
Windows NT Attacks for the Evaluation of Intrusion Detection
Systems*

by

Jonathan Korba

Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000

 Jonathan Korba, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part, and to grant others the

right to do so.

Author.……………………………………………………………………………………...
Department of Electrical Engineering and Computer Science,

May 22, 2000

Certified by…………………………………………………………………………………
Richard Lippmann

Senior Scientist, MIT Lincoln Laboratory
Thesis Supervisor

Accepted by………………………………………………………………………………...
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

*This work was sponsored by the Department of Defense Advanced Research Projects Agency
under Air Force Contract F19628-95-C-002. Opinions, interpretations, conclusions, and
recommendations are those of the author and are not necessarily endorsed by the United States
Air Force.

2

Windows NT Attacks for the Evaluation of Intrusion Detection
Systems

by
Jonathan Korba

Submitted to the Department of Electrical Engineering and Computer Science

May 22, 2000

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

Abstract

The 1999 DARPA Off-Line Intrusion Detection Evaluation provided a standard corpus
for evaluating intrusion detection systems. It improved on the 1998 evaluation by
providing training data containing no attacks to train anomaly detection systems, scoring
systems on attack identification in addition to attack detection, simplifying scoring and
verification procedures, providing a written security policy, and performing more detailed
analysis of missed detections and false alarms. It also introduced more stealthy attacks,
insider attacks, and attacks against the Windows NT operating system.

The focus of this thesis is the integration of Windows NT systems, background traffic,
and attacks into the 1999 evaluation. Three Windows NT systems were added to the
original test bed network: a victim machine, an outside attacker machine, and an insider
attacker machine. The victim machine is a server with 92 user accounts, telnet, FTP,
email, and web services, and security auditing. UNIX scripts from the 1998 evaluation
were modified to create Windows NT background traffic. In addition, web traffic
originating from the server was automated by developing a Javascript program called
AutoBrowser.

A realistic and relatively comprehensive set of 12 Windows NT attacks was developed
for the 1999 evaluation. The set includes denial-of-service attacks, remote-to-local
attacks, user-to-root attacks, probe attacks, insider attacks, console-based attacks, a man-
in-the-middle attack, and an attack using macro code in a Microsoft application.
Signatures in network traffic and Windows NT host data were analyzed for each attack.
A PERL program called NTAD (ntaudit-detect.pl) was developed to evaluate the
detectability of the Windows NT attacks in audit log data. NTAD successfully used the
attack signatures to detect attack instances in Windows NT audit logs collected during the
evaluation.

Thesis Supervisor: Richard Lippmann
Title: Senior Scientist, MIT Lincoln Laboratory

3

Acknowledgments

I would like to thank my thesis advisor, Richard Lippmann, for supporting my thesis

efforts and sharing his knowledge. I would like to thank David Fried and Raj Basu for

taking the time to revise and edit my thesis. I would also like to thank Rich, Dave, Raj,

Robert Cunningham, Joshua Haines, Kristopher Kendall, Seth Webster, Jesse Rabek,

Kumar Das, and the rest of the intrusion detection group for always being friendly, fun,

and helpful. Finally, I thank my parents, whose constant love and support give me

confidence in all aspects of life.

4

Contents

Chapter 1 Introduction 8

1.1 DARPA Intrusion Detection System Eva luations ... 8

1.2 The 1998 Evaluation.. 9

1.3 Windows NT Attacks for the 1999 DARPA Evaluation..................................... 11

1.4 Outline of the Thesis ... 11

Chapter 2 Background 13

2.1 The 1998 Evaluation Test Bed Network ... 13

2.2 Traffic Generation... 15

2.3 Input Data for Intrusion Detection Systems .. 15

Chapter 3 Windows NT in the 1999 Test Bed Network 17
3.1 Machines.. 17

3.2 Configurations and Software ... 18

3.2.1 Services and Applications ... 18

3.2.2 User and Group Accounts... 20

3.2.3 Security Auditing .. 22

3.3 Background Traffic ... 24

3.3.1 General Background Traffic ... 24

3.3.2 AutoBrowser Web Traffic .. 25

3.4 Windows NT Input Data for Intrusion Detection Systems 28

3.4.1 Long Listings of Directory Trees.. 28

3.4.2 Logfiles Directory Dump.. 29

3.4.3 Config Directory Dump .. 30

Chapter 4 DevelopingWindows NT Attacks 31

4.1 Attack Research and Development ... 31

4.2 Determining Attack Signatures ... 32

4.3 Extended Auditing... 34

Chapter 5 Assembing a Windows NT Attack Set 36

5

5.1 Overview of an Attack Taxonomy .. 36

5.2 Windows NT Attack Set.. 39

Chapter 6 Denial-of-Service Attacks 40
6.1 CrashIIS R-b-Deny(Administrative) ... 40

