Windows NT Attacksfor the Evaluation of Intrusion Detection
Systems*

by
Jonathan Korba

Submitted to the Department of Electrical Engineering and Computer Science in partia
fulfillment of the requirements for the degrees of

Bachdor of Sciencein Computer Science and Enginesring
and Magter of Engineering in Electrica Engineering and Computer Science

at the
MASSACHUSETTSINSTITUTE OF TECHNOLOGY
June 2000
a Jonathan Korba, MM. All rights reserved.
The author hereby grantsto MIT permission to reproduce and distribute publicly paper

and electronic copies of thisthesis document in whole or in part, and to grant others the
right to do so.

N 10
Department of Electrical Engineering and Computer Science,
May 22, 2000

(@S 11 =0 8 o 2
Richard Lippmann
Senior Scientist, MIT Lincoln Laboratory
Thesis Supervisor

ACCEPEA DY ...
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

*This work was sponsored by the Department of Defense Advanced Research Projects Agency
under Air Force Contract F19628-95-C-002. Opinions, interpretations, conclusions, and

recommendations are those of the author and are not necessarily endorsed by the United States
Air Force.

Windows NT Attacksfor the Evaluation of Intrusion Detection
Systems

by
Jonathan Korba

Submitted to the Department of Electrical Engineering and Computer Science
May 22, 2000

In Partid Fulfillment of the Requirements for the Degree of
Bachedlor of Science in Computer Science and Engineering
and Magter of Engineering in Electrica Engineering and Computer Science

Abstract

The 1999 DARPA Off-Line Intruson Detection Evauation provided a standard corpus
for evauding intruson detection sysems. It improved on the 1998 evduation by
providing training data containing no atacks to tran anomay detection systems, scoring
sysems on dtack identification in addition to atack detection, amplifying scoring and
verification procedures, providing a written security policy, and performing more detalled
andyss of missed detections and fdse darms. It dso introduced more dedthy attacks,
ingder attacks, and attacks againgt the Windows NT operating system.

The focus of this thess is the integration of Windows NT systems, background traffic,
and attacks into the 1999 evauation. Three Windows NT systems were added to the
origind test bed network: a victim machine, an outsde attacker machine, and an indder
atacker machine. The victim machine is a server with 92 user accounts, telnet, FTP,
email, and web sarvices, and security auditing. UNIX scripts from the 1998 evauation
were modified to create Windows NT background traffic. In addition, web traffic
originating from the server was automated by developing a Javascript program cdled
AutoBrowser.

A redigic and rdativey comprehensve set of 12 Windows NT attacks was developed
for the 1999 evduatiion. The sat includes denid-of-service attacks, remote-to-loca
attacks, user-to-root attacks, probe attacks, insider attacks, console-based attacks, a man+
inrthe-middle attack, and an attack usng macro code in a Microsoft application.
Sgnatures in network traffic and Windows NT host data were andyzed for each attack.

A PERL progran cdled NTAD (nteudit-detect.pl) was developed to evauate the
detectability of the Windows NT attacks in audit log dataa NTAD successfully used the
attack signatures to detect attack instances in Windows NT audit logs collected during the
evauation.

Thes's Supervisor: Richard Lippmann
Title Senior Scientist, MIT Lincoln Laboratory

Acknowledgments

| would like to thank my thes's advisor, Richard Lippmann, for supporting my thess
efforts and sharing his knowledge. | would like to thank David Fried and Rg Basu for
taking the time to revise and edit my thesis. | would aso like to thank Rich, Dave, Ra,
Robert Cunningham, Joshua Haines, Kristopher Kenddl, Seth Webster, Jesse Rabek,
Kumar Das, and the rest of the intrusion detection group for aways being friendly, fun,
and helpful. Findly, | thank my parents, whose congtant love and support give me

confidencein al aspects of life.

Contents

Chapter 1 Introduction

11 DARPA Intrusion Detection System Evaluations............cccceceevieenee.
12 The 1998 EVAlUBLION........cccveeieierieeie e
1.3 Windows NT Attacks for the 1999 DARPA Evduation.....................
14 Outline of the TRESIScooi i
Chapter 2 Background

21 The 1998 Evaluation Test Bed Networkccccecvveeieninneencneee
2.2 Traffic GeNEIalioN.......c.coeeiieeieeiese e
2.3 Input Data for Intrusion Detection SysStems.........ccoccveceveececceesieenene,

Chapter 3WindowsNT in the 1999 Test Bed Networ k

31 Y= TS
3.2 Configurations and SOftWare...........cceceeveeceeieere e
3.21 Servicesand ApPliCaLIONS.........ccocereereeienie e
3.22 User and Group ACCOUNMES.........cceruerreriererierieeseesseseessessessessesesnens
3.2.3 Security AUAItING......cceeeevieeieseee e
3.3 Background TraffiCccooueeiieiii e
3.3.1 General Background TraffiCccocooverererieniieicnene e
3.3.2 AutoBrowser Web TraffiCccocevenerininieeienese e
34 Windows NT Input Data for Intrusion Detection Systems..................
34.1 Long Listings of DIireCtory TrEeS........ccueereeieeieenenierieniesieseeeenens
3.4.2 Logfiles DIirectory DUMP.......cocooirenerinenieeeesiesee e
3.4.3 Config DIirectory DUMPcceeieeiieeeesieerie e

Chapter 4 DevelopingWindows NT Attacks

4.1 Attack Research and Developmentccceveeveeieceeceecie e,
4.2 Determining Attack SIgNatUIESccooeeieeierie e
4.3 Extended AUAItiNg.........coovreeieierirerese s

Chapter 5 Assembing aWindowsNT Attack Set

51 Overview of an Attack Taxonomycccceeeevieereeiesee e

5.2 WiINdOWS NT AECK SEL.......c.oiieieieieierese e
Chapter 6 Denial-of-Service Attacks

6.1 CrashllS R-b-Deny(AdMINISrative)coceeeereerenienieneeree e
6.2 DoSNuke R-b-Deny(AdMINiSIrative)ccoeeeeeenenenene e

Chapter 7 Remote-to-User Attacks

7.1 Framespoofer Rm-AIter(Data)ccccovereererererieriesiesesie e
7.2 NEIDUS RS U ..
7.3 NEICAE R-S-U ... e
1.4 PPMECIO R-S-U ...

Chapter 8 User-to-Root Attacks

81 ANYPW U-D-S.oooeeceeeeeec et eseessse st sssensesneas
8.2 CaseSen U-D-Si....o s
8.3 NTFSDOS U-DB-S..c.oioeee s
8.4 SECHOIE UFD-S...c e
8.5 YagaU-D-S.....oe s

Chapter 9 Probes

9.1 NTInfoScan R-a Probe(Services’Known Vulnerabilities)....................

Chapter 10 Detectability of Attacks

10.1 Motivation and GOal..........cccereereerenieeniee e
10.2 Testing Audit LOG SIgNAUIES........c.ecoveiveeierieiteeiesee st eee e sse e ssee e

Chapter 11 Resultsand Future Work

11.1 Windows NT Results of the 1999 Evaluation...........ccocveevvnerenenennns
11.2 Windows NT Suggestions for Future Evaluationsccccceeevneenen.
11.2.1 Hardware and SOftWare.........cccoveerueeieeneenieneeseese e
11.2.2 Distributed HOSt Da@.........cccooveiieriiriinieniesiisieeeee e
11.2.3 Traffic AULOMELIONcoivieiiiiisieeie e e
11.24 The AttaCk SEL.......cooieieieeee e e

Appendix A Source Codefor NTAD (ntaudit-detect.pl)
References

List of Figures

2-1
2-2
3-1

3-2
3-3
3-4
35
3-6
3-7
3-8
5-1
5-2

Conceptual View of the Original 1998 Evaluation Test Bed..........cccccveceevienneee.
Detailed Diagram of the 1998 Evaluation Test Bed Network Topology

Detailed Diagram of the 1999 Evduation Test Bed Network Topology with
Underlined Text Indicating Machines that did not Exist in the 1998
Y= LU= 1o o SO PR

IS Settings for the Windows NT Victim Server........ccovvveeveciecvee e
User Groups for the Windows NT ViCtim Server........ccocveveneneneneseseeenes
System Auditing Settings in the Windows NT User Managerccceceevveeneee.
Graph of AutoBrowser Activity in One Day of the 1999 Evaluation.................
AutoBrowser Activity Recorded in @ Text BOX.......ccceveeieereeneneneneseneseeeees
Portion of aLong Directory Listing of a Windows NT DisK.........cccccvevnerernene.
Sample Log File Produced by Windows NT Web Server ACCESSES...................
Summary of Possible Types of ACHONSccoveriiiieniee e

Windows NT Attacks Developed for the 1999 DARPA Intrusion Detection
EVBIUBLION. ...

CrashllS Malformed ‘GET’ Request Revealed in Session Transcript................
Dr. Watson Program Launches when [1S Crashes..........ccoceoevevenincnescnecne
A Portion of the Information in the Dr. Watson Log File after 11S Crashes.......
A DoSNuke Signature in Network TraffiC.......cccoeevveieceeiece e
Javascript Email for the Framespoofer Attack ...
The NetBUS CHENt GUIooeeieiece ettt
Strings Revealed in Network Traffic After a NetBus Attackccccceeeeieeneee
Audit Records Show Registry Key Write Access by the Netbus Process...........
NetCat Transcript Differs from Normal Telnet Session..........cccccevvvevenenceenne.
Audit Record Shows Modification of the “Run” Registry Key........cccoovevvveneenee.
Audit Records Show Secret File Access by the PowerPoint Program................

A User is Added to the Adminisirators Group by SY STEM in a Casesen
ATLACK ..ot

The Y aga Attack Creates a Text File Containing Registry Information.............

19
21
23
27
28
29
30
38
39

8-3
8-4
9-1
9-2
9-3
10-1
10-2

11-1

Net.exe Program Launches when I1S Crashesin a Yaga Attackccoe........ 77

Audit Record Shows Modification of the “AeDebug” Registry Key.................. 78
Transcripts of FTP and HTTP Connections from an NTInfoScan Attack 81
One Access of the Security Account Manager by an NTInfoScan Attack.......... 82
I1S Log Entries Recorded During a NTInfoScan Attack..........coccoeevevieenicnennee. 83
Function in NTAD Detects CrashllS Attacksin an Audit LOg.ccocevereenene. 85
Detection Results of the ntaudit-detect.pl Script (NTAD) for the New 1999 87
WINAOWS NT ALECKS. ...t

Detections Results for Probe and Denid-of- Service Attacks with aMaximum 90

Of 10 False AlarmMS PN Daly........coieuereerieeieseeseeee e sie e s e sse e sreesee e sneese e

Chapter 1

| ntroduction

1.1 DARPA Intrusion Detection System Evaluations

Widespread use of networked computers has made computer security a serious issue.
Every networked computer, to varying degrees, is vulnerable to mdicious computer
attacks that can result in a range of security violations, such as, unauthorized user access
to a sysem or the disuption of sysem services. Traditiondly, computer security
approaches have focused on preventing such attacks from occurring through the use of
firewdls and security policies. However, for most systems, complete attack prevention is
not redidicdly dtanable due to sysem complexity, configuration and administration
erors, and abuse by authorized users. For this reason, attack detection has been an

important aspect of recent computer security efforts [27].

Sysems designed to detect computer attacks ae called intruson detection
sysgems. They monitor computers and networks for attacks that are inevitable, despite
Security precautions. If an attack is discovered, intruson detection systems can dert an
adminigrator, defend againgt the attack, or provide forendc information tha may hedp
prevent future attacks. Intrusion detection systems are not dl equd in capabilities or

relidbility. A particular sysem may only detect a specific subset of possble atacks. In

addition, it may have a different levd of detection accuracy or a different fase darm rate
than other sysems. Results from intruson detection sysem evaduations alow users to
make informed decisons on wha sysem to use, and are extremey important for guiding
research. The importance of evaduating intruson detection systems has prompted the
development of the DARPA Off-Line Intruson Detection Evduations A primary god
of these evduations is to generate standard evaluation corpora that can be used off-line

by many stesto evauate awide variety of intruson detection systems.

1.2 The1998 Evaluation

The 1998 DARPA off-line intruson detection evauaion was the fird annuad evauation
under DARPA ITO and Air Force Research Laboratory sponsorships. It produced the
fird dandard corpus for evaduating computer intruson detection systems. Six different
intruson detection systems were evduated. Seven weeks of training data with labeed
attacks were produced for system development, followed by two weeks of test data with

unlabded attacks used for a blind evauation.

A tet bed of computers used to produce the data emulated 100's of users
interacting on 1000's of hogs. Along with redigtic background traffic, there were over
300 ingances of 38 different atacks againgt three UNIX victim machines (SunOS,
Solaris, and Linux operating sysems). The test data included nove attacks created
goecifically for the evaudion, recent new attacks, and atacks in the traning data

Details of the 1998 evauation can be found in [10], [11], and [13].

The reaults of the evauaion were analyzed by plotting atack detection rates

varsus fase darm rates usng receiver operaing characterigic curves (ROCs). Many

intruson detection systems were able to detect the atacks used in the training data
attacks with high accuracy (63% to 93%) and few fase darms (10 per day). However,
systems did not perform well with new and novel attacks. The top three systems missed
dl of the nove atacks and gpproximately haf of the new atacks. An andyss of the
results reveded that participating sysems could reiably detect known atacks if the
systems were tuned using those attacks from the training data. However, many systems
did not reliably detect dangerous new attacks, especidly when the attack mechanism or

TCP/IP service differed from attacks used for system training [13].

The 1998 evdudion was successful in providing an unbiased, redidic, and
comprehensve evauation of a diverse sat of intruson detection sysems. More than 80
stes have downloaded dl or pat of the 1998 corpus from the MIT Lincoln Laboratory
web dte [11]. This indicates the extensve interest in obtaining training and test corpora
for the devdopment and evauation of intruson detection sysems. Those who
participated in the 1998 evauaion made severd suggestions for improvements. These
suggedions included, providing traning data contaning no atacks to tran anomay
detection systems, scoring systems on attack identification in addition to attack detection,
amplifying scoring and verification procedures, providing a written security policy, and
performing more detalled andyss of atack misses and fase dams. Almog dl of the
suggestions were incorporated in the 1999 evduation. In addition, the 1999 attack set
was extended to include more stedthy attacks [6], ingder attacks, and attacks againgt the
Windows NT operating sysem. The 1998 data st only contained attacks against Sun,

Solaris, and Linux operating systems from attack machines outside of the victim network.

10

1.3 Windows NT Attacksfor the 1999 DARPA Evaluation

This thess describes the development and andyss of attacks againgt the Windows NT
operating system for the 1999 DARPA evduation. It is important that intruson detection
sysdems ae cgpable of detecting attacks agangt the Windows NT operating system
because of its growing importance in government and commercid environments. For
this reason, it was decided that the 1999 evauation should test intruson detection
sysems with both UNIX and Windows NT attacks. This decison required severd
modifications to the 1998 test bed, including the addition of Windows NT computers,
background traffic representing a Windows NT environment, and most importantly,

attacks againgt the Windows NT operating system.

1.4 Outlineof theThess

This thesis is organized as follows. Chapter 2 provides kackground information about the
1998 evduation test bed network, traffic generation, and input data for intruson detection
gysems. Chapter 3 detaills how the test bed was modified to integrate Windows NT
machines, how the machines were configured, and the type of Windows NT traffic
generated in the test bed.

Chapter 4 describes how Windows NT attacks were developed and analyzed for
the 1999 evauation. Chapter 5 defines the find set of Windows NT attacks. It dso gives
an overview of an attack taxonomy that guided the sdection of the attacks. Chapters 6
through 9 classfy and document each Windows NT attack used in the 1999 evauation.

For each atack, there is a description, dong with directions for execution, verification,

11

and cleanup in the test bed network. There is dso a description of how each attack may
be detected in network traffic and audit logs.

Chapter 10 discusses post-evaduation work performed with Windows NT audit
logs. Audit logs from the evaduation were andyzed to test the host-based detectability of
Windows NT attacks, and test the vadidity of predicted audit log attack signatures. The
god of the andyss was to make it eader for developers to extend exiging systems to
detect Windows NT attacks.

Findly, Chapter 11 summarizes the results of 1999 DARPA Intruson Detection
Evauation with regards to the Windows NT attack set. Suggestions are presented for

future work in upcoming evauations.

Chapter 2

Background

2.1 The 1998 Evaluation Test Bed Networ k

A conceptual view of the originad test bed network used in the 1998 DARPA Intrusion

Detection Evdudion is shown in Fgure 2-1. This test bed generates traffic smilar to

1000’'s UNIX Hosts

100’s User Automata

*Secretaries
*Programmers

Inside

Air Force Base “Workers
*Managers

*System Administrators

*Attackers

Services/Protocols

*htt X "
P Sniffer
ssmtp *SQL/telnet

pop3 «dns

Outside
Internet

«ftp «finger
sirc ssnmp
stelnet stime

Figure 2-1: Conceptual View of the Original 1998 Evaluation Test Bed

that seen between a smdl Air Force Base network and the Internet. Custom software
emulates 100's of usars usng UNIX applications and common network services. The
network traffic produced by these users includes sending and recelving email, usng FTP

to send and recelve files, accessing other computers via tenet sessons, sending and

13

receiving IRC messages, and browsing web pages. Cusom software aso makes it
possible for a smal number of physica hosts to appear as if they are 1000's of hosts with
different IP addresses. In this origind 1998 test bed, dl of the hosts are UNIX machines
and dl attacks originate from outsde of the Air Force Base. A sniffer postioned outsde
of the base collects dl network traffic originating from the Internet, including dl of the
attacks.

Figure 2-2 shows a more detailed view of the test bed network. The Air Force

Base network contains four machines that are the victims of the attacks. The operating

INSIDE CISCo OUTSIDE

VICTIMS

F—] OUTSIDE
TRAFFIC
GENERATOR

o——/
SOLARIS
SNIFFER

B insioe
TRAFFIC
GENERATOR

—1

LINUX SUNGS SOLARIS

ALL EXTERNAL
WEB SITES

CISCO | ciscoROUTER

LINUX SCAN LINUX ATTACK
e ETHERNET HUB LINUX VICTIM GENERATOR GENERATOR
WITH

DYNAMIC IP

Figure 2-2: Detailed Diagram of the 1998 Evaluation Test Bed Network Topology.

sysems of the machines are SUnOS 4.1.4, Solaris 2.5.1, Linux 4.2 and Linux 5.0. The
Linux 50 victim has the &bility to dynamicdly change IP addresses. The remaining
computer in the ingde network is a traffic generator which emulaies dl other insde IP
addresses.

