We then aggregate
each group into one hypothesized attack. Third, we merge
virtual edges between the same pair of (aggregated) hy-

FTP_Syst67243 Sadmind_Ping67343

(@) CGa

pothesized attacks. The resulting correlation graph is the

final integrated correlation graph.

Among the three steps, the only non-trivial step is the
inference of attribute values for hypothesized attacks. We
achieve this by revising Algorithm 1. In Steps 50 9, in ad-
dition to maintaining the setS(7y.a;) only for attributes
of Ty, we construct such sets for all attributes of each
hyper-alerttypd’;_; that appear in the equality constraint
C;. As a result, for each combination of equality con-
straints mentioned in Step 4 and edchj = 1,2, ..., k,
we can get an equality constraint forand eachl;, de-
notedec;, and another equality constraint @y andZ”,
denotecec). Given a typel’ hyper-alert and a typel”
hyper-alert?’, if T, T, ..., T, T' are the hypothesized
path that leads t& indirectly preparing forh’ and C1,

Cs, ..., Cr41 are the corresponding sequence of equality
constraints, then for each hypothesized attackl’; must
satisfy bothec; andec. Thus, we can infer the attributes
involved inec; andec) usingh andh'. To keep this infor-
mation, eactl’; should maintairec; andec’; w.r.t. 7" and

T

We shall point out that each hypothesized attack may
correspond to multiple actual attacks in the consolidated
correlation graph. In other words, each hypothesized at-
tack in an integrated correlation graph is indeed a place
holder for one or several possible attacks.

4. Experimental Results

To examine the effectiveness of the proposed tech-
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Figure 7. Two correlation graphs constructed
from LLDOS 1.0 inside traffic

Our currentimplementation is still semi-automatic. Our
prototype can automatically decide what hyper-alert cor-
relation graphs to integrate, hypothesize possibly missed
attacks, and consolidate the hypothesized attacks. How-
ever, the validation of hypothesized attacks with raw audit
data still has to be handled semi-manually. Specifically,

nigues, we performed a series of experiments using onewe use Ethereal [3] to extract the protocol information for

of the 2000 DARPA intrusion detection scenario specific
data sets, LLDOS 1.0 [15]. LLDOS 1.0 contains a series
of attacks in which an attacker probed, broke-in, installed

the components necessary to launch a Distributed Denial

of Service (DDOS) attack, and actually launched a DDOS
attack against an off-site server. The network audit data
were collected in both the DMZ and the inside parts of the
evaluation network. We used RealSecure Network Sen-

each packet, and then validate the hypothesized attacks
accordingly. We are currently refining our implementa-
tion so that all steps can be automated.

In our experiments, we use a simple clustering corre-
lation method. That is, we cluster alerts together as long
as they involve the same destination IP address. Since
our goal is to examine the effectiveness of the integration
techniques, we believe this is acceptable for our experi-

sor 6.0 [11] as the IDS sensor to generate alerts, and theanents. In practice, more sophisticated clustering correla

NCSU Intrusion Alert Correlator [18] to correlate these
alerts into correlation graphs. To validate the hypothe-

tion methods (e.g., those proposed in [27]) are certainly
needed for better performance.

sized attacks using raw audit data, we used Ethereal [3],a To test the ability of our techniques to hypothe-

network protocol analyzer, to extract information from the
raw tcpdump file (i.e., the network audit data). We used
Graphviz [2] to visualize correlation graphs.

size and reason about missed attacks, we dropped
all Sadni nd_Ansl veri fy_Over f | owalerts that Re-
alSecure Network Sensor detected in LLDOS1.0. As a



result, the attack scenarios that the Intrusion Alert Corre alerts. As a slight differenceiTP_Put are hypothe-
lator output before dropping these alerts are all split into sized during both integration processes, but all hypothe-
multiple parts, some of which become individual, uncor- sizedFTP_Put attacks are invalidated later using raw au-
related alerts. Figure 7 shows two of these correlation dit data. In other words, we find no ftp activities involving
graphs constructed from the inside traffic in LLDOS 1.0. the corresponding host during the time frame when the hy-