6.2 DoSNuke R-b-Deny(Administrative).. 44

Chapter 7 Remote-to-User Attacks 47

7.1 Framespoofer R-m-Alter(Data) ... 47

7.2 Netbus R-s-U... 51

7.3 Netcat R-s-U.. 56

7.4 PPMacro R-s-U ... 60

Chapter 8 User-to-Root Attacks 63

8.1 AnyPW U-b-S ... 63

8.2 CaseSen U-b-S... 66

8.3 NTFSDOS U-b-S... 70

8.4 SecHole U-b-S... 72

8.5 Yaga U-b-S.. 75

Chapter 9 Probes 79
9.1 NTInfoScan R-a-Probe(Services/Known Vulnerabilities).................................. 79

Chapter 10 Detectability of Attacks 83

10.1 Motivation and Goal.. 83

10.2 Testing Audit Log Signatures.. 84

Chapter 11 Results and Future Work 88
11.1 Windows NT Results of the 1999 Evaluation ... 88

11.2 Windows NT Suggestions for Future Evaluations .. 91

11.2.1 Hardware and Software... 91

11.2.2 Distributed Host Data.. 92

11.2.3 Traffic Automation ... 92

11.2.4 The Attack Set... 93

Appendix A Source Code for NTAD (ntaudit-detect.pl) 94

References 99

6

List of Figures

2-1 Conceptual View of the Original 1998 Evaluation Test Bed13

2-2 Detailed Diagram of the 1998 Evaluation Test Bed Network Topology14

3-1 Detailed Diagram of the 1999 Evaluation Test Bed Network Topology with
Underlined Text Indicating Machines that did not Exist in the 1998
Evaluation..

17

3-2 IIS Settings for the Windows NT Victim Server...19

3-3 User Groups for the Windows NT Victim Server...21

3-4 System Auditing Settings in the Windows NT User Manager23

3-5 Graph of AutoBrowser Activity in One Day of the 1999 Evaluation.....................27

3-6 AutoBrowser Activity Recorded in a Text Box..28

3-7 Portion of a Long Directory Listing of a Windows NT Disk29

3-8 Sample Log File Produced by Windows NT Web Server Accesses.......................30

5-1 Summary of Possible Types of Actions ..38

5-2 Windows NT Attacks Developed for the 1999 DARPA Intrusion Detection
Evaluation..

39

6-1 CrashIIS Malformed ‘GET’ Request Revealed in Session Transcript42

6-2 Dr. Watson Program Launches when IIS Crashes ..43

6-3 A Portion of the Information in the Dr. Watson Log File after IIS Crashes43

6-4 A DoSNuke Signature in Network Traffic ..45

7-1 Javascript Email for the Framespoofer Attack ..49

7-2 The NetBus Client GUI ...52

7-3 Strings Revealed in Network Traffic After a NetBus Attack54

7-4 Audit Records Show Registry Key Write Access by the Netbus Process...............55

7-5 NetCat Transcript Differs from Normal Telnet Session..58

7-6 Audit Record Shows Modification of the “Run” Registry Key..............................59

7-7 Audit Records Show Secret File Access by the PowerPoint Program....................62

8-1 A User is Added to the Administrators Group by SYSTEM in a Casesen
Attack ..

69

8-2 The Yaga Attack Creates a Text File Containing Registry Information.................77

7

8-3 Net.exe Program Launches when IIS Crashes in a Yaga Attack77

8-4 Audit Record Shows Modification of the “AeDebug” Registry Key......................78

9-1 Transcripts of FTP and HTTP Connections from an NTInfoScan Attack81

9-2 One Access of the Security Account Manager by an NTInfoScan Attack..............82

9-3 IIS Log Entries Recorded During a NTInfoScan Attack...83

10-1 Function in NTAD Detects CrashIIS Attacks in an Audit Log.85

10-2 Detection Results of the ntaudit-detect.pl Script (NTAD) for the New 1999
Windows NT Attacks. ...

87

11-1 Detections Results for Probe and Denial-of-Service Attacks with a Maximum
of 10 False Alarms per Day...

90

8

Chapter 1

Introduction

1.1 DARPA Intrusion Detection System Evaluations

Widespread use of networked computers has made computer security a serious issue.