The outsde network, representing the rest of the Internet, contains two Linux
machines for launching manud attacks that cannot be essly auttomated. The remaning
three machines are a traffic generator, a snffer, and a web server. The traffic generator

emulates hundreds of outsde workgations. It generates background traffic originating

14

outsde of the Air Force Base network and launches dl automated attacks. The sniffer
records al network traffic destined for the Air Force Base, including al of the attacks.
The externd web server mimics thousands of Internet web Stes. The indde and outside
traffic generators and the outsde web server are equipped with modified operating

sysems which alow them to emulate “virtual” machines with different |P addresses[10].

2.2 Traffic Generation

Custom software automates most of the background traffic and attack traffic in the test
bed. The software was designed to provide automatic, reproducible, and robust traffic
generation. To achieve these design gods, the Expect scripting language was chosen, as
suggested in [28]. It alows the creation of sessons that emulate users typing at computer
keyboards.

The Expect traffic generator automaticaly launches specidly formatted “exs’
scripts for each attack instance [10]. If an error occurs when generating or collecting the
traffic, the same “exs’ scripts can be easly rerun. The “exs’ scripts are dso used to
automate most of the background traffic and attack traffic for the test bed. Sessons that
canot be automated usng “exs’ scripts are manudly executed. Examples of such

manud traffic include traffic created by GUI interaction, such as X Windows.

2.3 Input Datafor Intrusion Detection Systems

There are many sources of information that an intruson detection sysem can utilize for
attack detection. Some systems, called network-based intruson detection systems, rely

on information collected by sniffing network traffic. Other systems, cdled host-based

15

intruson detection sysems, use data gathered from and specific to an individud host
computer. There are some systems that utilize both sources of information.

The 1998 DARPA evdudion collected the information necessary to saidfy the
inputs for dl of the participating intruson detection sysems. A program cdled tcpdump
[12], running on the Solaris sniffer, recorded the network traffic in the test bed. In
addition, the participants were provided with various types of host data Sun Basc
Security Module (BSM) audit data was collected from the Solaris victim meachine and
nightly file dumps were provided from dl three UNIX victim mechines. After dl of the
data was collected from the test bed for the 1998 evauation, it was written to CD-ROMs

and posted on aweb sSite for the participants to download [11].

16

Chapter 3

Windows NT in the 1999 Test Bed Networ k

Many steps were necessary to integrate Windows NT into the 1999 evauation. Machines
were connected to the insde and outsde networks and configured for the test bed,
Windows NT services and applications were indaled, and host security auditing was
configured. Figure 3-1 shows the updated 1999 test bed network. Machines that were
not present in the 1998 test bed are labeled with underlined text. New machines
unrdlated to Windows NT include a Linux machine for ingder attack generation and an

ingder sniffer to collect traffic generated by ingder attacks.

INSIDE CISco OUTSIDE

=] TRAFFIC

=
T——1SOLARIS E GENERATOR E o—
— B nsioe SNIEEER ALL EXTERNAL ggl'-FﬁE'RS

LINUX [SUNOS o aris [5] TRAFFIC WEB SITES

VICTIMS

OUTSIDE
ATTACKERS

I% INSIDE LINUX SCAN LINUX ATTACK NDOWS NT
WINDOWS NT
ATTACKERS GENERATOR GENERATOR ATTACKER

WINDOWS NT
ATTACKER ATTACKER

Figure 3-1: Detailed Diagram of the 1999 Evaluation Test Bed Network Topology with Underlined
Text Indicating Machinesthat did not Exist in the 1998 Evaluation.

3.1 Machines

Three Windows NT machines were added to the test bed. One Windows NT victim

machine is in the indde network. In addition, there are two Windows NT attack

17

machines. an indde atacker and an outsde attacker. All attacks, including Windows NT
attacks, originate from one of the dedicated Windows NT or Linux attack machines. This
convention makes it possble to separately sniff and collect network traffic specific to
each attack. The collected network attack sniffer data can be used to verify the success of

attacks and for analysis of attack signatures.

3.2 Configurationsand Software

Windows NT Doman Sever 4.0 (Build 1381) is inddled on the Windows NT victim
machine. It is the primary doman server (PDS) for the Eyrie Air Force Base Windows
NT network. The insgde Windows NT attacker machine is setup with Windows NT
Workgtation 4.0, as a workgtation in the victim maching's domain. The outsde Windows
NT attacker is a stand-alone workstation also setup with Windows NT Workgation 4.0.
All of the Windows NT machines operaing sysems include inddlations of Service

Pack 1. No additional Service Packs wereinstalled.

3.2.1 Servicesand Applications

Severd sarvices ae inddled on the Windows NT victim machine. Included in the
operating system is IIS (Internet Information Server) verson 2.0, which provides FTP,
Gopher, and web services. Figure 3-2 presents the 1S settings for the 1999 evauation.
The FTP and web sarvices dlow anonymous connections and al connections are logged.
To ensure that norma background traffic connections do not overload the services, the
maximum number of Smultaneous connections for each service is st a a levd high

enough to accommodate the number of connections generated in the background traffic.

18

Gopher
FTP Web Not used in
1999 evaluation
Port Number 21 80 N/A
Max Simultaneous | 1,000 100,000 N/A
Connections
Root Directory C\InetPub\ftproot C\InetPub\wwwroot N/A
Anonymous Yes Yes N/A
Access
Sessions Logged to | CA\Winnt\System32\Logfiles\ CA\Winnt\System32\L ogfiles\ N/A

The Resource Kit for Windows NT 4.0 is ingaled, separate from

sysem.

MalSv, used in the evduaion. The MallSrv program has a bug that can

Figure3-2: 1S Settingsfor the Windows NT Victim Server.

It includes various utilities and sarvices, one of which is a mall

the operating
saver, cdled

cause SMTP

connections to hang and eventualy consume 100 percent of the available CPU cycles on

a Windows NT machine [23].

Unfortunately, the bug was not discovered in the

evauation until severd days of the evduatiion had dready been completed. The more

reliable Microsoft Exchange Mail Server could not be used because it requires Service

Pack 3.

restarted whenever the machings CPU utilization reached 100%.

once or twice aday.

To remedy the dtuation for the 1999 evduation, MalSrv was stopped and

This happened about

In addition to MailSrv, the Resource Kit includes the following UNIX commands,

which are interpreted by the operating system, viathe Windows NT POSIX subsystem:

chmod
chown
co

find
oep
In

Is

mkdir - sh
nmv - touch
rm Y
rmdair - WC

The Resource Kit adso provides a telnet service, telnetd.exe. However, the program is a

beta verson [16].

When it was tested in the evaduation tet bed, it was very unreliable

and crashed frequently. Therefore, a third party telnet service was chosen. To provide

19

reliable telnet capabilities, Ataman TCP Remote Logon Service (verson 2.4) is indaled
[1] on the Windows NT victim machine.

The common software applications, Netscape 4.0.8 and Microsoft Office 97, are
ingaled on dl of the Windows NT mechines in the evdudation. In addition, some
Windows NT attacks developed for the 1999 evduation required additiond common
software programs to be indaled so that the attacks could be properly executed in the test
bed environment. Such software programs include a compresson utility, WinZip 7.0

[43], and a utility to gather web server statistics, Wusage 6.0 [2].

3.2.2 User and Group Accounts

The Windows NT victim machine stores 92 user accounts in its user account database,
Of those 92, 89 accounts are norma users. Their accounts never expire and their
passwords never expire. Their privileges dlow telnet access and FTP access to the
sysem, but do not alow loca logins. Each user can remotely access the machine via
telnet any day of the week, a any time. The remaining three of the 92 user accounts are
the following, and exist by defaullt:
Administrator: This root account alows remote and loca logins and full control
of system software.
Guest: This default account, setup by the operating system, dlows limited
anonymous access to System resources.
IUSR _<machine name>: This default account, setup by IS, provides web access
for anonymous Internet users.
Windows NT aso supports group accounts. All members of a group account inherit the

privileges of the group. Figure 33 presents the user group accounts for the Windows NT

20

victim machine, a brief description of each group, and the users who are group members

[34].

Group Description Users

Account Operators Members can administer Adminigrator
domain user and group
accounts

Adminigrators Members can fully Adminigrator
adminigter the
computer/domain

Backup Operators Members can bypassfile Adminigrator
security to back up files

Domain Admins Designated administrators Adminigrator
of the domain

Domain Guests Users granted guest access Adminigrator, Guest
to the domain

Domain Users All domain users All users

EAFB_Users Ordinary users of the Air All users except for Guest
Force Base network

Guests Users granted guest access All usrs
to the computer/domain

Print Operators Designated adminisirators Adminigrator
of domain printers

Secret Users granted accessto Air Adminigrator and four
Force secret filesin ordinary users chosen at
d:\home\secret random

Replicator Supportsfilereplicationina | Administrator
domain

Server Operators Desgnated adminigtrators Adminigrator
of domain servers

Users Ordinary users All users except for Guest

Figure 3-3: User Groupsfor the WindowsNT Victim Server.

21

3.2.3 Security Auditing

The Windows NT event logging service maintans three event logs a sysem log, an
goplication log, and a security log. The system log primarily records device failures and
/O erors, and the darting and stopping of services. The application log records
goplication defined messages, such as falure to dlocate memory or falure to access a
sysem object. The security log is the repogstory for al Windows NT security audit
information. Windows NT security auditing is built-in to the event logging service and
satifies the requirements for the C2 security evduation class [17]. These requirements
are;
The sysem has the ability to record al security-related events that occur on the
system in the form of audit records.
The system provides a way for the audit records to be reviewed by the system
adminigtrators.
The auditing software and logs must be protected by the operating sysem from
unauthorized access and modification, and access must be limited to authorized
system adminigrators.
A mechanism mugt exist that alows the sdlection of security events to be audited.
The sysem must be able to audit individud users.
The Windows NT User Manager audit policy window, shown in Figure 3-4, is used to
select which types of security events are audited. Full auditing for al user accountsis
enabled in the Windows NT victim machine s User Manager for the 1999 evduation. In

addition, auditing of base objects is enabled with the following value added to the

Registry key,
HKEY_LOCAL_MACHINE\System\CurrentControl Set\Control\L sa\AuditBase- Obj ects:
Nanme: Audit BaseObj ects
Type: REG_DWORD
Val ue: 1
Everything is viewed as an object by the Windows NT operating system (files, drives,
memory, eic) By enabling base object auditing, low-levd activities, such as memory
requests by a process, are recorded by the logging service. However, to audit access of
gpecific files, printer use, and Registry access, settings must be adjusted in the Windows

NT Explorer, Control Panels, and Registry Editor. These aspects of Windows NT

Audit Policy |

Domair: EYRIE
Do Mot sudit Cancel |

— & Andit These Events:
Succesz Failure ﬂl

Logan and Lagaff

Eile and Object Access

Uze of Uszer Rights

Ilzer and Group kanagement
Security Policy Changes
Bestart, Shutdown, and System

U E I B R Y
<1 %1 = 13 R A

Process Tracking

Figure 3-4: System Auditing Policy in the Windows NT User Manager .
auditing were not selected for the 1999 eva uation.
Log sdtings ae adjusted to dlow very lage log files, approximaey 200

megabytes. This ensures that the log files do not fill up and begin to overwrite earlier log

23

entries. In addition, it is specified that audit logs should not be automaticdly cleared.
Only the Adminigtrator account has the ability to manudly clear the audit logs.

It is important to note that Windows NT auditing is different and may not be as
poweful as the Badc Security Module (BSM) auditing used by the Solaris victim
machines in the 1998 and 1999 evaduations [35]. For example, BSM records al system
cdls and ther arguments, Windows NT auditing does not. Therefore, developers who
wish to extend their UNIX hodst-based intrusion detection systems to detect Windows NT
attacks may not be able to reuse their detection srategies. Attack detection that relies on
tracing sysem cdls or andyzing their arguments cannot be implemented using Windows

NT auditing.

3.3 Background Traffic

3.3.1 General Background Traffic

Most of the Windows NT background traffic is crested using the regenerator software
developed in the 1998 evauation for UNIX machines [10]. “Exs’ scripts are used to
automaticaly emulate telnet, FTP, and web, and email connections to the Windows NT
victim machine. These scripts are modified versons of the “exs’ scripts used for UNIX
connections in the 1998 evduation. The telnet scripts are modified to include a st of
Windows NT commands: dir, dd, net, etic. In addition, the Windows NT POSIX
subsystem accepts and trandates basc UNIX commands during telnet sessons (Section
3.2.1 ligts these commands).

The mail scripts are modified to properly close mail connections to the Windows
NT Resource Kit MallSv program. The reason for the modifications is a bug in the

MalSrv program [23]. MailSrv does not recognize the key combination, [CR].[CR]

24

(carriage return, period, carriage return), used by the origind “exs’ scripts to terminate a
SMTP connection. As a result, the connections remain open and eventudly take up
100% of the CPU cycles of the Windows NT victim machine. Mogt of the new “exs’
scripts are modified o0 that they close SMTP connections with the key combination,
[CR][LF].[CR][LF] (carriage return, line feed, period, carriage return, line feed). These
modified scripts properly close SMTP connection to MailSrv. However, not al mail
scripts were properly modified, so once or twice a day during the 1999 evauation,
MaillSrv consumed 100% of the CPU cycles with hung SMTP connections, and needed to
be restarted.

No specid modifications are necessary for the FTP and web scripts Some
background traffic actions, such as creating Microsoft Office documents and opening
emal attachments, are performed manudly because they cannot be easly automated with
“exs’ scripts.

3.3.2 AutoBrowser Web Traffic

Web browsng from the Windows NT victim machine is automated via a Javascript
program, cdled AutoBrowser, written for the 1999 evduaion. This sipt emulates
browsing activity by a human user. The AutoBrowser source code includes a ligt of 4140
web URLs extracted from the web server in the outsde test bed network. The
AutoBrowser program is in the Startup Group of the Windows NT victim machine so that
it automaticaly executes at the beginning of each day of the evduation, via the Netscape
web browser. The program emulates human-user web browsing by dternating periods of
idle time and browsing time. There is more idle time during the beginning and end of the

day and more browsing time during the middle of the day. During browsing periods, the

25

program randomly visits URLSs in the lig. The frequency a which pages are visted dso
depends on the time of day. Pages are browsed with grester frequency during the middle
of the day than they are during the beginning and end of the day.

All time ddays between user actions are determined by an exponentid
digribution, computed in Javascript using the following function:

delay = -round(nmean * In(rand[O0,1]))).
Studies have shown that this function roughly approximaies the delay between TCP
connections initisted by a humanuser [26]. When the function is used to cdculate the
dday between page vists while browsing, the mean is sat to 30 seconds. When the
function is used to cdculate the lengths of idle times between browsng sessons, the
mean depends on the time of day. The mean is set to one hour for most of the day, except
for the middle of the afternoon (11AM — 1PM), when the mean is set to 30 minutes, and
after 4PM, when the mean is st to 2 hours,

In addition, the maximum number of pages

vigted during a browsing sesson vaies throughout the day, as shown in the following

table:
. 8AM- | 9AM- | 11AM- | 1PM- | 3PM-
Time of Day oaM | 12aM | 1Pm | 3pm | apm | M-
Maximum # of
e Vit pa 8 15 30 15 8 3
Browsing Sesson

The graph in Figure 3-5 plots the web connections initisted by the AutoBrowser
during week five, day one, of the 1999 evdudaion. The x-axis (time of day) is divided
into fiveeminute blocks. The height of each bar in the y-axis represents the number of

web connections in each five-minute block. The graph clealy shows that the

26

AutoBrowser Web Activity in One Day of the 1999 Evaluation

60

50

40

30

20

|,

10

8:00 10:00 12:00 14:00 16:00 18:00

Number of Web Connections per 5
Minute Block

Time of Day

Figure 3-5: Graph of AutoBrowser Activity in One Day of the 1999 Evaluation.
AutoBrowser vidgts more pages during the middle of the day then during the beginning or
end of the day.

To monitor web connections from the Windows NT victim machine during the
evauation, program activity is displayed in a browser window text box. The browser
window containing the text box is separate from the window loading the browsed pages.
Information in the text box includes durations of idle times and the URLs and access
times of web page vigts. An example of AutoBrowser activity recorded in the text box is

shown in Figure 3-6.

27

H# AutoBrowser - Netscape

File Edit Wiew Go Communicator Help

Javascript AutoBrowser

History

Started: 373171999 —- 03:00:00
Waited 00:15.425

Current time: 05:00:15

Current page: http://www.cancer.org/
Not currently browvsing...
Waited 59:2Z.575

Current time: 05:59:37

Current page: http://cnn.com/EMAILS =
Not currently browvsing...

Waited Z0:00

Current time: 05:19:37

Current page: http://www.helpdeskinst.com/
Waited 00:33.718

Current time: 05:20:10

Current page: http://www.defenselink.mil/ news/s
Waited 01:07.695

Current time: 05:21:08

Current page: http://cnnenespanol.com’especial/s
Waited 02:07.939

cCurrent time: 09:23:15

Current page: http://www.yahoo.comReference/
Waited 00:35.654

Current time: 09:23:53
-
< | _’l_l

Janathan Korba
Last modified: Thu Ifar 11 11:44:11 EST 1922

[== |Document: Done Sl e SR Ll

|»

Figure 3-6: AutoBrowser Activity Recorded in a Text Box.

3.4 WindowsNT Input Datafor Intrusion Detection Systems

The 1999 evduation provided long ligings of directory trees and full dumps of two
directories, CAWINNT\system32\LogFiles and CAWINNT\sysem32\config, from the
Windows NT victim machine. These files are posted a http://ideval.mit.edw/1999 index.html
[11] for download by participants of the evaduation. The following sections give more
details about the types of information contained in the data.

3.4.1 Long Listingsof Directory Trees

Long ligtings of directory trees were collected a the end of each day of the evauation.

They were creasted with the Resource Kit POSIX command, "Cintreskit\posix\find / -1s\",

28

which ligs dl files on the hard drive with the following information (in order from left to
right):
File index number
Fle szein 512-byte blocks
Permissons
Number of hard links
Owner name
Group name
Sizein bytes
Modification timestamp
Hlename

Figure 3-7 shows asmadl portion of adirectory listing.