Now let us focus on the correlation graphs in Figure pothesized attacks might happen. Figure 9 shows the inte-
7. As mentioned earlier, we cluster alerts together if grated correlation graph after the hypothesized attaeks ar
they share the same destination IP address. Since theonsolidated. The hypothesized attacks are shown in gray,
destination IP addresses of b@&adni nd_Pi ng67343 and are labeled by the corresponding hyper-alert type fol-
(in Figure 7(a)) andRsh67553 (in Figure 7(b)) are  lowed by an ID to distinguish between different instances
172.16.112.50, they belong to the same cluster. We in- of the same type of attacks.
tegrate two correlation graphs as long as they both have Now let us examine the integrated correlation graph in
alerts in the same cluster. Thus, Figures 7(a) and 7(b)Figure 9. According to the description of the data sets
should be integrated together. [15], the threeSadm nd_Ansl veri fy Overfl owat-

We consider all types of alerts generated by the RealSe-tacks and therepare-forelations between these attacks
cure Network Sensor 6.0 in our type graph. The speci- and the other alerts are all hypothesized correctly. How-
fication of the corresponding hyper-alert types are given ever, theFTP_Put andHTTP_Shel | s attacks are hy-
in Appendix A, and the type graph is given in Figure 8. pothesized incorrectly. In addition, the gi@gh nodes in
For space reasons, we did not put the isolated nodes (thé-igure 9 result from the different combinations of equality
nodes which do not have edges connecting to them) intoconstraints between hyper-alert types (Their attribute va
the type graph. Based on the type graph, we can easily hy-ues were inferred through existing alerts, and they cannot
pothesize that variations &fTP_Syst , HTTP_Shel | s, be further consolidated with other alerts or hypothesized
and Sadm nd_Ansl veri fy_Overfl ow could have attacks. In our future work, we may look for a way to
been missed by the IDS. For example, there could befurther reduce them).
variations ofSadmi nd_Ansl veri fy _Overfl ow be- We also performed the experiments using
tween Sadmi nd_Pi ng and any laterRsh alert. By the DMZ data set in LLDOS 1.0. Similar to
reasoning about the hypothesized attacks using equalthe inside data set, we deliberately dropped all
ity constraints, we rule out some of these hypothesizedSadm nd_Ansl veri fy_Over f | ow alerts from those
attacks. For example, the destination IP address ofgenerated by RealSecure Network Sensor 6.0. Using the
Sadm nd_Pi ng67343 is 172.16.112.50, which is dif- type graph in Figure 8, we generated three integrated
ferent from either the source or the destination IP addresscorrelation graphs in Figure 10, in which hypothesized
of Rsh67543. Thus, Sadm nd_Pi ng67343 cannot attacks are shown in gray. Based on the reasoning of
indirectly prepare foRsh67543 through a variation of  the hypothesized attacks, we know the destination IP ad-

Sadm nd_Ansl veri fy_Overfl ow. dresses of Sadm nd_Ansl verify_Overfl ow4,
The hypothesized attacks are further validated using Sadm nd_Ansl veri fy Overfl ows and
the raw audit data. In our experiments, we use the Sadni nd_Amsl verify Overfl owe are

inferred attribute values and the protocol that carries 172.16.115.20, 172.16.112.10 and 172.16.112.50,

the corresponding attack as the filtering condition for respectively.  Similarly, the destination IP address
each hyper-alert type. For example, the filtering con- of HTTP_Shel | s2 is 172.16.112.50. Accord-
dition for (variations of)FTP_Put is protocol = ftp ing to the description of the data sets [15], the
plus all the inferable attributes. All the hypothesized Sadmi nd_Ansl verify Overflow attacks are
attacks are then checked using the audit records be-all hypothesized correctly, while th&lTTP_Shel | s
tween the hyper-alerts that result in the hypothesized at-attack is hypothesized incorrectly. These experiment
tacks. For example, we search all the IP packets be-results (including LLDOS 1.0 inside and DMZ data sets)
tweenSadnmi nd_Pi ng67343 andRsh67560 for RPC indicate that though the proposed techniques can identify
packets in order to validate a hypothesized (variation of) missed attacks, they are still not perfect. Neverthelbéss, t
Sadmi nd_Ansl veri fy Overfl owattack (whichisa  proposed techniques have already exceeded the limitation
RPC based attack). of IDSs.