Every networked computer, to varying degrees, is vulnerable to malicious computer

attacks that can result in a range of security violations, such as, unauthorized user access

to a system or the disruption of system services. Traditionally, computer security

approaches have focused on preventing such attacks from occurring through the use of

firewalls and security policies. However, for most systems, complete attack prevention is

not realistically attainable due to system complexity, configuration and administration

errors, and abuse by authorized users. For this reason, attack detection has been an

important aspect of recent computer security efforts [27].

Systems designed to detect computer attacks are called intrusion detection

systems. They monitor computers and networks for attacks that are inevitable, despite

security precautions. If an attack is discovered, intrusion detection systems can alert an

administrator, defend against the attack, or provide forensic information that may help

prevent future attacks. Intrusion detection systems are not all equal in capabilities or

reliability. A particular system may only detect a specific subset of possible attacks. In

9

addition, it may have a different level of detection accuracy or a different false alarm rate

than other systems. Results from intrusion detection system evaluations allow users to

make informed decisions on what system to use, and are extremely important for guiding

research. The importance of evaluating intrusion detection systems has prompted the

development of the DARPA Off-Line Intrusion Detection Evaluations. A primary goal

of these evaluations is to generate standard evaluation corpora that can be used off-line

by many sites to evaluate a wide variety of intrusion detection systems.

1.2 The 1998 Evaluation

The 1998 DARPA off-line intrusion detection evaluation was the first annual evaluation

under DARPA ITO and Air Force Research Laboratory sponsorships. It produced the

first standard corpus for evaluating computer intrusion detection systems. Six different

intrusion detection systems were evaluated. Seven weeks of training data with labeled

attacks were produced for system development, followed by two weeks of test data with

unlabeled attacks used for a blind evaluation.

A test bed of computers used to produce the data emulated 100’s of users

interacting on 1000’s of hosts. Along with realistic background traffic, there were over

300 instances of 38 different attacks against three UNIX victim machines (SunOS,

Solaris, and Linux operating systems). The test data included novel attacks created

specifically for the evaluation, recent new attacks, and attacks in the training data.

Details of the 1998 evaluation can be found in [10], [11], and [13].

The results of the evaluation were analyzed by plotting attack detection rates

versus false alarm rates using receiver operating characteristic curves (ROCs). Many

10

intrusion detection systems were able to detect the attacks used in the training data

attacks with high accuracy (63% to 93%) and few false alarms (10 per day). However,

systems did not perform well with new and novel attacks. The top three systems missed

all of the novel attacks and approximately half of the new attacks. An analysis of the

results revealed that participating systems could reliably detect known attacks if the

systems were tuned using those attacks from the training data. However, many systems

did not reliably detect dangerous new attacks, especially when the attack mechanism or

TCP/IP service differed from attacks used for system training [13].

The 1998 evaluation was successful in providing an unbiased, realistic, and

comprehensive evaluation of a diverse set of intrusion detection systems. More than 80

sites have downloaded all or part of the 1998 corpus from the MIT Lincoln Laboratory

web site [11]. This indicates the extensive interest in obtaining training and test corpora

for the development and evaluation of intrusion detection systems. Those who

participated in the 1998 evaluation made several suggestions for improvements. These

suggestions included, providing training data containing no attacks to train anomaly

detection systems, scoring systems on attack identification in addition to attack detection,

simplifying scoring and verification procedures, providing a written security policy, and

performing more detailed analysis of attack misses and false alarms. Almost all of the

suggestions were incorporated in the 1999 evaluation. In addition, the 1999 attack set

was extended to include more stealthy attacks [6], insider attacks, and attacks against the

Windows NT operating system. The 1998 data set only contained attacks against Sun,

Solaris, and Linux operating systems from attack machines outside of the victim network.

11

1.3 Windows NT Attacks for the 1999 DARPA Evaluation

This thesis describes the development and analysis of attacks against the Windows NT

operating system for the 1999 DARPA evaluation. It is important that intrusion detection

systems are capable of detecting attacks against the Windows NT operating system

because of its growing importance in government and commercial environments. For

this reason, it was decided that the 1999 evaluation should test intrusion detection

systems with both UNIX and Windows NT attacks. This decision required several

modifications to the 1998 test bed, including the addition of Windows NT computers,

background traffic representing a Windows NT environment, and most importantly,

attacks against the Windows NT operating system.

1.4 Outline of the Thesis

This thesis is organized as follows. Chapter 2 provides background information about the

1998 evaluation test bed network, traffic generation, and input data for intrusion detection

systems. Chapter 3 details how the test bed was modified to integrate Windows NT

machines, how the machines were configured, and the type of Windows NT traffic

generated in the test bed.