5 17 drwx---rwx 1 Administ Administ 8192 Mar 4 04:32/
105462 138121 -rwx---rwx 1 Administ Domain U 70717440 Mar 4 02:00 /www.tar

17 53 drwxrwxrwx 1 Administ Administ 26624 Mar 3 06:10 /WINNT
1079 2 -rwxrwxr-x 1 Administ NETWORK 707 Oct 13 1996 /WINNT/_DEFAULT.PIF
1748 19 -rwxrwxr-x 1 Administ NETWORK 9522 Oct 14 1996 /WINNT/Zapotec.bmp
1749 17 -rwxrwxrwx 1 Administ NETWORK 8312 Oct 14 1996 /WINNT/Zapotec 16.bmp
2804 4 -rwxrwxrwx 1 Administ DomainU 1782 Mar 3 05:00 /WINNT/winzip32.ini
3541 1 drwxrwxrwx 1 Administ Domain U 0 Feb 23 08:27 /WINNT/Winnt_mailspool
1031 606 -rwx---r-x 1 Administ Administ 310032 Oct 13 1996 /WINNT/winhlp32.exe
1083 501 -rwxrwxr-x 1 Administ NETWORK 256192 Oct 13 1996 /WINNT/WINHELP.EXE
1082 1 -rwxrwxr-x 1 Administ NETWORK 3 0Oct 13 1996 /WINNT/WINFILE.INI
3591 1 -rwxrwxrwx 1 Administ Domain U 120 Feb 24 08:51 /WINNT/Winchat.ini
1081 1 -rwxrwxrwx 1 Administ NETWORK 217 Mar 3 05:00 /WINNT/WIN.INI
1032 44 -rwx---r-x 1 Administ Administ 22288 Oct 13 1996 /WINNT/welcome.exe

Figure 3-7: Portion of aLong Directory Listing of aWindowsNT Disk.

3.4.2 Logfiles Directory Dump

All of the files located in CAWINNT\system32\LogFiles were collected and distributed
for each day of the evaluation. This directory contains a log file for each day that records

al access to the IIS (i.e web sarver and FTP connections). The filenames are in the

29

format, inYYMMDD.log, based on the date when they were created. A sample log file
is shown in Fgure 3-8. Each line in the file contains the following information from left
to right: client IP address, client username, date, time, service, host server name, server |IP
address, egpsed time in seconds, bytes received, bytes sent, service status code,

Windows NT status code, name of operation, target of operation.

172.16.112.105, -, 3/31/99, 9:06:50, W3SV C, HUME, 172.16.112.100, 214188, 278, 18652, 200, O, GET, /html/index.html
172.16.112.105, -, 3/31/99, 9:07:29, W3SV C, HUME, 172.16.112.100, 16704, 325, 11853, 200, 0, GET, /icons/worldmap.jpg
172.16.112.105, -, 3/31/99, 9:07:29, W3SV C, HUME, 172.16.112.100, 16844, 280, 1276, 200, 0, GET, htmlAvdcomehtml
172.16.112.105, -, 3/31/99, 9:07:44, W3SVC, HUME, 172.16.112.100, 11703, 324, 622, 200, 0, GET, /html/ban.html
172.16.112.105, -, 3/31/99, 9:07:46, W3SV C, HUME, 172.16.112.100, 1484, 332, 111, 404, 2, GET, /html/assignments.html
172.16.112.105, -, 3/31/99, 9:08:06, W3SV C, HUME, 172.16.112.100, 125, 328, 445, 200, 0, GET, /html/trouble.html
172.16.112.105, -, 3/31/99, 9:08:09, W3SV C, HUME, 172.16.112.100, 3140, 278, 18652, 200, 0, GET, /html/index.html
172.16.112.105, -, 3/31/99, 9:08:10, W3SV C, HUME, 172.16.112.100, 1016, 325, 636, 200, 0, GET, /html/code.html

Figure 3-8: Sample Log File Produced by Windows NT Web Server Accesses.

3.4.3 Config Directory Dump

All of the files located in CA\WINNT\system32\config were collected and distributed for
each day of the evauation. This directory includes the file that stores the user database
(SAM - Security Accounts Manager), files containing Windows NT Regisry data
(default, system, software, security), and the Windows NT event logs (AppEvent.Ewvt,
SecEvent.Evt, SysEvent.Evt). The SAM file and Regidry files are collected by executing
the Resource Kit backup program, CAntreskit\regback.exe.

The SAM file contains an encrypted ligt of al user accounts and passwords. The
Regisry data files can be viewed by executing the Windows NT Regisry editor,
regedt32.exe, and opening the files with the “Load Hive’” menu command. The Windows

NT event logs can be viewed by using the Windows NT Event Viewer.

Chapter 4

Developing Windows NT Attacks

Severd stages of work were involved for each Windows NT attack included in te 1999
evauation. Each attack required development, anadyss, and documentation. The process
sometimes required modifications to the test bed environment, such as adding new
oftware or creating new background traffic. The following list outlines the steps that
were taken in developing Windows NT attacks for the evauation:

1) Research or invent the attack.

2) Modify the attack to work in the test bed.

3) Andyze attack sgnatures in Windows NT audit logs and in network data

4) Attempt to make the attack stealthy.

5) If necessary, design background traffic to make attack traffic seem less anomalous.
6) Automate the execution of the atack or define a procedure for manua execution.
7) Define a procedure to verify attack success.

8) Define a procedure to cleanup after the attack.

9) Document the attack.

4.1 Attack Research and Development

Many of the Windows NT atacks were obtained from public sources on the Internet.
Web dtes mantained by organizations, such as NTBugtrag [24], CERT [5],
NTSecurity.net [22], ISS [9], Rootshel [29], Whitehats.com [41], and Insecure.org [8],

post announcements concerning recent vulnerabilities and attacks againg the Windows

31

NT operating sysem. They aso archive information about older attacks. Sometimes,
they provide source code that exploits known vulnerabilities and dso indructions on how
to execute atacks. However, even with ingtructions and source code, it frequently took a
ggnificant amount of work to get an atack to function properly for the evduation. In
addition, not al of the Windows NT attacks in the 1999 evauation were derived from the
Internet sources. Some of the attacks were developed specificdly for the evauation in

order to test intrusion detection system performance with never-before-seen attacks.

After each dtack for the evauation was researched and downloaded from the
Internet, or invented based on known Windows NT vulnerabilities, it was deployed in the
tet bed to ensure that it could successfully and reliably execute in the test bed
environment. Some attacks required new software to be ingtdled in the test bed. For
exanple, the Netcat attack sent a WinZip sdf-extracting executeble as an emall
atachment to the victim. In order to make it possble for the victim to unzip the file,

WinZip 7.0 was ingdled on the Windows NT victim machine [43].

4.2 Determining Attack Signatures

Once the attack could successfully and reliably execute in the test bed environment, steps
were taken to make the attack less detectable. Network traffic and Windows NT audit
logs were collected and analyzed to determine what detectable signatures were left by the
attack.

Tcpdump [12] was used to filter network traffic collected by the sniffer machines.

The program dlowed packet filtering by features such as, source address, dedtination

32

address, and port number. Packet filtering made it easy to isolate the traffic creasted by
each attack instance for andysis.

Net Tracker [40] dso proved to be a useful program for andyzing attack
ggnatures in network traffic. Net Tracker takes, as input, a tcpdump file and reassembles
the data into transcripts. The transcripts are ASCII text records of what occurred during
each TCP sesson.

To deermine hod-based attack signatures, Windows NT audit logs were
andyzed. No filtering software was avalable for audit logs so the following procedure
was defined to isolate the events that were logged for each attack:

1) Make sure no background traffic is running in the test bed.

2) Clear dl of the audit logs on the Windows NT victim machine.
3) Launch the attack.

4) Savetheaudit logs.

By using this procedure, most of the events in the saved audit logs were logged as a result
of the attack.

Once the signatures were defined for an attack, attempts were made to make the
attack less obvious. The source code and method of execution of some attacks were
modified to make the attack more sedthy. For example, the origind probe attack,
NTInfoscan (downloaded from the Internet), established an anonymous FTP connection
to the victim machine with the password “NTInfoScan@security.check.” Any intruson
detection system searching for this dring will detect dl NTInfoScan attacks launched
usng the origind executable. In an effort to make the atack less detectable, the
executable was modified to provide an inconspicuous anonymous FTP password,

“guestaccnt@compuserve.com.” Additional background traffic was dso generated to

make some atack actions seem less anomdous. For example, traffic generated by the
AutoBrowser program masks attacks that require the victim to access web pages.

If possble, the atack was embedded in Expect and “exs’ scripts so it could
automatically execute in the tet bed. Console atacks and attacks requiring web
browsing or the opening of email attachments could not be automated. The next step was
to clearly define a procedure for verifying that the atack was successful. Veification
usudly involves ingpecting the network traffic for attack sgnatures.

Some of the attacks require cleanup actions before another instance of the attack
can occur. Attackers and/or victim adminidraiors can perform cleanup actions. An
attacker cleans up &fter an attack to make detection more difficult, while an adminisirator
cleans up to repair and re-secure the victim machine. Cleanup actions include erasing
attack files, killing a process, redating a sarvice, or rebooting the victim machine. A
powerful cleanup action that may be performed by an attacker is deleting or dtering audit
log data that resulted from the atack. However, as specified in the design of the 1999
evaludtion, audit logs were never dtered or deleted during the evduation days. Findly,
documentation was drafted to incude dl of the above-mentioned characteristics and

procedures for each attack.
4.3 Extended Auditing

As dated in Section 3.2.3, full system auditing and base object auditing were endbled in
the 1999 evauation, but individud files and Registry keys were not audited. A Windows
NT sysem with a different auditing policy may yield different attack sgnatures in the
security log, or none a dl. It would be useful to know al possble audit log attack

ggnatures. To achieve this goa, a separate experiment was performed after the 1999

evauation was completed. Each Windows NT attack was launched againgt the Windows
NT victim machine with maximum auditing enabled (i.e. audit settings used in the 1999
evduation plus auditing of dl files and Registry keys). The data generated in the
experiment was used to document, for each atack, an audit log attack signature that was
as complete as possible.

Chapters six through nine of this thess document the attacks used in the 1999
evaluation. For esch atack there is a section called “Host Data for the 1999 Evaluation”
that detals ways in which the atack may be detected in host data generated and
digributed in the evduaion. If the file and Regidry auditing experiment yidded
additional dgnatures for an attack, these sgnatures are noted in a separate section, called
“Extended Hogt Data” This section aso includes any attack signatures that may occur in
other types of host data that were not provided in the 1999 evduation, such as log files

for individuad applications or red-time file syslem monitoring.

Chapter 5

Assembling aWindows NT Attack Set

The Windows NT attacks in the 1999 evduation were chosen such that, collectively, they
form a redidic and reatively comprehensve set of Windows NT attacks. An attack
taxonomy, origindly presented in [39] and used in the 1998 evduation [10], provided a
methodology for dassfying Windows NT attacks. The sdection of Windows NT attacks
for the 1999 evauation was guided in part by the taxonomy. In addition, the attacks were
selected so as to include both network and console based attacks, a man-in-the-middle

attack, and an attack using code in a Microsoft gpplication macro.

5.1 Overview of an Attack Taxonomy

For a given attack, the user begins with a specific level of privileges and ether executes a
method of trandtion to obtain privileges a higher leve, and/or performs some action.
The taxonomy provides a way to classfy atacks by defining a set of privilege leves,
possible methods of trandtion, and a set of actions. One-character strings are used to
represent the privilege levels, methods of trangtion, and actions. A cdassfication is
assgned to each attack by assembling the one-character drings to form multi-character

grings.

Possble levels of privilege include remote network access (R), user access (U),
root or super-user access (S), and physica access to the host (P). A set of possible
methods of trangtion between levels of privilege is liged bdow. Each method is dso
represented by a one-character string.

m) Masguerading: In some casesit is possble to fool a system into giving access by
misrepresenting onesdf. Examples of masguerading include using astolen
username/password or sending a TCP packet with aforged source address.

a) Abuse of Feature: There are legitimate actions that one can perform, or is even
expected to perform, that when taken to the extreme can lead to system failure.
Example indude filling up a disk patition with user files or garting hundreds of
telnet connections to a hot to fill its process table.

b) Implementation Bug: A bug in atrusted program might alow an attack to proceed.
Specific examples include buffer overflows and race conditions.

c) System Misconfiguration: An atacker can exploit errors in security policy
configuration that alows the attacker to operate a a higher level of privilege than
intended.

s) Social Engineering: An attacker may be able to coerce a human operator of a

computer system into giving the attacker access.

A sat of possible actions that an attacker can perform is shown in Figure 5-1.

The following classifications of example attacks demondrate the application of
the taxonomy. If a user with remote network access (R), exploits a bug in the web server

(B) to temporaily deny sarvice (Deny), the attack classfication labd is “R-b-

37

Category Specific Type Description
. Determine types and numbers of machines on a
Probe Probe(Machines) network
Probe(Services) Determine the sarvices a paticular sysem
supports
Determine the names or other information about
Probe(Users) . .
users with accounts on a given system
Temporay Denid-of-Service with automatic
Deny Deny(Temporary) recovery
o Denid of Sevice requiring adminidrative
Deny(Adminidrative) i tervention
Permanent dteration of a system such that a
Deny(Permanent) particular serviceisno longer avalable
I nter cept I ntercept(Files) Intercept files on a system
Intercept(Network) Intercept traffic on a network
I ntercept(K eystrokes) Intercept keystrokes pressed by a user
Alter Alter(Data) Alteration of stored data or datain trangt
Alter(Communicetion) Alteration of datain trangit
. Removd of hint of an intruson, such as entries
Alter(Intruson-Traces) inlog files
Use Use(Recreationd) Use of the sys_tem for enjoyment, such as playing
games or bragging on IRC
: Use of the sysem as a staging areglentry point
Use(Intrusion-Rel ated) for futlre attacks
Figure5-1: Summary of Possible Types of Actions.
Deny(Temporary).” If a user with an locd account (U), runs a program to decrypt the

password file (Use), the classfication is “U-Usg(Intruson).”

If a usr with remote

network access (R) obtains root access (S) by tricking another user (s), and then uses the

new privileges to modify files (Alter), the classfication is“U-s- S-Alter(Files).”

5.2 WindowsNT Attack Set

Figure 5-2 ligts the 12 Windows NT attacks developed for the 1999 DARPA Intrusion
Detection Evduation. The four attack categories represent groupings of the possble
atack types liged in the taxonomy. These four groups ae Denid-of-Service (R-7-
Deny), Remote-to-User (R-?-U), loca-User-to-Super-user (U-?-S), and Probes (R-7-
Probe). The following four chapters present a description of each attack category and
document the individua Windows NT attacks in each category. The documentation
includes descriptions of the attacks, procedures for executing, verifying, and cleaning up

after the attack, and attack signatures detectable in network traffic and Windows NT host

data

Attack Category Attack Name

Denid-Of-Service CrashllS

(R-Deny) DoSNuke

Remote-to-User (Remote to Local) Framespoofer

(R-?-U,9 Netbus
NetCat
PPMacro

User-to-Super-user (User-to-Root) AnyPW

(U,P-2-9) CaseSen
NTFSDOS
SecHole
Yaga

Probes NTInfoScan

(R-Probe)

Figure5-2: Windows NT Attacks Developed for the 1999 DARPA Intrusion Detection Evaluation.

39

Chapter 6

Denial-of-Service Attacks

A denid-of-service attack prevents users from accessing the resources or services of a
victim machine or network of machines. An attacker can accomplish a denid-of-service
through a range of dedtructive actions, such as, disabling a network service, consuming
large amounts of network bandwidth or CPU cycles, or completely crashing a machine.
Common methods used in denid-of-service atacks include sending a specidly
congructed packet to a port on a victim machine, or usng many packets to sustain high
utilization of network or computer resources. Some of the denia-of-service attacks used
in the 1998 evauation were aso used to atack the Windows NT victim in the 1999
evaudion, namey, Neptune and Smurf. These aitacks are fully documented in [10]. In
addition, two denid-of-service attacks, CrashllS and DoSNuke, were developed to
specificdly target the Windows NT victim machine in the 1999 evaudion. CrashllS
dissbles the Windows NT web server and DoSNuke crashes a Windows NT victim

machine. The following sections describe both attacks in detail.

6.1 CrashllS R-b-Deny(Administrative)

Description

CrashllS is a denid-of-service attack against the Windows NT IIS web server. The

attacker sends a maformed GET request via telnet to port 80 on the Windows NT victim

machine. Due to a bug in IIS, the command "GET ./." crashes the web server and
sometimes crashes the FTP and Gopher daemons as well, because they are part of IS
[22].

Test Bed Details

Execution: The attack is fully automated by wrapping an “exs’ script around the Expect
script, crashiisexp. From an indde or outsde UNIX attacker machine, crashiisexp
telnets to port 80 on the Windows NT victim and sends the command "GET ./.".
Running "crashiisexp <victim IP>" will crash the victim's web server (and possibly the
FTP and Gopher servers as well).

Verification: After the attack has successfully completed, the IS web server on the
victim will be terminaied. This can be verified on the victim machine by observing tha
the process, inetinfo.exe, is not longer in the Task Manager processes ligt. Attack success
can be verified from a remote machine by typing the command "telnet <victim IP> 80" (it
should no longer connect) or by usng a browser to access a page on the victim web
server (it should not load the page).

Cleanup: An adminigraor must manudly redtat the victim's web sarver via the
Microsoft Internet Service Manager. Usudly the FTP and Gopher services need to be
restarted as well.

Detection

Network traffic. The mdformed GET command string, “GET ../..” can be detected in
network traffic. However, the collected traffic must be processed fire, because pieces of
the text string may have been sent in separate TCP packets due to the telnet protocol or

packet fragmentetion in the network. Net Tracker [40] (a UNIX program) takes, as input,

a4

a dump file generated by the tcpdump program. It reassembles the network traffic, and
outputs the results in individud transcript files for eech TCP connection. The attack
occurred if a transcript file reveds the maformed GET command sent from an attacker
machine to port 80 of the victim machine, as shown in Figure 61. The fird line in the
transcript specifies the source and destination of the connection. The victim 1P address
and port number in the figure are shown in boldface text. The second line indicates the
date and time when the connection began with a SYN packet. The third line reveds the
maformed GET request and the fourth line indicates the end of the connection. The
fourth line of the connection would have ended with a letter “F’ if the connection closed
with a FIN packet. However, the connection ends abnormally because I1S crashes. Net
Tracker never detects a FIN packet, so it labels the end of the transcript with the letter

“C,” which stands for “ Continued.”