We continue the above process to integrate the re- The experimental evaluation reported in this paper is
sulting correlation graph with additional ones generated still preliminary, though they have demonstrated the po-
by the Intrusion Alert Correlator. We are able to fur- tential of the proposed techniques. To further understand
ther integrate hyper-alertSadmni nd_Pi ng67286 and the capability of these techniques, a more detailed, quan-
Sadmi nd_Pi ng67341, which are both uncorrelated titative evaluation is required. We will perform such eval-
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Figure 9. The integrated correlation graph constructeehfte DOS 1.0 inside traffic

uations in our future research. vices such as IDSs and firewalls with the importance of
system assets [21]. The alert clustering techniques in
5. Related Work [13, 14] use conceptual clustering and generalization hi-

erarchy to aggregate alerts into clusters. An interesting

Our work in this paper is closely related to the recent re- approach was proposed recently to apply statistical tests t
sults in intrusion alert correlation. In particular, oucte identify causal relationships among aggregated aleris [22
niques integrate the causal correlation methods in [5, 19] Alert correlation may also be performed by matching at-
and the clustering correlation methods in [4, 7, 25, 27]. In tack scenarios specified by attack languages. Examples of
addition to correlating intrusion alerts, our techniques a such languages include STATL [10], LAMBDA [6], JIG-
low to further hypothesize and reason about attacks pos-SAW [26] and Chronicles [16]. We consider these tech-
sibly missed by the IDSs, and thus can potentially exceedniques as complementary to ours.
the limitation of IDSs. Our approach is also related to technigues for static vul-

There are other alert correlation techniques. The Tivoli nerability analysis (e.qg., [1, 12, 23, 24]). In particulime
approach correlates alerts based on the observation thatethods in [1, 24] also use a model of exploits (possi-
some alerts usually occur in sequence [9]. M2D2 corre- ble attacks) in terms of their pre-conditions (prereqasit
lates alerts by fusing information from multiple sources and post-conditions (consequences) to construct possible
besides intrusion alerts, such as the characteristicseof th sequences of attacks. However, our method aims to con-
monitored systems and the vulnerability information [17], struct high-level attack scenarios from low-level intarsi
thus having a potential to result in better results thanghos alerts and reason about attacks possibly missed by the
simply looking at intrusion alerts. The mission-impact- IDSs, while the vulnerability analysis techniques are in-
based approach correlates alerts raised by INFOSEC de-
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Figure 10. Experimental results using the DMZ data set in O91.0

tended to understand possible ways of combining differ- known attacks used together with unknown attacks to
ent attacks. In our method, the investigation of the ac- identify those unknown ones. These techniques will fail
tual alerts and raw audit data presents more opportunitiesf all attacks involved in a sequence attacks are unknown.
that cannot be provided by static vulnerability analysis. Moreover, the effectiveness of these techniques for differ
Thus, we believe that our techniques are more suitableent mixtures of known and unknown attacks still requires
than static vulnerability analysis when real intrusionadat further investigation.

is available. This paper is a starting point for improving intrusion
detection through alert correlation. In our future resbarc
6. Conclusion and Future Work we plan to continue our investigation in this direction. In

particular, we will develop additional techniques to vali-

In this paper, we presented a series of techniques to condate and reason about hypothesized attacks and perform
struct high-level attack scenarios even if the underlying a more thorough, quantitative evaluation of the proposed
IDSs miss critical attacks. Our approach integrates two techniques.
complementary intrusion alert correlation methods: (1)
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A. The Hyper-alert Types

In this appendix, we give more information about the
hyper-alert types used in our examples and experiments.
We present the implication relationships between pred-
icates in Table 2. Table 3 shows all hyper-alert types
used in our examples, and Table 4 describes all hyper-alert
types used in our experiments. In both Tables 3 and 4, the
set offact attributes for each hyper-alert type {SrclP,
SrcPort, DestlIP, DestPoft

P. Ning and Y. Cui. Intrusion alert correlator (version Table 2. Implication relationships between the
0.2). http://di scovery. csc. ncsu. edu/ predicates
software/correl ator/ver0Q.2/iac. htm , _ _ _

Predicate Implied Predicate

2002.