202.72.1.77:8756=>172.16.112.100:80 (Attack machine to port 80 of victim machine)
04/05/1999 22:36:11 S (Start of connection— SYN packet)

GET .J. (Mdformed GET command)

04/05/1999 22:36:18 C (End of connection—no FIN packet)

Figure6-1: CrashlISMalformed ‘GET’ Request Revealed in Session Transcript.

All queries to the web sarver will fal until the adminigrator of the victim
machine restarts the service. These failed connections can be used to detect the effects of
the attack.

Host Data from the 1999 Evaluation: When the IS service is turned on, a process
cdled inetinfo.exe is crested and recorded in the security log. When IS crashes, the
default debugger for application errors, Dr. Watson, is launched and recorded in the

security log. The CrashllS attack can be detected in the security log by matching the

V)

Creator Process ID number of the drwtsn32.exe process (Dr. Watson) with the Process ID

number of ingtinfo.exe (11S) as shown in Figure 6-2.

11: 48: 05 AM
A new process has been created:
New Process |D: 2154725408 1)
I mage File Nane: inetinfo.exe 4 L aunches
Creator Process ID: 2156091328
User Nane: SYSTEM
Domai n: NT AUTHORI TY
Logon 1Dt (0x0, OXx3E7)
6: 36: 02 PM
new process has been created:
New Process |D: 2195757248 Dr. Watson
| mge File Namne: drwtsn32.exe V| Launches
Creator Process |ID: 2154725408
User Nane: SYSTEM
Donai n: NT AUTHCORI TY
Logon | D: (0x0, Ox3E7)

Figure 6-2: Dr. Watson Program Launcheswhen |1S Crashes.
Extended Host Data: When a CrashllS attack occurs, the Dr. Watson log file,
CAWINNT\user.dmp, on the Windows NT victim machine (not provided in the 1999
evaduation) will reved that the IIS crashed. The log file will indicate that an error
occurred in an agpplication caled “exe\inetinfo.dbg.” Figure 63 shows a portion of a Dr.
Wason log file after a CrashllS attack, with the application name in boldface. The log

entry aso notes the date and time and the type of error that occurred.

M crosoft (R) Wndows NT (TM Version 4.00 DrWsn32
Copyright (C) 1985-1996 M crosoft Corp. All rights reserved.

Application exception occurred:
App: exe\inetinfo.dbg (pid=161)
When: 3/31/1999 @ 18: 36:9. 906

Cvrnant i nn nuirnvdhnr - ~ANNNNNNE [Aan~rncce i Al at i AN

Figure 6-3: A Portion of the Information in the Dr. Watson L og File after 11S Crashes.

6.2 DoSNuke R-b-Deny(Administrative)

Description

DoSNuke is a Denid-of-Service atack that sends Out Of Band data (MSG_OOB) to port
139 (NetBIOS), crashing the Windows NT victim machine. A NetBIOS connection is
established, followed by a series of packets sent with the MSG_OOB flag set. Due to a
bug in the operating sysem, Windows NT with Service Pack 1 panics and the reault is
the “blue screen of death.” Windows NT 4.0 with Service Pack 4 or greater is not

vulnerable to the attack [21] [19].

Test Bed Details

Execution: The attack is prepared for execution on a Windows NT machine by opening
the PERL script, dosnukepl, for editing, and setting the time of day to launch the attack.
Then dosnukepl is executed or a shortcut to it is placed in the Windows NT Startup
group for automated execution. The script takes no arguments (aways targets the IP
address of the Windows NT victim machine). Dosnukepl launches dosnukeexe, which
edablishes a NetBIOS connection to the victim machine, and then sends five packets
with the MSG_OOB flag set. Only one packet is necessary to crash the victim machine,
but five are sent in case packets are lost.

Verification: After successful completion of the attack, the victim meachine will crash
and display a “bluescreen of death.” The success of the attack can be remotdy verified
by pinging the IP address of the victim machine. If the ping times out, then the atack
succeeded.

Cleanup: An adminigtrator must manualy reboot the victim machine.

Detection

Network traffic: Figure 64 shows the network traffic crested by the attack, displayed by
the tcpdump program. A three-way handshake, between the attacker machine and the
victim machine, establishes the TCP connection to the NetBIOS port of the victim (port
139). The packets following the handshake are marked with the TCP "urg" because TCP
marks Out of Band packets as urgent. The attack can be detected by searching the
network data for a NetBIOS handshake followed by a series of NetBIOS packets with the
"urg' flag. The bold line in Figure 64 indicates the packet that crashes the machine. The
following packet contains the data that could not fit in the first packet. The rest of the
“urg” packets are packets resent by the TCP protocol because no acknowledgement is
received from the victim machine (the victim machine is disabled). Tcpdump can be

used to search for “urg” packets by executing the command:

“tcpdump —nr <network traffic dump file> ‘tcp[13] & 1!=0""

12:00:07.074895 172.16.115.234.1216 > 172.16.112.100.139: S 11502299:11502299(0) win 8192 <mss 1460> (DF)
12:00:07.074895 172.16.112.100.139 > 172.16.115.234.1216: S11131218:11131218(0) ack 11502300 win 8760 <mss 1460> (DF)
12:00:07.074895 172.16.115.234.1216 > 172.16.112.100.139: . ack 1 win 8760 (DF)

12:00:07.074895 172.16.115.234.1216 > 172.16.112.100.139: P 1:50(49) ack 1 win 8760 urg 49 (DF) T
12:00:07.074895 172.16.115.234.1216 > 172.16.112.100.139: FP 50:246(196) ack 1 win 8760 urg 196 [DF)
12:00:10.054895 172.16.115.234.1216 > 172.16.112.100.139: FP 1:246(245) ack 1 win 8760 urg 245 (DF)NetBI OS/TCP
12:00:16.064895 172.16.115.234.1216 > 172.16.112.100.139: FP 1:246(245) ack 1 win 8760 urg 245 (DF)Handshake
12:00:28.074895 172.16.115.234.1216 > 172.16.112.100.139: FP 1:246(245) ack 1 win 8760 urg 245 (DF)

12:00:52.114895 172.16.115.234.1216 > 172.16.112.100.139: FP 1:246(245) ack 1 win 8760 urg 245 (DF)

12:01:40.184895 172.16.115.234.1216 > 172.16.112.100.139: FP 1:246(245) ack 1 win 8760 urg 245 (D OOB Packets

Figure 6-4: A DoSNuke Signaturein Network Traffic.
The origind attack downloaded from the Internet, transmitted the string “Hey, |
can't hep getting these nasty VXD erord” to the victim. The attack was modified to
send a blank dring ingead. Other versons of the attack may ill send the string, which

can be used in detecting the attack.

Host Data from the 1999 Evaluation: The victim's security audit log will indicae a
hard reboot after the system is restarted by an administrator. The reboot will be a hard
reboot (turning the machine off and then back on again) and not a soft reboot (CTRL-
ALT-DEL), because a bluescreen system crash cannot be soft rebooted. A soft reboot
audit dgnature is a “SeShutdownPrivilege’” Privilege Use Event followed by an event
gating, “Windows NT is darting up.” A hard reboot audit signature can be detected
because it does not include the *“ SeShutdownPrivilege” event.

A hard reboot can be used to detect but not identify the DoSNuke attack, because
other attacks may aso result in hard reboots (NTFSDOS, AnyPW, etc.). In addition, a

hard reboot may occur in the absence of an attack (power outages, system halts, etc).

Chapter 7

Remote-to-User Attacks

A remote-to-user attack results in an atacker on a remote host obtaining unauthorized
access to another computer system. An attacker who does not have an account can gain
local access to the victim computer by sending packets over the network from a remote
computer. The attacker may exploit a vulnerability in the victim computer or network, or
use socid engineering to trick an authorized user into opening a backdoor.

One remote-to-user attack, Dictionary [10], developed in the 1998 evduation was
used to attack the Windows NT victim machine in the 1999 evauation. In addition, four
Windows NT new remote-to-user atacks were developed for the 1999 evaluation:
Framespoofer, NetBus, NetCat, and PPMacro. Framespoofer exploits a bug in the
Netscape browser. NetBus and NeCat use trojan programs to establish back doors on the
victim sysem. PPMacro insats madicious macro code in a PowerPoint presentation.

Thefollowing sections give detailed descriptions of the four attacks.

7.1 Framespoofer R-m-Alter (Data)

Description
The Framespoofer attack is a type of manin-the-middle attack. It tricks the victim user
into believing he or she is viewing a web page with frames on a trused web ste. In

actudity, the page's man body frame is replaced with a frame created by the attacker.

47

The attacker presents fadse information in the “spoofed” frame, in an atempt to
manipulate the victim user’s actions.

In the verson of the attack used in the 1999 evauation, the attacker sends a
forged emall, directing the victim to a web page that displays security procedures for Air
Force Base computer networks. The page resides on a computer controlled by the
attacker and contains what looks like a link to a page with security procedures specific to
the loca Eyrie Air Force Base. When the victim user clicks on the “link,” it runs a
Javascript function, which brings up the trusted web ste and then inserts a malicious web
page, with mideading information, into the man frame. The URL displayed in the
browser remains unchanged. The mideading information for this verson of the attack
indructs the victim to dissble the locd intruson detection sysem on specific days.
Versons of Netscape after version 4.0.8 are not vulnerable to this attack [42).

Test Bed Details

Execution: Sending the email is automated by wrapping an “exs’ script around a PERL
soript, sendmail.pl, written for the evduation. Sendmail.pl tekes as an agument a
preformatted mall message. From a UNIX attacker, the command “sendmail.pl mail.txt

ted, where mall.txt is a Javascript emal message with
indructions for the victim. The mal can dso be sent manudly from a Windows NT
attacker machine. A template of the Javascript mail message is shown in Figure 7-1. The

victim musgt manudly recaive the mail and click on the links.

<script |anguage="javascript">

<I--

function loadchild() {

W ar g=wi ndow. open("[TRUSTED SI TE' S PAGE W TH FRAMES]

set Ti meout ("W arg. frames[1] .| ocati on=

[ATTACK PAGE W TH M SLEADI NG | NFORMATI ON] ", "[# MSEC BEFORE);
}
1 -->
</script>

<body>

[TEXT I NSTRUCTI ONS FOR THE VI CTIM

[URL OF TRUSTED SI TE'S PAGE W TH FRAMES] </ a>

</ body>
Figure 7-1: Javascript Email for the Framespoofer Attack.

Verification: The security procedures page for the loca Air Force Base will display a
page and then, a few seconds later, the main frame will switch to the frame created by the
attacker.

Cleanup: The browser cache on the victim machine must be cleared after executing the
attack. Otherwise, the browser will load a cached page during the next execution of the
attack, and no web traffic will be generated on the network.

Detection

Network Traffic: The attack can be detected in the network traffic by using Net Tracker
to reassamble the web connections. Net Tracker will output transcripts of HTTP
connections that occur during the attack. The connections will be from the victim
machine to port 80 of the attacker machine. The attack can be detected by carefully
examining the firg web connection for the Javascript code shown in Figure 7#1. Variable
names may vary in different versons of the attack. However, the Javascript keywords:

“Javascript,” “window.open,” “frameq1].location,” and “onclick” will appear in dl

49

vearsons of this atack. A keyword intruson detection system can use these grings to
detect the attack.

Host Data from the 1999 Evaluation: Audit logs for the 1999 evauation reved nothing
about the attack. Auditing additiond files and Registry keys does not ad in detecting the

attack.

7.2 Netbus R-s-U
Description

The attacker uses a trojan program to ingal and run the Netbus server, verson 1.7, on
the victim machine. Once the Netbus server is running, it acts as a backdoor. The
attacker can then remotely access the machine using the Netbus client [18].

The dtacker sends an emal with an executable atachment (a game cdled
whackamole). When the victim executes the “whackamole’ attachment, it launches the
Netbus server (exploreexe), which is placed in CA\WINNT, and then launches the
“whackamole’ game. The user plays the game, not redizing that the Netbus server was
ingaled. The attack aso edits the Windows NT Registry so the Netbus server redtarts at
every login. This is accomplished by adding exploreexe to the “HKEY _LOCAL _
MACHINE/Software/Microsoft/Windows/Current Version/Run” Registry key.

The dtacker can use the Netbus client program, shown in Figure 7-2, to
manipulate files on the victim meachine, download screen dumps, move the mouse
pointer, etc. The attacker's access privileges are identica to the user currently logged on
to the victim machine If an adminidrator is usng the victim, the atacker will have full
adminigtrator privileges. Through use of the “Scan!” button, the Netbus client can dso

be used as a probe attack to scan | P addresses for NetBus servers.

51

Server admin Host namelP: i-:uictim IP address= Ll Port: i12345|
Open CD-ROM W T]F About | AddiP | connect! |
Show image Function delay: F]_ Memo I Del IP i Scan! I
Swap mouse Port Redirect App Redirect Server setup
Start program Play =ound !-l]__ il]_' Control mouse
M=g manager Exit Windows Mouse pos Goto URL
Screendump Send text Lizten Key manager
Get info Active wnds Sound system File manager
Ho connection | o

Figure 7-2: The NetBus Client GUI.

Test Bed Details

Execution: Sending the emal with the “whackamole’ attachment is automated by
wragpping an “exs’ script around a PERL script, sendmail.pl, written for the evauation.
Sendmail.pl takes as an argument a preformatted mail message. On a UNIX attacker, the
command “sendmail.pl netbustxt <attacker@computer>" is executed, where netbustxt is
an emal text message containing the “whackamole’” executable atachment. The mall
can aso be sent manualy from aWindows NT attacker machine.

The second dage of the atack is manudly utilizing the backdoor. After the
victim has executed the email atachment, a Windows NT attack machine is used to
execute the NetBus client and connect to port 12345 of the victim machine.

Verification: After the attack has completed, the victim machine should be remotely

accessble via the Netbus client running on a Windows NT atacker machine. The

52

success of the attack can be verified in collected network traffic by the usng the atack
detection methods described below, in the section on Network Traffic.

Cleanup: The attacker clicks the “Server admin” button on the NetBus client and
chooses “Remove server.” The Registry key is removed and the server process,
exploreexe, is terminated. However, the exploreexe file is not deleted from the victim's
file sysem. For full deanup, a victim user, usudly the Adminidrator, must ddete

CA\WINNT\explore.exe.

Detection

Network Traffic. Two TCP connections are established when the NetBus server is
accesed by an attacker using the NetBus client. The attacker client sends commands via
a connection to port 12345 of the victim machine. The victim server transmits data in
response via a connection to port 12346 of the victim machine. The attack can be
detected by using the following tcpdump command to search the network traffic for
connections to port 12345 or port 12346 of the victim machine:

“tepdump —nr <network traffic dump file> port 12345 or port 12345 and host <victim | P address>"

Net Tracker can be used to reassemble the network traffic into transcript files.
When the attacker uses the Netbus client to access the victim, it crestes network traffic
that is easy to identify in the transcript filess The word “Netbus’ will gppear and dl of
the commands are in plantext. The format of a NetBus command is the name of the
command, followed by a semicolon, followed by the arguments separated by semicolons.
Figure 7-3 shows some of the strings that may appear in the Net Tracker transcript files
after an ingtance of the Netbus attack is launched. A sring-meaiching intruson detection

system could use these strings to detect NetBus attacks.

Net Bus 1.6 Attacker Connectsto Server
GetlInfo

| nfo; Program Pat h: C:\ TEMP\

~WZS0400. TMP\ expl or e. exe|

Restart persistent: Yes|Login Getlnfo Command

ID: Adm nistrator|Clients

connected to this host: 1

Capt ureScreen

Capt ur eReady; 0 CaptureScreen Command
Capt ur eReady; 1; 242654

Start App; c:\wi nnt\systenB2\ Cal c. exe Calc.exeexecuted
RenmoveServer; 1 RemoveServer Command

Figure 7-3: Strings Revealed in Network Traffic After a NetBus Attack.

Host Data from the 1999 Evaluation: Exploreexe is the most commonly used flename
for the Netbus atack. The Windows NT security log will show that exploreexe was
launched when the attachment was executed.

Extended Host Data: If the “HKEY_LOCAL_MACHINE/Software/Microsoft/Win-
dows/Current Versorn/Run” Registry key is audited (not audited in the 1999 evauation),
then an audit log record will indicate that the key is accessed with write privileges when
exploreexe is added to it. The attack can be detected by matching the process ID of
exploreexe to the process ID that opens the Regidry key. Figure 7-4 shows the audit
record indicating the process ID of exploreexe and the record generated when the
Registry key is accessed. The process IDs, Registry key name, and access privileges are

in boldface text.

12:10: 19 PM

A new process has been created:

New Process | D:

Obj ect Open:
Obj ect Server: Security
Obj ect Type: Key
Obj ect Nane:
\ REGl STRY\ MACHI NE\ SOFTWARE\ M cr osof t
\ W ndows\ Cur r ent Ver si on\ Run
New Handl e | D: 100

2154433248

| mge File Name:
expl ore. exe

Creator Process |ID
2154436192

User Name:

Adm ni strator

Domai n: EYRI E
Logon | D

(0x0, Ox3A2F)

P Operation 1D {0,49085}
Process | D: 2154433248

Primary User Nane: Admi ni strator
Primary Domai n: EYRI E
Primary Logon |D: (0x0, 0x3A2F)

Client User Nane: -
Client Donmin: -

Client Logon ID: -
Accesses DELETE
READ_CONTROL

WRI TE_DAC

WRI TE_OWNER

Query key val ue

Set key val ue

Create sub-key

Enuner at e sub-keys

Noti fy about changes to keys

Figure 7-4: Audit Records Show Registry Key Write Access by the Netbus Process.

L d-—p53 + —ecmdexe” runs every time a user logs on to the
machine. Then winlog.bat deletes al unnecessary attack files. The y2ktest folder and its
contents, and CAWINNT\system32\winlog.exe are what remain.

The attacker later uses the command “nc v <victim IP> <port>" on a remote
machine (UNIX or NT with the nc program) to access the victim without a username or

password.

v <victim IP> <port>" is executed
to connect to the victim machine.

The files induded in the odf-extracting WinZip file are cdled winlog.bat,
winlog.exe, and winlog.txt. When the WinZip file is executed, it tells the user that it puts
a totd of seven files into Clyzktest. The attack files are moved or deleted, resulting in
only four files in the directory. To avoid this inconastency, the attack batch makes three
copies of one of the y2ktest files and renames them, checkl, check2, and check3.

The attack modifies the Registry but does not run Netcat (winlog) right away.
The backdoor does not teke affect until the victim user logs out and logs in again,
activating the Registry key. This makes the attack dedthier because the setup of the
attack is split into two steps. NetCat can use any port, but if it uses port 23, al telnet
sessions to the victim will be unauthenticated (i.e. the user will not be prompted for a
username or password.)

Verification: After the atack has completed, the victim machine should be remotey
accessble without authentication via the command “nc v <victim IP address> <port>.”
The success of the attack can dso be verified by checking the victim machines Task

Manager process ligt for the winlog.exe process.

Cleanup: An adminidrator uses the Regigtry Editor to delete the winlog.exe command
from the Regisry key, ddetes CAWINNT\system32\winlog.exe, and removes winlog.exe
from the process table via the Task Manager.

Detection

Network Traffic. The Net Tracker program can be used to generate a transcript of the
connection from the attacker machine to port 53 of the victim machine. Fgure 7-5
compares a transcript of a NetCat attack to atranscript of a norma telnet sesson. The
NetCat sesson appears smilar to a telnet sesson. However, the attack can be detected
by noting that the connection is not authenticated (no request for an account name or

password) and that the connection is to port 53 of the victim machine ingead of telnet

port 23. Figure 7-5 indicates these differencesin bold text.

TRANSCRIPT OF NETCAT CONNECTION

TRANSCRIPT OF NORMAL TELNET CONNECTION

206.48.44.18:1229=>172.16.112.100:53

03/31/1999 16:11:08 S

Microsoft(R) Windows NT(TM)

(C) Copyright 1985-1996 Microsoft Corp.

C:\WINNT \Profiles\Administrator\Desktop>dir
Volumein drive C has no label.

Volume Serial Number is 4816-2A08

Directory of C:\WINNT \Profiles\AdministratonDesktop
03/29/99 11:53a <DIR>

03/29/99 11:53a <DIR>

02/08/99 09:32a <DIR> My Briefcase
03/29/99 07:33a 430 Real Player.Ink
03/09/99 08:03a 361 WinAt.Ink
03/17/99 10:20a 434 WinZip.Ink

6 File(s) 1,225 bytes
2,193,192,448 bytes free

C:\WINNT \Profiles\Administrator\Desktop>path
PATH=C:\Perl\bin;C:\WINNT \system32;C:\WINNT;C:
TRESKIT;C:\NTRESKIT\Perl
C:\WINNT \Profiles\Administrator\Desktop>vol
Volumein drive C has no label.
Volume Serial Number is 4816-2A08
C:\WINNT \Profiles\Administrator\Desktop>

03/31/1999 16:11:40 F

135.8.60.182:5203=>172.16.112.100:23
03/30/1999 19:44:56 S

This copy of the Ataman TCP Remote L ogon Sarvicesis
registered as licensed to:

Eyrie Air Force Base

Welcome to Eyrie Air Force Base

"Mundus Vult Decipi"

)k Kk kK WARNING *kkk Kk

Thisis an unsecured, declassified, publically
accessible, network computer cluster.

Account Name: orionc

Password:

Microsoft(R) Windows NT(TM)(C) Copyright 1985-1996
Microsoft Corp

d:\home>ver

Windows NT Version 4.0

d:\home>vol

Volume in drive D has no label

Volume Serial Number is B4F8-0D40

d:\home>exft

The name specified is not recognized as aninternal or
external command, operable program or batch file.
d:\home>exit

03/30/1999 19:54:10 F

Figure 7-5: NetCat Transcript Differsfrom Normal Telnet Session.

Host Data from the 1999 Evaluation: The security audit log will contan events
indicating the execution of REGEDIT (the trojan edits the Regidiry), later followed by the
execution of winlog.exe (the backdoor is setup).

Extended Host Data: If the “HKEY_LOCAL_MACHINE/Software/Microsoft/Win-
dows/CurrentVerson/Run” Registry key is audited (not audited in the 1999 evaduation),
then an audit log record will indicate that the key is accessed with full read and write
privileges. The attack can be detected by looking for this audit log record, shown in

Figure 7-6 with the key name and privilegesin bold text.

Object Open:
Object Server: Security
Object Type: Key
Object Name:

\REGISTRY\M ACHINE\SOFTWAREW icrosoft\
Windows\CurrentVersion\Run

New Handle ID: 84

Operation ID: {0,32669}

Process ID: 2154688544

Primary User Name: Administrator

Primary Domain: EYRIE

Primary Logon ID: (0x0,0x2565)

Client User Name: -

Client Domain:

Client Logon ID:

Accesses DELETE
READ_CONTROL
WRITE_DAC
WRITE_OWNER
Query key value
Set key value
Create sub-key
Enumerate sub-keys
Notify about changes to keys
Create Link

Privileges

Figure 7-6: Audit Record Shows M odification of the“ Run” Registry Key.

59

7.4 PPMacro R-s-U
Description

This PPMacro attack uses a trojan PowerPoint macro to access secret files on the victim
machine. This attack is based on a particular scenario, where the victim user periodicaly
receives a PowerPoint template from a trusted outsde source, via an emal attachment.
The victim opens the template and runs a built-in macro that inserts a graph displaying
web gatistics. The victim then saves the presentation and posts it on the web.

The atacker, who has knowledge of this scenario and a copy of the template,
writes a fake email to the victim and ataches the template with additional attack code
gopended to the macro. This attack code reads a secret file from the victim machine
(from d\home\secret\) and inserts it as smdl font, white text in the background of the
magter dide of the presentation. When the presentation is posted on the web, the attacker
downloads it and examines the PowerPoint file to reved the text of the secret filee The
macro aso dores a counter variable in the victim machine€'s Regidry, so that each time
the victim user runs the macro, a different file from the secret directory is inserted into
the presentation. The counter vaue is sored in HKEY CURRENT_USER\Software\VB

and VBA Program Sestings\webstats\info\idx.

Test Bed Details

Execution: Sending the email with the PowerPoint template attachment is automated by
wragpping an “exs’ script around a PERL script, sendmail.pl, written for the evauation.
Sendmail.pl takes as an argument a preformatted mail message. From a UNIX attacker,

the command, “sendmail.pl ppatack.txt <attacker@computer>,” is executed, where

ppatack.txt is an email text message containing the template atachment. The mail can
aso be sent manudly from aWindows NT attacker machine.

The victim mugt then execute a program, cdled Wusage [2], which gathers web
sver ddidics and generaes graphs. The victim renames one of the grgphs in
CA\WINNT\reports to graph.gif, opens the PowerPoint template, executes the embedded
macro, and posts the PowerPoint file on the web sever by saing it in
Cinetpub\wwwroot. The attacker later uses a browser to download the PowerPoint file.
Verification: After the attack has completed, the attacker should be able to view the
secret file by downloading the PowerPoint file from the web. Net Tracker can be used to
create a transcript file for the HTTP session. The attack is successful if the transcript file
contains the text of the secret file.

Cleanup: The Adminigrator should delete the PowerPoint template file and the Registry
key from the victim's Regidiry.
Detection

Network Traffic. The atack can be detected by using Net Tracker to reassemble the
HTTP sesson into a transcript file, and searching the file for the text of the secret file.
However, the attacker can modify the macro to encrypt the secret file, thereby making the
attack stedlthier.

Host Data from the 1999 Evaluation: Auditing for the 1999 evaduation reveds nothing
about the attack.

Extended Host Data: If the secret files, “D:\home\secret*,” are audited (not audited in

the 1999 evauation), then an audit log record will indicate that a secret file is accessed by

61

the Powerpoint gpplication.

As shown in Fgure 7-7, the attack can be detected by

matching the Powerpoint process ID to the process ID that accesses the secret file.

9:55:02 AM

Object Open:
Object Server: Security
Object Type: File

Object Name:
9:54:54 AM D:\home\secr et\pr ojects\Desert_Snake.txt
A new process has been created: New Handle ID: 472
New Process | D: Operation ID: {0,118605}
2154583776 P Process|D: 2154583776
Image File Name: Primary User Name: Administrator
POWERPNT.EXE Primary Domain: EYRIE
Creator Process ID: Primary Logon ID: (0x0,0x3E8C)
2154979360 Client User Name: -
User Name: Client Domain: -
Administrator Client Logon ID: -
Domain: EYRIE Accesses READ_CONTROL
Logon ID: SYNCHRONIZE
(0x0,0x3E8C) ReadData (or ListDirectory)
ReadEA
ReadAttributes
Privileges -

Figure 7-7: Audit Records Show Secret File Access by the Power Point Program.

62

Chapter 8

User-to-Root Attacks

A user-to-root attack is used by an attacker to gain unauthorized adminigtrator privileges
on a machine. The atacker, who initidly has an account with user leve privileges, can
exploit a vulnerability in the sysem and obtain root access. Five Windows NT user-to-
root attacks were developed for the 1999 evauation. AnyPW, CaseSen, SecHole,
NTFSDOS, and Yaga AnyPW and NTFSDOS are console-based attacks requiring
physca access to the machine. CaseSen, SecHole, and Yaga exploit bugs in the
operating sysem via FTP and telnet sessons. The following sections provide detailed

descriptions of dl five attacks.

81 AnyPW U-b-S

Description

AnyPW is a console user-to-root attack that alows the attacker to logon to the system
without a password. A bootable floppy disk is used to modify the Windows NT MSV1 0
authentication package so that a vaid username can login with any password gring.

Logins viatelnet will dso work with any password.

Test Bed Details

Execution: The attacker insarts into the victim machine, a bootable floppy disk
containing the attack, and reboots the machine. A hexadecimad number appears in the
upper left of the screen. The numbers dowly increment as the attack searches for the
sgnaure of the MSV1 O authentication package. When an asterisk appears beside the
number, the package has been modified. The attacker removes the diskette and reboots
the machine. Later, the attacker telnets to the victim machine as Adminisirator and enters
any password to logon.

Note: If the attacker physicaly logs on to the machine with a random password
gring and then locks the machine, only the password that was used to logon can unlock
the machine.

Verification: Any password will be accepted with avalid username.
Cleanup: The adminigraor of the victim machines must replace the file
CAWINNT\system32imsv1 0.dll with an uncorrupted copy.

Detection

Network Traffic. The attack cannot be detected in network traffic. Even if the attacker
remotely accesses the victim machine with an incorrect password, there is no way to
determineif the password isindeed incorrect.

Host Data from the 1999 Evaluation: The victim's security audit log will indicate a
reboot after the system is restarted by the attacker. Mogt likdly, the attacker had to hard
reboot the machine (physicaly press the reset button or power cycle the machine)
because he or she did not have a password to login or unlock the machine. A soft reboot

audit ggnature is a “SeShutdownPrivilege® Privilege Use Event followed by an event

gating, “Windows NT is darting up.” A hard reboot audit signature can be detected
because it does not include the *“ SeShutdownPrivilege” event.

A hard reboot can be used to detect but not identify the AnyPW attack, because
other attacks may aso result in hard reboots (DoSNuke, NTFSDOS, etc.). In addition, a
hard reboot may occur in the absence of an attack (power outages, system halts, etc).
Extended Host Data: The AnyPW attack can be detected by using a software tool to
monitor modifications of the file, CAWINNT\sysem32msvl Odll. TripWire is an

example of such atool [37].

8.2 CaseSen U-b-S

Description

The CaseSen atack exploits the case sengtivity of the Windows NT object directory. All
users have write permissons to the “\??° object directory. These are the default
permissions so that users are able to map network drives or dias directories to new drive
letters. Each drive has an entry in the “\??" object directory. Each entry is actudly a
symbolic link which points to the device associated with that drive. For example, the
gymbalic link, “\?AC:,” points to the device, “\DevicdHardDiskO\Partitionl.” It is
posshble to create another verson of this symboalic link, “\?Ac.,” usng lower case “c.”
By doing this, dl the requests to drive “C” get routed through the new symboalic link. For
example, copying the contents of symbolic link, “\?AD:,” to the new symbalic link,
“\?7Ac,” and then executing the “dir’ command on drive “C” will display the directory
liging for drive “D.” By exploiting this feature, it is possble to trick the operating
system into running an attack executable with the privileges of a system executable [4].

The CaseSen atack uploads to the victim three files via FTP. soundedt.exe,
editwavsexe, and psxssexe. The files are uploaded to Clinetpub\ftproot. The attack
then telnets to the victim and executes soundedt.exe. Soundedt.exe copies editwavs.exe
and psxss.exe to Clingpub\ftproott WINNT\system32. It dso copies dl the POSIX
subsystem binaries and required DLLs (except PSXSSEXE) from CAWINNT\system32
to Clinetpub\ftproot\WINNT\system32. Then soundedt.exe creates a new object in the
object directory, labeled “\?Ac.” It links to Clinetpub\ftproot and supercedes “\?AC,”

which links to drive “C.” Soundedt.exe starts a POSIX application by executing “POSIX

/c editwavsexe” The Windows NT Sesson Manager (smssexe) activates the POSIX
subsystem, which loads the attack copy of psxssese. Psxssexe inherits the security
context privileges of smssexe and adds the current user to the Administrators user group
[22].

Test Bed Details

Execution: There are two stages to the attack: a setup and a bresk-in. The sstup stage
adds the attacker username to the victim machine€s Adminigtrator group. The bresk-in
dage connects to the victim machine with the new adminigrator privileges. Both dages
are fully automated by wrapping “exs’ scripts around the Expect scripts case sexp and
cae b.exp. Case sexp uploads the attack files, telnets to the victim, and launches the
attack. It adso deletes the three attack files after they have been used. Case b.exp (the
bresk-in script) telnets to the victim with the new adminigtrator privileges, executes some
generic commands (“dir’, "ver”, etc.), and cleans up by removing the user from the
Adminigtrators group and deleting files generated by the attack.

To prepae for the attack, the attacker places the three attack files in
“/home/<user>" of a UNIX attacker machine, where <user> is the username of the
attacker. The attacker executes case sexp by typing “case sexp <victim IP> <user>

<password>.” Later, the attacker executes "case b.exp <victim IP> <user>

Verification: After case sexp is executed, the username specified in the command line
of the attack should gppear in the Adminigtrators group of the victim machine (check the
Usr Manager). After case bruns the username should no longer be in the

Adminigtrators group.

67

The collected network traffic data can dso be used to verify the attack. Net
Tracker can be used to create a transcript of the telnet sessons. The transcript of the
break-in telnet sesson should contain the line "command completed successfully.” This
indicates tha the command to remove the user from the Adminidrators group was
successful, which implies that the entire attack was successful.

Cleanup: No manua cleanup is necessary. The setup script deletes the three attack files.
The break-in script removes the user from the Adminisrators group and deletes the
directory, Cinetpub\ftproot\ WINNT\, which is created during the attack setup.

The attack results in some sysem ingability. Usudly the victim machine mugt be
rebooted before the attack can be launched a second time. The attack cannot be launched

more than two twice without rebooting the victim.

Detection

Network Traffic: The attack can be detected by using Net Tracker to create transcripts
of the FTP and telnet sessons. Searching the FTP transcript for the strings “psxss.exe,”
xe” will reved the trandfer of the three atack files in
this verson of the attack. Searching the telnet transcript for the string “ soundedt.exe’
will reved the execution of thet file. However, editwavsexe and soundedt.exe were
names chosen specificaly for the smulation. The origind verson of the attack, avalable
on the Internet [22], uses the filenames, dummyapp.exe and besysadm.exe, respectively.
The filename, psxss.exe, canot be changed in different instances of the attack.
Host Data from the 1999 Evaluation: The security log shows the execution of the files
posix.exe and psxssexe, whose filenames will not differ in other versons of the aitack.

In addition, a log entry will gate that a username is added to the Adminigtrators group by

“NT AUTHORITY/SYSTEM.” This is because the username is added via an application

(very uncommon). Normaly, the Administrator would use the User Manager program,
Usmgr, to add the user to a group. The corresponding log entry would indicate that the
user was added by “Adminigtrator,” not “NT AUTHORITY/SYSTEM.”

Figure 8-1 compares two audit log entries. The first entry was crested when a
CaseSen attack added a user to the Adminigtrators group of the victim machine. The
second entry was crested when the Adminigrator of the victim machine added the same

user to the Adminigtrators group via the User Manager. The Cdler User Names in the

two audit log entries differ asindicated by the boldface text.

CASESEN ATTACK ADDS USER TO ADMINISTRATORS GROUP

Local Group Member Added:

Member: S1-5-21-742865521-1025978620-313593124-1040

Target Account Name:

Administrators

Target Domain: Builtin
Target Account ID: S1-5-32-544
Caller User Name: SYSTEM

Caller Domain:
Caller Logon ID:

Privileges:-

NT AUTHORITY
(0X0,0x3E7)

ADMINISTRATOR ADDS USER TO ADMINISTRATORS GROUP

Local Group Member Added:

Member: S1-5-21-742865521-1025978620-313593124-1040

Target Account Name:

Administrators

Target Domain: Builtin

Target Account ID: S1-5-32-544
Caller User Name: Administrator
Caller Domain: EYRIE

Caller Logon ID: (0x0,0x3AAB)
Privileges:-

Figure8-1: A User isAdded tothe Administrators Group by SYSTEM in a Casesen Attack.

69

83 NTFSDOS U-b-S

Description

This console-based attack reboots the sysem from a floppy disk containing the program,
NTFSDOSEXE. This executable is able to recognize and mount NTFS drives. It makes
them appear indiginguishable from standard FAT drives, giving the attacker the ability to
read and copy files that would otherwise be protected by Windows NTFS security. The
attacker does not need to be an authorized user of the victim machine. However, the
attack is conddered to be a user-to-root atack because physica access to the machine is
required to initiate the attack [36].

Test Bed Details

Execution: The attack is completely manud. The attacker inserts the diskette (a bootable
floppy disk containing the ntfsdosexe program) into the “A” drive of the victim machine,
and pushes the reset button on the CPU. After the system reboots, the attacker types
“ntfsdos’ at the DOS prompt. He or she then changes directories to “Clsecret,” copies
the secret files to the diskette, removes the diskette, and reboots the machine,

Verification: The secret fileswill be stored on the diskette.

Cleanup: No cleanup is necessary.