ExistService(IP,Port)

GainInformation(IP)

P. Ning, Y. Cui, and D. S. Reeves. Constructing attaek sc

GainOSinfo(IP)

GainInformation(IP)

narios through correlation of intrusion alerts. Rroceed-

GainOSinfo(IP)

OSSolaris(IP)

ings of the 9th ACM Conference on Computer and Com-

OSSolaris(IP)

OSUNIX(IP)

munications Securitypages 245-254, Washington, D.C.,

GainSMTPInfo(SrcIP,DestIP

SMTPSupportTurn(SrclP,DestIP

~

November 2002.

GainAccess(IP)

SystemCompromised(IP)

P. Ning and D. Xu. Learning attack stratagies from intru

SystemCompromised(IP)

SystemAttack(IP)

sion alerts. IfProceedings of the 10th ACM Conference on

ReadyForDDOSAttack(IP)

ReadyForDDOSAttack




Table 3. Hyper-alert types used in the examples

Hyper-alert Type

Prerequisite

Consequence

ICMP_PING_NMAP

ExistHost(DestIP)

SCAN_.NMAP_TCP

ExistHost(DestIP)

{ExistService(DestIP,DestPo}t)

IMAP _Authen Overflow ExistService(DestIP,DestPort) {GainAccess(DestIR)
AVulnerableAuthenticate(DestIP)

FTP_Glob_Expansion ExistService(DestIP,DestPort) {GainAccess(DestIR)
AVulnerableFTPRequest(DestIP)

Rsh GainAccess(DestIP)GainAccess(SrclP) {SystemCompromised(DestIP),

SystemCompromised(SrclP)

MstreamZombie

SystemCompromised(DestIP)
ASystemCompromised(SrclP)

{ReadyForDDOSAttack(DestIP),
ReadyForDDOSAttack(Srclp)

Table 4. Hyper-alert types used in our experiments

Hyper-alert Type Prerequisite Consequence
Admind
DNS_HInfo ExistService(DestlP,DestPort) {GainOSInfo(DestIP)

EmailAlmail_Overflow

ExistService(DestlIP,DestPort)
AVulnerableAlIMailPOP3Server(DestIP)

{GainAccess(DestIR)

EmailLDebug ExistService(DestIP,DestPort) {GainAccess(DestIR})
ASendMailinDebugMode(DestIP)

EmailEhlo ExistService(DestlP,DestPort) {GainSMTPInfo(SrclIP,DestIR)
ASMTPSupportEhlo(DestIP)

Email Turn ExistService(DestIP,DestPort) {MailLeakage(DestIP)
ASMTPSupportTurn(SrcIP,DestlIP)

FTP_Pass ExistService(DestIP,DestPort)

FTP_Put ExistService(DestlP,DestPort) {SystemCompromised(Dest[P)
AGainAccess(DestIP)

FTP_Syst ExistService(DestIP,DestPort) {GainOSInfo(DestIP)

FTP.User ExistService(DestlIP,DestPort)

HTTP_ActiveX ActiveXEnabledBrowser(SrclIP) {SystemCompromised(SrclP)

HTTP_Cisca CatalystExec

CiscoCatalyst3500XL (DestIP)

{GainAccess(DestIR)

HTTP Java

JavaEnabledBrowser(SrclP)

{SystemCompromised(SrclP)

HTTP_Shells

VulnerableCGIBin(DestIP)
AOSUNIX(DestIP)

{GainAccess(DestIR)

MstreamZombie

SystemCompromised(DestIP)
ASystemCompromised(SrclP)

{ReadyForDDOSAttack(SrclIP),
ReadyForDDOSAttack(DestlP)

Port.Scan {ExistService(DestIP,DestPo}t)
RIPAdd

RIPExpire

Rsh GainAccess(DestIP)GainAccess(SrclP) {SystemCompromised(DestIP),

SystemCompromised(SrclpP)

SadmindAmsiverify_Overflow

VulnerableSadmind(DestIP)
ANOSSolaris(DestIP)

{GainAccess(DestIR)

SadmindPing OSSolaris(DestIP) {WulnerableSadmind(DestIP)
SSH.Detected

StreamDoS ReadyForDDOSAttack {DDOSAgainst(DestIP)
TCP_UrgentData {SystemAttacked(DestIP)
TelnetEnvAll {SystemAttacked(DestIP)
TelnetTerminaltype {GainTerminalType(DestIR)
TelnetXdisplay {SystemAttacked(DestIP)

UDP_Port.Scan

{ExistService(DestIP,DestPo}t)