Detection

Network Traffic: The attack does not create network traffic.

Host Data from the 1999 Evaluation: The victim's security audit log will indicate a
reboot after the system is restarted by the attacker. Most likely, the attacker had to hard

reboot the machine (physicdly press the reset button or power cycle the machine)

70

because he or she did not have a password to login or unlock the machine. A soft reboot
audit dgnature is a “SeShutdownPrivilege’ Privilege Use Event followed by an event
dating, “Windows NT is gating up.” A hard reboot audit sgnature can be detected
because it does not include the * SeShutdownPrivilege’ event.

A hard reboot can be used to detect but not identify the NTFSDOS attack,
because other attacks may also result in hard reboots (DoSNuke, AnyPW, etc.). In
addition, a hard reboot may occur in the absence of an attack (power outages, system

halts, etc).

71

84 SecHole U-b-S

Description

The attacker, a mdicious user, establishes an FTP connection to the victim and uploads
the files test.exe and testfiledll (filenames were chosen to be dedthy). The attacker then
telnets to the victim and executes test.exe. As a result, the attacker is added to the
Adminigrators group.

Test.exe locates the memory address of a particular APl function (OpenProcess)
and modifies the indructions at that address. This is possible because the function is in
the user space of tes.exe. The function is modified so that it returns a success response,
ingtead of a failure response, when it is asked to open a process to which it does not have
privileges. Test.exe then cdls DebugActiveProcess with the RPCSS system process
(Remote Procedure Cdl Service) as an argument. Before granting test.exe debug access
to the RPCSS process, DebugActiveProcess cdls OpenProcess to check for privileges.
The request is successful because of the modifications made to OpenProcess. Once
test.exe has debug access to the RPCSS process, it exploits the system process privileges
to add the attacker username to the loca Administrators group [32][33]. The user later
telnets to the victim machine with adminigtrator privileges.

Test Bed Details

Execution: There are two stages to the attack: a setup and a break-in. The setup stage
adds the user to the victim machines Administrator group. The bresk-in stage connects
to the victim machine with the new adminidraior privileges Both dages ae fully

automated by wrapping “exs’ scripts around the Expect scripts sec_s.exp and sec_b.exp.

72

Sec sexp uploads the attack files, telnets to the victim, and executes the attack. It
deletes the two attack files after they have been used. Sec b.exp (the bresk-in script)
telnets to the victim with the new Adminidrator privileges, executes some generic
commands, and cleans up by removing the user from the Adminidrators user group and
deleting files generated by the attack.

The attacker prepares the attack by placing test.exe and tedtfiledll in

/home/<user> of an UNIX attacker machine, where <user> is the username of the
atacker. Sec_s.exp is executed by typing “sec sexp <victim IP> <user> <password>.”
Later, the attacker executes "sec b.exp <victim IP> <user> <password>,” to connect to
the machine with adminigirator privileges.
Verification: After sec sexp is launched, the username specified in the command line of
the attack should appear in the Administrators user group on the victim machine (check
the User Manager). After sec b.exp executes, the username should no longer be in the
Adminigtrators user group.

The collected network traffic data can dso be used to verify the attack. Net
Tracker can be used to create a transcript of the telnet sessons. The transcript of the
bresk-in telnet sesson should contain the line "command completed successfully.” This
indicates that the command to remove the user from the Adminidtrators group was
successtul, which implies that the entire attack was successful.

Cleanup: The sstup script deletes the two attack files. The break-in script removes the
user from the Adminigrators group. The atack may result in sysem indability. It is
unlikely, but the victim sysem may lock up &fter the attack. If this happens, the victim

user must reboot the machine, The attack <till succeeds.

73

Detection

Network Traffic: The attack can be detected by using Net Tracker to create transcripts
of the FTP and telnet sessons. Searching the FTP transcript for the strings “test.exe’ and
“tedtfiledll,” will reved the trandfer of the two atack files in this verson of the attack.
Searching the telnet transcript for the dring “test.exe” will reved the execution of that
file. However, filenames were chosen specificdly for the smulation. The origind
verson of the attack uses the filenames, sechole.exe and admindll.exe.

Host Data from the 1999 Evaluation: After a SecHole attack, the Windows NT security
log will contain a log entry indicating the execution of the file, test.exe (secholeexe). In
addition, a log entry will show that a username was added to the Administrators user
group by “NT AUTHORITY/SYSTEM.” This is because the username is added via an
goplication (very uncommon). Normaly, the Administrator would use the User Manager
program, Usrmgr, to add the user to a group. The corresponding log entry would indicate

that the user was added by “Administrator,” not “NT AUTHORITY/SYSTEM.”

74

8.5 Yaga U-b-S
Description

The Yaga atack (Yet Another Get Admin) edits the victim's Regisry so that the next
time a sarvice crash occurs on the victim machine, the attacker is added to the Domain
Admins group. To setup the attack, the atacker must upload to the victim machine a file
with Regidry key information and then use it to edit the Regidry. This is accomplished
via a tdnet sesson. The Regisry key origindly contains a vadue indicaing that the Dr.
Watson debugger program (drwtsn32.exe) should execute when an gpplication error
occurs (eg. a sarvice crashes). The Yaga attack modifies the key value so that the
drwtsn32.exe command is replaced with a command that adds the attacker username to
the Domain Admins user group. Once the setup is complete, the attacker uses a denid-
of-service attack, CrashllS, to remotely crash a service on the victim machine. As a

result, the attacker username is added to the Domain Admins user group.
Test Bed Details

Execution: The attack is fully automated by wrapping a “exs’ scripts around the Expect
soripts, yaga sexp and yaga b.exp. The Expect setup script, yaga s.exp, establishes a
telnet connection with the Windows NT victim computer. It uses the “cat” command to
cregte the file, “entry,” with Registry key information and then edits the Regidry key,
HKEY _LOCAL_MACHINESOFTWARE\Microsoft\Windows NT\CurrentVersonAeDe-
bug,” so that the Dr. Watson command, “drwtsn32 —p %ld —e %ld -g,” is replaced with
the command, “net group “Doman Admins’ <attacker username> /ADD.” The attack

then executes the CrashllS attack to crash the 1IS web server. As a reault, the Registry

75

key is accessed, the net.exe command is executed, and the attacker username is added to
the Domain Admins group. The web server remains disabled.

The break-in expect script, yaga b.exp, tdnets to the victim machine with the

new Doman Admin permissons, executes some generic commands, and cleans up by
removing the user from the Doman Admins group and retoring the origind Registry
key.
Verification: After yaga s is launched, its success can be verified by accessng the User
Manager on the victim machine to verify that the atacker username is in the Doman
Admins group. After yaga b executes, the username should no longer be in the Domain
Admins group.

The collected network data can adso be used to verify the attack. Examining
transcripts crested by Net Tracker will reved the line "command completed
successfully.” This indicates that the command to remove the user from the Domain
Admins group was successful, which implies that the entire attack was successful.

Cleanup: The break-in script removes the attacker username from the Domain Admins
group and restores the origind AeDebug Regisry key. The Adminidrator must manualy
restart the I1S service(s).

Detection

Network Traffic: Net Tracker can be used to reassemble the collected network traffic in
TCP transcripts. These transcripts can be examined for attack keywords. The creation of
the file, “entry,” containing the Regigtry informetion, is done with the “ca” command.
As a reault, the TCP transcripts will reved the text strings of the file, shown in Figure 8

2. The text strings can be used ty a sring-matching intruson detection system to detect

76

the attack. A good sring to search for is “Aedebug.” In addition, the transcripts will

show that regedit.exe was run by the attacker.

REGEDIT4
[HKEY_LOCAL_MACHINESOFTWARE\Microsoft\Windows
NT\CurrentVersion\AeDebug]

"UserDebuggerHotK ey" =dword:00000000"

"Debugger"="net group \" Domain Admins\" <attacker username/ADD"
"Auto"="1"

Figure8-2: TheYaga Attack Createsa Text File Containing Registry I nformation.
Host Data from the 1999 Evaluation: Smilar to the way a CrashllS attack can be
detected, a Yaga attack can be detected in the Windows NT security log by observing that
a command is executed by the inetinfo.exe service when the service crashes. In this case,
the process ID of the inetinfo.exe process will match the process ID that launches the

net.exe command, as shown in Figure 8-3.

10: 32: 08 AM
A new process has been created:
New Process |D: 2155093504 1)
I mage File Name: inetinfo.exe 4
Launches
Creator Process |D:
2156665984
User Nanme: SYSTEM
Donmi n: NT AUTHORI TY
10: 35:12 AM
new process has been created:
New Process |D: 2155165088 Net.exe
I mage File Nanme: net.exe o Launches
Creator Process |ID:
2155093504
User Nanme: SYSTEM
Donmai n: NT AUTHORI TY

Figure 8-3: Net.exe Program Launcheswhen 1S Crashesin a Yaga Attack.

In addition, an entry in the security log will indicate that the attacker username
was added to the Adminidrators group by “NT AUTHORITY/SYSTEM.” This is
because the user is added via an application (very uncommon). Normdly, the
Adminigtrator would use the User Manager program, Usrmgr, to add the user to a group.

The corresponding log entry would indicate that the user was added by “Administrator,”

Extended Host Data: If the “HKEY_LOCAL_MACHINE/Software/Microsoft/Win-
dows NT/CurrentVerson/AeDebug” Registry key is audited (not audited in the 1999
evaduation), then an audit log record will indicate that the key is accessed with privileges
to modify key values. The atack can be detected by looking for this audit log record log,

shown in Figure 8-4 with the key name and “set key vaue’ privilegein bold text.

Object Open:
Object Server: Security
Object Type: Key
Object Name:

\REGISTRY\M ACHINE\SOFTWAREWM icrosoft\
Windows NT\CurrentVersion\AeDebug
New Handle ID: 16
Operation ID: {0,38791}
Process ID: 2154622176
Primary User Name: dlie
Primary Domain: EYRIE
Primary Logon ID: (0x0,0x960D)
Client User Name: -
Client Domain:
Client Logon ID:
Accesses READ_CONTROL
Query key value
Set key value
Create sub-key
Enumerate sub-keys
Notify about changes to keys

Privileges

Figure 8-4: Audit Record Shows M odification of the“ AeDebug” Registry Key.

78

Chapter 9

Probes

A probe or scan attack is used by an attacker as a reconnaissance tool. A probe may
search a network for valid 1P addresses, scan a single computer for active ports, or gather
information about a computer’s configuration, operating system, or TCP sarvices.
Information obtained with a probe atack may reved vulnerabilities that the atacker can
exploit in later attacks. Some probe attacks developed in the 1998 evauation were aso
used againg the Windows NT victim in the 1999 evauation, namdy, Ipsweegp and Nmap
(portscan). These atacks are fully documented in [10]. In addition, one Windows NT

probe attack, NTInfoScan, was developed for the 1999 eva uation.

9.1 NTInfoScan R-a-Probe(ServicesKnown Vulnerabilities)

Description

NTInfoScan (Verson 4.2.1) is a security scanner tool that administrators can used to test
Windows NT systems for security holes. However, an attacker can use the same tool to
scan a Windows NT victim machine and obtain share information, the names of dl the
users, savices running, and vulnerdbilities in the system configuration. The results are
saved in an HTML file, named <victim>.html, where <victim> is the IP address of the

victim machine [25].

79

Test Bed Details

Execution: To execute the attack, a PERL script, ntispl, runs on a Windows NT attacker
machine. The attack is prepared by editing the first line of ntispl with the time of day the
attack will run. Ntispl is then executed or placed it in the Startup group for automated
execution. Ntispl takes no input arguments and automaticaly scans the Windows NT
victim machine. The attack may take up to 20 min. to complete.

Ntis performs many tesds of the victim machine. It atempts anonymous FTP
interaction, tests for many wvulnerabilities in the web server, and gathers information
about users and shared directories via NetBIOS connections. Ntis temporarily hangs
during the web sarvices portion of the attack when it executes a particular server-dde
CGl gpplication (newdsn.exe). There is a timeout of 15min, after which the attack will
continue executing.

Verification: If the attack succeeds, there will be a file on the atacker machine, named
<victim>.html, where <victim> is the IP address of the victim machine. In addition, the
“last modified” date must agree with the date and time when the attack was launched, and
the file must be opened to verify that data was collected by the scan.

Cleanup: No cleanup is required.

Detection

Network Traffic: Net Tracker can be used to reconstruct the FTP and HTTP connections
that occur during the attack. Figure 91 shows the text of the generated transcripts. The
attack can be detected with a keyword matching intruson detection syslem by searching
for the text gtrings shown in boldface. The FTP transcript shows the attacker logging into

the victim machine and atempting to upload a file cdled, “ntis-fip.txt.” The HTTP

transcripts show the atacker testing for vulnerabilities in the victim sysem by atempting

severd “GET” requests to the victim web server.

FTP CONNECTION

HTTP CONNECTIONS

206.48.44.18:1256=>172.16.112.100:21
user anonymous

pass guestaccnt @compuser ve.com
port 199,199,199,199,0,80

port 199,199,199,199,10,10

cwd /c

stor ntis-ftp.txt

quit

500 Invalid PORT Command.

500 Invalid PORT Command.

250 CWD command successful.

150 Opening ASCII mode data connection for ntis-
ftp.txt.

425 Can't open data connection.

HTTP CONNECTION

206.48.44.18:1256=>172.16.112.100:80
HEAD / HTTP/1.0

HTTP/1.0 200 OK

Server: Microsoft-115/2.0

Date: Thu, 08 Apr 1999 15:27:33GM T
Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Wed, 03 Mar 1999 16:40:55 GMT
Content-Length: 1513

206.48.44.18:1256=>172.16.112.100:80

GET /*.idc HTTP/1.0

HTTP/1.0 400 Bad Request

GET /cgi-bin/ HTTP/1.0

HTTP/1.0 403 Access Forbidden

GET /scripts HTTP/1.0

HTTP/1.0 403 Access Forbidden

GET /cgi-bin/per|.exe?v HTTP/1.0

HTTP/1.0 403 Access Forbidden

GET /scripts/perl.exe?v HTTP/1.0

HTTP/1.0 403 Access Forbidden

GET /scripts/tools/newdsn.exe HTTP/1.0

HTTP/1.0 502 Gateway Error

Server: Microsoft-115/2.0

Content-Type: text/html

<head><title>CGI Application Timeout</title></head>
<body><h1>CGI Timeout</h1>

The specified CGI application exceeded the allowed
time for processing. The server has deleted the process.</body>
GET /_vti_bin/fpcount.exe?Page=default.htm|l mage=3|Digits=15
HTTP/1.0

HTTP/1.0 403 Access Forbidden

GET /scripts*%0a.pl HTTP/1.0

HTTP/1.0 403 Access Forbidden

GET /samples/sear ch/queryhit.htm HTTP/1.0
HTTP/1.0 404 Object Not Found

Figure 9-1: Transcriptsof FTP and HTTP Connectionsfrom an NTInfoScan Attack.

In this verson of the attack, the attacker uses the password,

“guestaccnt@compuserve.com” to establish an anonymous FTP connection to the victim
machine. The origind verson of NTInfoScan uses the password,
“NTInfoScan@security.check.”

Host Data from the 1999 Evaluation: The NTInfoscan attack can be detected by
searching for a particular series of events in the 1999 evauation Windows NT audit logs.
When the attack connects to the victim machine to collect user account information, there
will be an individua audit log entry created for each access of the Security Account
Manager (SAM). The number of accesses wil be equa to the number of user accounts
on the sygsem. Figure 9-2 shows one of the 92 audit log entries crested during an

81

NTInfoScan atack againg the Windows NT victim machine. SYSTEM accesses the

Security Account Manager with read-only privileges to gather user account information.

Object Open:
Object Server: Security Account M anager
Object Type: SAM_USER

Object Name: DOM AINS\A ccount\User s\0000040E
New Handle ID: 1509008
Operation ID: {0,32531}
Process ID: 2156644800
Primary User Name:SYSTEM
Primary Domain: NT AUTHORITY
Primary Logon ID: (0x0,0x3E7)
Client User Name:
Client Domain:
Client Logon ID: (0x0,0x25D8)
Accesses READ_CONTROL
ReadGenerallnformation
ReadPreferences
ReadL ogon
ReadAccount
ListGroups

Privileges -

Figure 9-2: One Access of the Security Account Manager by an NTInfoScan Attack.
The NTInfoScan attack can aso be detected in the IIS log file The same
keywords that are reveded in network traffic transcripts will be revedled in the IS log

file. Fgure 9-3 shows the IIS log file entries generated by an NTInfoScan attack with

keywordsin boldface text.

206.48.44.18, anonymous, 4/1/99, 7:59:59, MSFTPSVC, HUME, -, 0, 15, 0, 0, 0, [1] USER , anonymous, -,
206.48.44.18, guestaccnt@compuserve.com, 4/1/99, 7:59:59, MSFTPSVC, HUME, -, 469, 31, 0, 0, O, [1] PASS,
guestaccnt@compuser ve.com, -,

206.48.44.18, guestaccnt@compuserve.com, 4/1/99, 8:00:01,M SFTPSVC,HUME, -, 1625, 78,0, 0, 10061, [1] crested , ntisftp.txt, -,
206.48.44.18, guestaccnt@compuserve.com, 4/1/99, 8:00:59, MSFTPSVC, HUME, -, 0, 5,0, 0, O, [1] QUIT, -, -,
206.48.44.18, -, 4/1/99, 8:00:59, W3SV C, HUME, 172.16.112.100, 63, 17, 198, 200, 0, HEAD, /Default.htm, -,
206.48.44.18, -, 4/1/99, 8:00:59, W3SVC, HUME, 172.16.112.100, 0, 21, 101, 400, 123, GET, /*.idc, -,

206.48.44.18, -, 4/1/99, 8:00:59, W3SV C, HUME, 172.16.112.100, 15, 24, 111, 403, 5, GET, /cgi-bin/, -,

206.48.44.18, -, 4/1/99, 8:00:59, W3SVC, HUME, 172.16.112.100, 0, 24, 273, 403, 5, GET, /sxipts/, -,

206.48.44.18, -, 4/1/99, 8:00:59, W3SVC, HUME, 172.16.112.100, 0, 35, 273, 403, 5, GET, /scripts/perl.exe, -v,
206.48.44.18, -, 4/1/99, 8:15:59, W3SV C, HUME, 172.16.112.100, 900094, 40, 275, 502, 0, GET, /scripts'toolsnevdsn.exe, -,
206.48.44.18, -, 4/1/99, 8:15:59, W3SV C, HUME, 172.16.112.100, 0, 31, 273, 403, 5, GET, /scriptg/*.pl, -,

206.48.44.18, -, 4/1/99, 8:15:59, W3SV C, HUME, 172.16.112.100, 32, 43, 111, 404, 3, GET, /samples'sear ch/queryhit.htm, -,

Figure 9-3: 1 SLog Entries Recorded During a NTInfoScan Attack.

82

Chapter 10

Detectability of Attacks

This chapter presents an experiment to determine the detectability of the new 1999
evauaion Windows NT attacks in Windows NT audit logs. The detection information
included in chapter sx through chapter nine is assembled into atack sgnatures for each
of the 12 attacks. These signatures are coded into a PERL script program caled NT
Audit Detect (NTAD), developed specificdly for this experiment. NTAD uses Windows
NT audit logs, from the 1999 evaluation test data, as input data Detection and fdse

aam results are presented.
10.1 Motivation and Goal

The moativation for this experiment is to promote more research and development of
intruson detection systems that utilize Windows NT audit data. Windows NT hodts are
essentid components in many computing environments. Despite their growing
importance, researchers are only beginning to develop intruson detection systems that
use Windows NT audit daa Only one participant in the 1999 DARPA Intruson
Detection Evduation submitted a system that could detect attacks againgt Windows NT
hosts usng Windows NT audit data[7].

The god of the experiment is to present the detectability of the 1999 Windows

NT attacks in audit data and provide information that will make it easier for researchers

to extend therr exiging systems to process Windows NT audit data and begin detecting

Windows NT attacks.
10.2 Testing Audit Log Signatures

To tes the validity of the Sgnaures described in chapters sx through nine, a PERL
program caled NTaudit-detect.pl (NTAD) was written (full source code in Appendix A).
NTAD uses the sgnatures defined in the attack documentation to scan for the new 1999
Windows NT attacks in audit log data. It processes comma-separated text versons of the
audit logs. These are created by usng the Windows NT Event Viewer to save the origind
event logs as comma-ddimited text files.

Figure 10-1 shows one function of the NTAD program. This function detects
CrashllS attacks in a Windows NT security event log. Line six begins the loop tha
searches through the event log, one line a a time. Lines seven through 11 look for the
process ID of the 1S process (inetinfo.exe). Lines 12 through 17 look for the Dr. Watson
process (drwtsn32.exe), and checks to see if its Creator Process ID matches the process
ID of indtinfo.exe. If the ID’s match, lines 18 through 25 parse the date and time from
the event log and print an dert indicating that a CrashllS attack was detected (See
Section 6-1 for CrashllS documentation). There are amilar functions in the NTAD code
for dl of the Windows NT attacks developed for the 1999 evauation (Appendix A
contains the full source code).

The results of running NTAD on the 1999 test data are shown in Figure 10-2.
Note that this is not an officid st of results and that the results are overly optimigtic
because the same attack generation tools were used twice, both to create test data and to

develop Sgnatures.

5

10

15

25

1 subdetect_crashiis{
drwtsn.exe started by the inetinfo.exe process will indicate a Crashl| S attack

print "Looking for CrashllS attacks...\n";
save previousline for process ID of inetinfo
$previine="";
while (KREVENTLOG>) {
if ($_=~"inetinfo.exe") && ($prevline=~"New Process")) {
print "Discovered inetinfo.exe\n";
get process D for 1S
@fields= split (" ", $prevline);
$process|D = $fieldg[3];}
if ($_=~"drwtsn32.exe") {
print "Discovered drwtsn32.exe\n";
skip 1 lineto look for the creator process |1D
$ =<EVENTLOG>;
compare with inetinfo ID
if ($_=~$processiD) {
skip down to get date and time
while (I($_=~"HUME")) {
$ =<EVENTLOG>;}
@fields=split//,$_;
$date = $fields[O];
$time = Hfieldg1];
print "Crashl 1S attack detected!!:\n";
print “on $date at $time.\n";}
else{print "\n"};}
Sprevliine=$_;}}

Figure 10-1: Function in NTAD Detects Crashl| S Attacksin an Audit L og.

Column one indicates he week and day when the attack instance occurred.

Week one

through week three were training data weeks, so week four trandates to week one of the

test data and week five trandates to week two of the test data Days numbered one

through five represent the days Monday through Friday respectively. Column two lists

the time of day for each atack, in the form HH:MM:SS. Columns three and four indicate

the name and type of each attack. Attack instances labeled “CrashllS-Yaga' indicate that

the CrashllS attack was launched as part of the Yaga attack (See documentation of the

Yaga atack in Section 85). The fifth column of the table contains a “1” if NTAD issued

an dert for the atack and a “0” if it did not. The sixth and find column displays, for the
given atack, the tota number of fase darms generated by NTAD in the two weeks of
test data For example, a “1” in this column for a CrashllS attacks indicates that NTAD
only generated one false darm when searching the test data for Crashl|S attacks.

As indicated in the table, the audit logs for day five of week five were not
collected properly and therefore could not be used. In addition, the audit logs from some
days of the evdudaion were cleared in the beginning of the day, but after the Windows
NT victim machine booted up. As a result, the initiation of the IS process (inetinfo.exe)
in the beginning of the day was not audited. NTAD was unable to detect CrashllS
attacks, because the 11S process ID could not be matched with the process ID of the
drwtsn32.exe process (See CrashllS documentation in Section 6.1). The CrashllS attacks
marked with asterisks (*CrashllS) are the attacks that NTAD was unable to detect. The
atacks are Hill labeled as detected because they would have been detected if he audit
logs were not cleared after the Windows NT victim machine was booted.

As can be seen, 26 of the 29 (90%) attacks that occurred during periods where
Windows NT audit records were available were detected and only 1 fdse darm was
generated. This good result, and the reatively smple nature of the sgnatures,
demondtrates that the Windows NT audit records collected in the 1999 evauation contain
much useful information concerning the 1999 Windows NT atacks. This information,
however, needs to be supplemented to detect attacks, such as PPMacro and other attacks
where information on file and Registry access is important. An audit policy that audits
the Regisry key and files modified by the PPMacro program would make it possible to

detect the attack in audit data (see documentation of PPMacro in Section 7.4).

Week-Day | Time Name Category | Detected | Tota False Alams
All All All Attacks All 26029 |1
4-1 09:00:00 | NTFSDOS U2R 1 0
4-1 15:50:48 | Yaga U2R 1 0
4-1 16:13:08 | *CrashlIS-Yaga | DoS 1 1
4-2 12:00.00 | NTFSDOS U2R 1 0
4-2 14:32:28 | SecHole U2R 1 0
4-2 21:04:10 | *CrashlIS DoS 1 1
4-3 10:00:00 | PPMacro R2L 0 0
4-3 11:00:00 | NetCat R2L 1 0
4-4 08:00:00 | NTInfoScan Probe 1 0
4-4 08:30:00 | NetBus R2L 1 0
4-4 11:00:00 | DoSNuke DoS 1 0
4-4 12:05.00 | PPMacro R2L 0 0
4-5 12:01:46 | NetBus R2L 1 0
4-5 16:50:09 | SecHole U2R 1 0
5-1 11:45.00 | DoSNuke DoS 1 0
51 18:36:23 | CrashlIS DoS 1 1
51 19:47:15 | DoSNuke DoS 1 0
5-2 08:53:;57 | CaseSen U2R 1 0
5-2 13:50:03 | CrashlIS DoS 1 1
5-2 14:02:07 | PPMacro R2L 0 0
5-2 20:56:05 | DoSNuke DoS 1 0
53 09:48.00 | NetBus R2L 1 0
5-3 11:05:00 | NetCat R2L 1 0
5-4 09:12.00 | CaseSen U2R 1 0
5-4 10:21:02 | NTFSDOS U2R 1 0
5-4 11:04:16 | NTInfoScan Probe 1 0
54 11:50:00 | Yaga U2R 1 0
5-4 11:57.01 | *CrashllS-Yaga | DoS 1 1
5-4 16:03:41 | SecHole U2R 1 0
5-4 18:30:02 | NTInfoScan Probe 1 0
Audit logsfor Week 5, Day 5 were not collected properly:

55 08:14:18 | CrashllS DoS - -
5-5 08:55:14 | NetCat R2L - -
5-5 10:06:00 | AnyPW U2R - -
5-5 11:08:00 | Framespoofer R2L - -
5-5 12:44:00 | Yaga U2R - -
5-5 12:51:12 | CrashliS-Yaga | DoS - -
5-5 12:58:30 | CrashlIS DoS - -
5-5 20:49:25 | Casesen U2R - -

Figure 10-2: Detection Results of the ntaudit-detect.pl Script (NTAD) for the New 1999 Windows NT
Attacks.

87

Chapter 11

Results and Future Work

Overdl, the 1999 DARPA Off-Line Intrusion Detection Evaluation was a success and a
mgor improvement over the 1998 evauation. It provided training data containing no
attacks for training anomay detection sysems. Sysems were scored on atack
identification in addition to attack detection. Scoring and verification procedures were
amplified, a written security policy was provided, and a more detailled analyss of attack
misses and fase darms was performed. In addition, the 1999 attack set was extended to
indude more dedthy attacks, indder attacks, and atacks againg the Windows NT
operating sysem. This chapter summarizes the results of the 1999 evauation regarding
Windows NT attacks and presents suggestions related to Windows NT for future

evauations.

11.1 WindowsNT Results of the 1999 Evaluation

The results of the 1999 evduation [11] were andyzed to determine how wel the best
gysems peformed in detecting Windows NT attacks. Systems that were designed to
detect denid-of-service and probe attacks againg the Windows NT victim machine
peformed wdl. The top two sysems in this category ae UCSB [38] and Emerdd

Expert [20]. Systems that were designed to detect remote-to-locd and user-to-root

attacks againgt Windows NT performed poorly. In fact, only one participant, RST [7],
designed systems to detect these types of attacks.

The Windows NT attack detection results for the 1999 evauation can be found in
[11]. Figure 11-1 shows the detections results for the two systems best at detecting probe
and denid-of-service attacks. There were a tota of 16 instances of Windows NT denia
of service attacks and 8 ingtances of Windows NT probe attacks. These numbers include
new attacks developed for the 1999 evauation and old attacks that were developed in the
1998 evauation. The detection results shown in the table are rdative to a maximum of
10 fdse darms per day for each sysem. The highest scoring syssem was the Emerad
Expert system, which detected 69% of the Windows NT denid-of-service attacks (L1 of
16) and 63% of the Windows NT probe attacks (5 of 8). One reason why these systems
did so well is that many of the attacks were not new to them. Six of the eight probe
attacks, instances of NTInfoScan, Ipsweep and Portsweep, and nine of the 16 denia-of-
sarvice atacks, ingtances of CrashllS and Smurf, were atacks seen in the 1999 training
data.

RST was the only paticipant that designed systems that detect Windows NT
remote-to-local and user-to-root attacks. The RST system that was best at detecting these
attacks in the 1999 evauation was RST State-Tester [7]. However, this system detected
fewer than 20% of the Windows NT remote-to-local and user-to-root attacks. This result
may not reflect the performance that can be achieved by the State-tester approach. This
gpproach uses Windows NT audit log data to detect attacks. It examines audit logs for
sequences of records that are anomalous for known processes. The dtate-tester approach

works well in detecting UNIX remote-to-loca and user-to-root attacks, because many of

89

Week-Day | Time Name Category | UCSB Emerad Expert
All All All DoS DoS 69% (11/16) 69% (11/16)
All All All Probe Probe 38% (3/8) 63% (5/8)
4-1 12:22:22 | Portsweep Probe 0 0

4-1 16:13:.08 | CrashlIS DoS 1 1

4-2 21:04:10 | CrashllS DoS 1 1

4-3 14:45:47 | Smurf DoS 1 1

4-3 16:43:34 | Portsweep Probe 0 0

4-4 08:00:59 | NTInfoScan Probe 1 1

4-4 11:00:00 | DoSNuke DoS 0 1

4-5 19:25:23 | Ipsweep Probe 0 1

51 11:45:00 | DoSNuke DoS 0 0

5-1 13:30:19 | ArpPoison DoS 0 0

51 18:36:23 | CrashlIS DoS 1 1

5-1 19:47:15 | DoSNuke DoS 1 0

5-2 13:50:03 | CrashlIS DoS 1 1

5-2 20:56:05 | DoSNuke DoS 0 1

54 11:04:16 | NTInfoScan Probe 1 1

54 11:57:.01 | CrashlIS DoS 1 1

54 17:01:32 | ResetScan Probe 0 0

54 18:30:02 | NTInfoScan Probe 1 1

5-4 22:51:31 | ArpPoison Dos 1 0

55 08:14:18 | CrashllS DoS 1 1

55 08:55:50 | Ingdesniffer Probe 0 1

55 10:20:00 | TCPReset DoS 0 0

55 12:51:12 | CrashlIS DoS 1 1

55 12:58:30 | CrashlIS DoS 1 1

Figure 11-1: Detection Resultsfor Probe and Denial -of-Service Attacks with a Maximum of 10

those attacks

False Alarmsper Day.
misuse exising programs, thereby creating anomaous BSM log records.

However, many of the 1999 Windows NT remote-to-loca and user-to-root attacks, such

as NetBus and NetCat, do not misuse existing programs. Instead, these attacks introduce

new mdicious code. In addition, BSM auditing information differs from Windows NT

auditing information. BSM auditing records sysem cdls while Windows NT auditing

records higher-level information, such as object access. Findly, this was the firs year

that RST designed a system to detect Windows NT attacks in audit log data.

Despite the poor detection results for Windows NT remote-to-locd and user-to-
root attacks, it is evident by the experiment performed in Chapter 10 that the attacks are
detectable in Windows NT audit logs The experiment in Chapter 10 vdidated the
usefulness of the attack signatures documented in Chapters 6 through 9. These sgnatures
provide a good set of features that could be used to develop host-based sgnature-based
Windows NT intruson detection systems. In future DARPA evduations, the 1999
Windows NT test data will be avaladle for traning. This data, combined with other
Windows NT data, can be used to develop improved Windows NT intruson detection

systems.

11.2 Windows NT Suggestionsfor Future Evaluations

This section provides suggestions regarding Windows NT in future evauations. These
suggestions span four aspects of Windows NT in the evduation: hardware and software,

distributed host data, traffic automation, and the attack s=t.

11.2.1 Hardwar e and Software

The following is a lig of suggestions related to Windows NT hardware and software for
future evaugtions.
Use Microsoft Exchange Server as the mall server for the Windows NT victim
mechine.
Add additiona Windows NT victim machines with more up-to-date Service Packs
to the test bed.
Microsoft Exchange Server [15] is the recommended Windows NT mail server for future
evauations because it is the most popular Windows NT mal server in busness and

military environments. It is more redidic to use Microsoft Exchange Server than the

91

Resource Kit mall server (Mailsrv), which has been announced as faulty and unsupported
by Microsoft [23]. At least one Windows NT victim machine must be equipped with
Service Pack 3 to be capable of running Microsoft Exchange Server. Introducing

machines with more recent Service Packs will dso make the evauation more redigtic.

11.2.2 Distributed Host Data

The following is a lig of suggestions related to Windows NT didribued host data for
future evaluations:

Generate and didribute audit logs with a more extensive security auditing policy.

Digribute other log files.
Severd atack dgnatures were listed in the “Extended Host Data’ sections of Chapters
gx through ten. If the data indicated in these sections is provided in future evauations,
paticipating sysems that utilize host data will have a beter chance of detecting
Windows NT attacks. For this reason, a more extensve Windows NT auditing policy
should be adopted in future evdudaions Such an audit policy should audit important
Regigry keys and important files on the sysem. However, too much auditing can
ggnificantly affect sysem performance. Experiments should be conducted to determine
an audit policy that provides the mogt ussful information without severdy affecting
sysem peformance. Other Windows NT files mentioned in the “Extended Host Datd’
sections contain attack sgnatures, and should dso be didributed in future evauations.

An example of such afileisthe Dr. Watson log file, CA\WINNT\user.dmp.

11.2.3 Traffic Automation

The following is a lig of suggestions rdaed to Windows NT traffic automation for future

evaduations,

92

Samba automation

Other automation (macros)
In the 1999 evauation, Windows NT attacks were executed manualy when attack
actions, such as executing an email atachment or vidting a specific web page, were
necessary. If these types of actions and other Windows NT actions were automated, it
would be smpler and less time consuming to deploy Windows NT attacks in the
evduation test bed. Automation posshilities that should be explored for future
evauations include Samba [31], which alows UNIX machines to control Windows NT
machines, and other types of automation, such as Windows NT macros.

11.2.4 The Attack Set

The following is a lig of suggesions related to the Windows NT atack sat for future
evauations

Buffer overflow attacks.

More probe attacks.

More atacks requiring the execution of Visud Basc and ActiveX emal

attachments of various types.
The Windows NT attack set must be updated and extended in each successive evaluation,
to remain redigic and reaively comprehendve. Attack types that were lacking in the
1999 Windows NT attack set, and that should be considered for future attack sets include,
buffer overflow attacks and more probe attacks. In addition, Windows NT attacks that
require the victim to execute Visud Basc and ActiveX emal atachments are currently
popular. Future evauaions should include more of these types of attacks to create

redigtic attack sets.

93

Appendix A

Source Codefor NTAD (ntaudit-detect.pl)

#!/usr/l ocal /bin/perl

NTAD - NTAUDI T- DETECT. PL
Jonat han Korba - Last Updated 5/18/ 2000

This program denmonstrates the detectability of NT attacks

in the NT audit data gathered fromthe victimNT server (HUME) in the
1999 DARPA Off-Line Intrusion Detection Eval uation.

Detection is signature based.

I nput paraneters for this program are the name of the audit |og
text file to scan for attacks, and the type of attack(s) to detect.
The audit log text file nmust be created by opening an audit |og

in NT EventViewer, ordering it from ol dest record to newest record,
and then saving it as a comm-delimted text file.

HEHTHEEE R R R

sub usage {
print "\ nUsage:\n";
print "ntaudit-detect.pl <audit log text file> <attack(s) to detect>\n";
print "\ nPossible attack(s) to detect:\n";
print " casesen (U2R)\n";
print " crashiis (DoS)\n";
print " hardboot (Hard Reboot - Could indicate DoSNuke, AnyPW NTFSDCS, etc.)\n";
print " netbus (R2L)\n";
print " netcat (R2L)\n";
print " ntis (NTInfoScan - Probe)\n";
print " sechole (U2R)\n";
print " yaga (U2R)\n";
print " all (Al of the above)\n\n";
print "\ nUndetectable with 1999 Auditing Policy:\n";
print " FrameSpoofer\n";
print " PPMacro\n\n";
}

sub detect_casesen {
A good signature for the CaseSen Attack is:
POSI X. EXE executes, PSXSS. EXE executes,
then a user added to Adm n group by SYSTEM
$posi x = 0;
$psxss = 0;
print "Looking for CaseSen Attacks...\n";
whi | e (<EVENTLOG>) {
if (($_ =~ "POSI X. EXE") && ($posix == 0))
print "Discovered execution of POSIX EXE ";
for ($x = 0; $x < 2; $x++) {
skip 2 lines to | ook for the User
$_ = <EVENTLOG>; }

if (($_ =~ "User\ Name\:") && !($_ =~ "Administrator”)) {
$posi x = 1;
print ": not run by Adm nistrator"; }
print "\n";
}
if (($_ =~ "PSXSS.EXE") && ($posix == 1) && ($psxss == 0)) {
print "Discovered execution of PSXSS. EXE\n";
$psxss = 1;
}
if (($_ =~ "Group\ Menber\ Added") && ($psxss == 1)) {

print "Discovered Group Menber Added";
get date and tinme

for ($x = 0; $x < 5; $x++) {
skip 5 lines to |l ook for the User
$_ = <EVENTLOG>;}
if (($_ =~ "Caller\ User\ Nanme\:") && ($_ =~ "SYSTEM')) {
print ": by SYSTEM n";
CaseSen has been detected!!!
print "CaseSen Detected at $date $tine\n";
Reset variabl es because there may be nore casesens
$posi x 0;
$psxss 0;}

}

sub detect_crashiis {
drwtsn.exe started by the inetinfo.exe process will indicate a CrashllS attack
print "Looking for CrashllS attacks...\n";
save previous line for process ID of inetinfo
$prevliine = "";
whil e (<EVENTLOG>) {
if (($_ =~ "inetinfo.exe") && ($prevline =~ "New Process")) {
print "Discovered inetinfo.exe\n";
get process ID for IIS
@ields = split (" ", $prevline);
$processI D = $fiel ds[3];
}
if ($_ =~ "drwmtsn32.exe") {
print "Discovered drwtsn32. exe\n";
skip 1 line to look for the creator process ID
$_ = <EVENTLOG>;
conpare with inetinfo ID
if ($_ =~ $processiD) {
skip down to get date and tine
while (!($_ =~ "HUME")) {
$_ = <EVENTLOG>;}
@ields =split /,/, $_;
$date = $fields[0];
$time = $fields[1];
print "CrashllS attack detected!!:\n";
print "on $date at $time.\n";}
el se {print "\n"};

$previine = $_;
}

sub detect_hardboot {
if a "Wndows NT is starting up" System Event
s not preceded by "SeShutdownPrivilege" Privilege Use Event
then a hard reboot occurred
Possi bl e attacks: DoSNuke, W nNuke, AnyPW NTFSDOS
print "Looking for Hard Reboots...\n";
$privilege = 0; # flag indicating SeShutdownPrivel ege Event
whi | e (<EVENTLOG>) {
if ($_ =~ "SeShutdownPrivilege") {
$privilege = 1;}
if ($_ =~ "Wndows NT is starting up.") {
if ($privilege == 1) {
print "Detected soft reboot.\n";}
el se {
skip down to get date and tine
while (!($_ =~ "HUME")) {
$_ = <EVENTLOG>;}
@ields split /7,71, $_;
$date = $fields[0];
$time $fields[1];
print "Detected hard reboot!!:\n";
print "on $date at $tine. (Possible attacks: DoSNuke, AnyPW NTFSDCS)\n";}

$privilege = 0; # Reset variable because there nay be nore reboots

}

sub detect_netbus {
the execution of a file called explore. exe
is an indicator of the NetBus attack
Note: If Netbus uses a different file nane it will not be detected by this program
print "Looking for NetBus Attacks...\n";
whil e (<EVENTLOG>) {
if ($_ =~ "explore.exe") {
print "Discovered execution of explore.exe (conmon nane for NetBus)\n";
skip down to get date and tine
while (!($_ =~ "HUME")) {
$ = <EVENTLOG>;}
@ields = split /,/, $_;
$date = $fields[O0];
$tine = $fields[1];
print "NetBus attack detected!!:\n";
print "on $date at $tinme.\n";}

}

sub detect_netcat {

A good signature for netcat is: REGEDI T. EXE executes,

and | ater winlog.exe executes (comon name for netcat trojan)

Note: A netcat attack which uses a nanme other than winlog.exe will not be detected
print "Looking for NetCat Attacks...\n";
$reg = 0; # flag will be set to 1 if REGEDIT.EXE is run
whi | e (<EVENTLOG>)

if ($_ =~ "REGEDI T. EXE")
print "Discovered REGEDI T. EXE\ n";
$reg = 1;

}

if (($_ =~ "winlog.exe") && ($reg == 1)) {
skip down to get date and tinme
while (! ($_ =~ "HUME")) {

$_ = <EVENTLOG; }
@ields = split /,/, $_;
$date = $fields[0];
$time = $fields[1];
print "Detected Netcat Attack!!:\n";
print "on $date at $tine.\n";
$reg = 0; # Reset variable because there nmay be nore netcat attacks

}

sub detect_ntis {
Successful Logon |USR via Advapi + newdsn.exe executed by SYSTEM => web scan
Successful Logon via KSecDD + multiple SAM USER accessed by SYSTEM => net bi os scan
print "Looking for NTIS attacks...\n";
$wl ogon 0; # web scan login
$nl ogon 0; # netbios scan login
$i user = 0; # 1USR | ogin
$readusr = 0; # numtines user database was read (at l|east 50 for netbios scan)
whil e (<EVENTLOG>) {
if ($_ =~ "Successful Logon") {

(
$iuser = 1;}
for ($x = 0; $x < 4; $x++) {
skip 4 lines to get Logon Process
$_ = <EVENTLOG>; }
if ($_ =~ "KSecDD") {
print "Detected | ogon via KSecDD.\n";
$nl ogon = 1;}
if (($_ =~ "Advapi") && (Siuser == 1)) {
print "Detected I USR | ogon using Advapi.\n";
$i user = 0;

$wW ogon = 1;}}

if (($_ =~ "newdsn.exe") && ($W ogon == 1)) {
skip down to get date and tinme
while (!($_ =~ "HUME")) {

$_ = <EVENTLOG>;}

@ields = split /,/, $_;

$date = $fields[0];

$time = $fields[1];

print "Detected NTIS Web Scan!!!:\n";
print "on $date at $time.\n";

reset variables and | ook for nore scans
$wl ogon = 0;

}
if (($_ =~ "SAM USER') && ($nlogon == 1)) {
for ($x = 0; $x < 5; $x++) {
skip 5 lines to | ook for the User
$_ = <EVENTLOG>;}
if (($_ =~ "Primary\ User\ Nane\:") && ($_ =~ "SYSTEM')) {
$readusr += 1;}
if ($readusr == 50) {
skip down to get date and tine

while (I ($_ =~ "HUME")) {
$_ = <EVENTLOG>; }
@ields =split /,/, $_;
$date = $fields[0];
$time = $fields[1];
print "Detected NTIS NetBios Scan!!!:\n";

print "on $date at $time.\n";

reset variables and | ook for nore scans
$nl ogon = 0;

$readusr = 0;}

}

sub detect_sechol e {
A good signature for the SecHole Attack is:
a user added to Adm n group by SYSTEM
Note: Could also indicate a different attack (e.g. casesen, yaga)
print "Looking for SecHole attacks...\n";
whi | e (<EVENTLOG>) {
if ($_ =~ "Group\ Menber\ Added") {
print "Discovered Group Menber Added";
get date and tinme
@ields = split /,/, $_;
$date = $fields[0];
$time = $fields[1];
for ($x = 0; $x < 5; $x++) {
skip 5 lines to | ook for the User
$_ = <EVENTLOG>; }
if (($_ =~ "Caller\ User\ Nanme\:") && ($_ =~ "SYSTEM')) {
print ": by SYSTEM n";
Possible Sechol e has been detected!!!
print "Possible Sechole Detected at $date $tinme\n";}
el se {print "\'n";}

}

sub detect_yaga {

A good signature for the Yaga Attack is:

1) CAT. EXE runs (not necessary)

2) REGEDI T. EXE run by a user other than Adm nistrator

net.exe command run by SYSTEM (not a user)

4) Group Menber Added by SYSTEM (not Adm nistrator)
(this last one happens with CaseSen and SecHole as well)

$cat = 0; # flag set to one if CAT.EXE runs

$reg = 0; # flag set to one if RECEDIT.EXE runs

$net = 0; # flag set to one if net.exe runs

print "Looking for Yaga Attacks...\n";

whi | e (<EVENTLOG>) {

HHHFEHH
w
=

97

if ($_ =~ "CAT\.EXE") {
print "Discovered CAT. EXE\n";
$cat = 1;}
if (($_ =~ "REGEDIT\.EXE") && ($reg !'= 1)) {
print "Discovered REGEDI T. EXE";
for ($x = 0; $x < 2; $x++) {
skip 2 lines to |l ook for the User
$_ = <EVENTLOG>;}

if (($_ =~ "User\ Nanme\:") && !($_ =~ "Administrator")) {
$reg = 1;
print ": not run by Adm nistrator"; }
print "\n";
next;}
if (($_ =~ "net\.exe") && ($reg == 1)) {

print "Discovered net.exe";

for ($x = 0; $x < 2; $x++) {
skip 2 lines to |l ook for the User
$ = <EVENTLOG>;}

if (($_ =~ "User\ Nane\:") && ($_ =~ "SYSTEM')) {
$net = 1;
print ": run by SYSTEM';}
print "\n";
next ;}
if (($_ =~ "Group\ Menber\ Added") && ($net == 1)) {

print "Discovered Group Member Added"
get date and tinme
@ields = split /,/, $_;
$date = $fields[0];
$tine = $fields[1];
for ($x = 0; $x < 5; $x++) {
skip 5 lines to | ook for the User
$_ = <EVENTLOG>; }
if (($_ =~ "Caller\ User\ Name\:") && ($_ =~ "SYSTEM')) {
print ": by SYSTEM n";
Yaga has been detected!!!
print "Yaga Attack Detected at $date $tine\n"
Reset cause there may be nore yagas

$cat = 0;
$reg = 0;
$net = 0;

el se {print "\n";}
next;}

}

if ($#ARGV != 1) {
requires exactly 2 args
usage; }
el se {

open security event log textfile

open(EVENTLOG, "<$ARGV[0] ") ||
di e "Cannot open Event Log File $!";

$attack = $ARGV[1];

if ($attack eq "casesen") {
det ect _casesen;}

elsif ($attack eq "crashiis") {
detect _crashiis;}

elsif ($attack eq "hardboot") {
det ect _hardboot;}

elsif ($attack eq "netbus") {
det ect _net bus;}

elsif ($attack eq "netcat") {
det ect _netcat;}

elsif ($attack eq "ntis") {
detect _ntis;}

elsif ($attack eq "sechole") {
det ect _sechol e; }

elsif ($attack eq "yaga") {
detect _yaga; }

elsif ($attack eq "all") {

det ect _casesen;
detect _crashiis;
det ect _hardboot;
det ect _net bus;
det ect _netcat;
detect _ntis;
det ect _sechol e;
detect _yaga;}

el se {usage;}}

exit;

Refer ences

[1] Ataman Software web site, http://www.ataman.com/.
[2] Boutell.com web site, http://www.boutell.com/wusage/.

[3] Bugtrag Archives (e-mail regarding Apache vulnerability). http://www.geek-
girl.com/bugtrag/1998 3/0442.html/. August 7, 1998.

[4] “ Case Sensitivity Vulnerabiliy,” NT Security News,
http://www.ntsecurity.net/scripts/| oader.asp? D=/security/casesensitive.htm.

[5] Computer Emergency Response Team Website. http://www.cert.org/.

[6] Kumar Das, “ Attack Development for Intrusion Detection Evaluation,” M.Eng. Thesis, MIT
Department of Electrical Engineering and Computer Science, June 2000.

[7] A. K. Ghosh, A. Schwatzbard and M. Shatz, “Learning Program Behavior Profilesfor Intrusion
Detection,” in Proceedings 1st USENIX Workshop on Intrusion Detection and Network Monitoring,
Santa Clara, California, April 1999, http://www.rstcorp.com/~anup/..

[8] Insecure.org. http://www.insecure.org/.
[9] Internet Security Systems X-Force. http://www.iss.net/.

[10] KrisKendall, “ A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems,”
M.Eng. Thesis, MIT Department of Electrical Engineering and Computer Science, June 1999.

[11] Lincoln Laboratory 1D Evaluation Website, MIT, http://www.ll.mit.edu/I ST/ideval/index.html/, 2000,
contains information on the 1998 and 1999 evaluations. Follow instructions on thisweb site or send
email to the authors (rpl or jwh@sst.Il.mit.edu) to obtain access to a password protected site with
complete up-to-date information on these evaluations and results.

[12] Lawrence Berkeley National Laboratory, Network Research Group Homepage.
http://www.nrg.ee.lbl.gov/. May 1999.

[13] Richard P. Lippmann, David J. Fried, Isaac Graf, JoshuaW. Haines, Kristopher R. Kendall, David
McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod, Robert K. Cunningham, and Marc A.
Zissman, “Evaluating Intrusion Detection Systems: the 1998 DARPA Off-Line Intrusion Detection
Evaluation,” in Proceedings of the 2000 DARPA Information Survivability Conference and Exposition
(DISCEX), Val. 2 (2000).

[14] Richard P. Lippmann, JoshuaW. Haines, David J. Fried, Jonathan Korba, Kumar Das, “ The 1999
DARPA Off-Line Intrusion Detection Evaluation,” submitted to Proceedings of the 3rd International
Workshop on Recent Advancesin Intrusion Detection (RAID 2000).

[15] “Microsoft Exchange Server Site,” Microsoft BackOffice, http://www.microsoft.com/exchange/.

[16] Microsoft Windows NT Server Resource Kit, Version 4.0, Microsoft Press, One Microsoft Way,
Redmond, Washington, 98052, October 1996.

[17] James D. Murray. Windows NT Event Logging. O’ Reilly & Associates, Inc., 101 M orris Street,
Sebastopol CA, 95472, September 1998.

100

[18] NetBusweb site, http://www.netbus.com.

[19] Net Security web site, http://www.net-security.sk/bugs/NT/oob.html.

[20] P. Neumann and P. Porras, “Experience with EMERALD to DATE”, in Proceedings 1st USENIX
Workshop on Intrusion Detection and Network Monitoring, Santa Clara, California, April 1999, pp. 73-
80, http://www.sdl.sri.com/emeral d/index.html/.

[21] Next Step Software web site, http://nssoft.hypermart.net/.

[22] NT Security News, http://www.ntsecurity.net/.

[23] “NT 4.0 Resource Kit Utilities Corrections and Comments,” Microsoft Product Support Services,
http://support.microsoft.com/support/kb/arti cles/Q159/5/64.asp.

[24] NTBugTrag web site, http://www.ntbugtrag.com/.

[25] NTInfoScan Home Page, http://www.infowar.co.uk/mnemonix/ntinfoscan.htm/.

[26] Vern Paxson, “Empiricaly-Derived Analytic Models of Wide-Area TCP Connections’, IEEE/ACM
Transactions on Networking, Vol. 2, No. 4, August, 1994, ftp://ftp.ee.Ibl.gov/papers/WAN-TCP-
models.ps.Z..

[27] Nicholas Puketza, Mandy Chung, Ronald Olsson, and Biswanath Mukherjee. “A Software Platform
for Testing Intrusion Detection Systems,” |EEE Software, September/October, 1997.

[28] Nicholas Puketza, Kui Zhang, Mandy Chung, Biswanath Mukherjee, Ronald Olsson. “A
Methodology for Testing Intrusion Detection Systems.” Technical report, University of California,
Davis, Department of Computer Science, Davis, CA 95616, September 1995.

[29] Rootshell Website. http://www.rootshell.com/, 1999.

[30] Ko, C., M. Ruschitzka, and K. Levitt. “ Execution Monitoring of Security-Critical Programsin a
Distributed System: A Specifications-Based Approach,” In Proceedings 1997 |EEE Symposium on
Security and Privacy, pp. 134-144, Oakland, CA: |[EEE Computer Society Press.

[31] Sambaweb site, http://www.samba.org/.

[32] “ Sechole Lets Non-administrative Users Gain Debug Level Accessto a System Process,” Microsoft

Product Support Services, http://support.microsoft.com/support/kb/arti cles/Q190/2/88.ASP?LN=EN -
US& SD=gn&FR=0/.

[33] “Security Hole #1,” Cybermedia Software Private Limited,
http://www.cybermedia.co.in/cspl21/nt_security/Sechole.htm.

[34] Tom Sheldon. Windows NT Security Handbook. Osborne McGraw-Hill, 2600 Tenth Street, Berkeley
CA, 94710, 1997.

[35] Sun Microsystems, Solaris Security Website. http://www.sun.com/solaris/2.6/ds-security.html. May
1999.

[36] Sysinternals web site, http://www.sysinternal s.com/.

[37] Tripwire web site, http://www.tripwire.cony.

101

[38] G. Vignaand R. Kemmerer, "NetSTAT: A network-based intrusion detection approach”, in
Proceedings of the 14th Annual Computer Security Applications Conference, Scottsdale, Arizona,
December 1998, http://www.cs.ucsh.edu/~kemm/netstat.html/.

[39] Daniel Weber, “A Taxonomy of Computer Intrusions,” M .Eng Thesis, MIT Department of Electrical
Engineering and Computer Science, June 1998.

[40] Seth Webster. “The Development and Analysis of Intrusion Detection Algorithms.,” Master’s Thesis,
Massachusetts I nstitute of Technology, Cambridge, MA, 02139, 1998.

[41] “Whitehats Max Vision Network Security and Penetration Testing,” http://www.whitehats.com/.
[42] “Windows spoofing security bug,” http://www.whitehats.com/browsers/b14/b14.html.

[43] Winzip web site, http://www.winzip.com/.

102