 Chapter 4 describes how Windows NT attacks were developed and analyzed for

the 1999 evaluation. Chapter 5 defines the final set of Windows NT attacks. It also gives

an overview of an attack taxonomy that guided the selection of the attacks. Chapters 6

through 9 classify and document each Windows NT attack used in the 1999 evaluation.

For each attack, there is a description, along with directions for execution, verification,

12

and cleanup in the test bed network. There is also a description of how each attack may

be detected in network traffic and audit logs.

Chapter 10 discusses post-evaluation work performed with Windows NT audit

logs. Audit logs from the evaluation were analyzed to test the host-based detectability of

Windows NT attacks, and test the validity of predicted audit log attack signatures. The

goal of the analysis was to make it easier for developers to extend existing systems to

detect Windows NT attacks.

Finally, Chapter 11 summarizes the results of 1999 DARPA Intrusion Detection

Evaluation with regards to the Windows NT attack set. Suggestions are presented for

future work in upcoming evaluations.

13

Chapter 2

Background

2.1 The 1998 Evaluation Test Bed Network

A conceptual view of the original test bed network used in the 1998 DARPA Intrusion

Detection Evaluation is shown in Figure 2-1. This test bed generates traffic similar to

that seen between a small Air Force Base network and the Internet. Custom software

emulates 100’s of users using UNIX applications and common network services. The

network traffic produced by these users includes sending and receiving email, using FTP

to send and receive files, accessing other computers via telnet sessions, sending and

Outs ide
I n t e r n e t

A i r F o r c e B a s e

•h t tp

•s m t p
•p o p 3
•ftp

•i rc
•t e l n e t

•X

•S Q L / t e l n e t
•d n s

•f i n g e r
•s n m p
•t i m e

S e r v i c e s / P r o t o c o l s

Ins ide

R o u t e r

1 0 0 0 ’ s U N I X H o s t s

S n i f f e r

•S e c r e t a r i e s
•P r o g r a m m e r s

•W o r k e r s
•M a n a g e r s
•S y s t e m A d m i n i s t r a t o r s

•A t t a c k e r s

1 0 0 ’ s U s e r A u t o m a t a

Figure 2-1: Conceptual View of the Original 1998 Evaluation Test Bed

14

receiving IRC messages, and browsing web pages. Custom software also makes it

possible for a small number of physical hosts to appear as if they are 1000’s of hosts with

different IP addresses. In this original 1998 test bed, all of the hosts are UNIX machines

and all attacks originate from outside of the Air Force Base. A sniffer positioned outside

of the base collects all network traffic originating from the Internet, including all of the

attacks.

Figure 2-2 shows a more detailed view of the test bed network. The Air Force

Base network contains four machines that are the victims of the attacks. The operating

systems of the machines are SunOS 4.1.4, Solaris 2.5.1, Linux 4.2 and Linux 5.0. The

Linux 5.0 victim has the ability to dynamically change IP addresses. The remaining

computer in the inside network is a traffic generator which emulates all other inside IP

addresses.

The outside network, representing the rest of the Internet, contains two Linux

machines for launching manual attacks that cannot be easily automated. The remaining

three machines are a traffic generator, a sniffer, and a web server. The traffic generator

emulates hundreds of outside workstations. It generates background traffic originating

INSIDE OUTSIDE CISCO

SOLARIS SUNOS

VICTIMS

INSIDE
TRAFFIC
GENERATOR

LINUX VICTIM
WITH
DYNAMIC IP

OUTSIDE
TRAFFIC
GENERATOR

ATTACKERS

LINUX SCAN
GENERATOR LINUX ATTACK

GENERATOR

HUB HUB

HUB

HUB ALL EXTERNAL
WEB SITES

CISCO

HUB

CISCO ROUTER

ETHERNET HUB

LINUX
SOLARIS
SNIFFER

Figure 2-2: Detailed Diagram of the 1998 Evaluation Test Bed Network Topology.

15

outside of the Air Force Base network and launches all automated attacks. The sniffer

records all network traffic destined for the Air Force Base, including all of the attacks.

The external web server mimics thousands of Internet web sites. The inside and outside

traffic generators and the outside web server are equipped with modified operating

systems which allow them to emulate “virtual” machines with different IP addresses [10].

2.2 Traffic Generation

Custom software automates most of the background traffic and attack traffic in the test

bed. The software was designed to provide automatic, reproducible, and robust traffic

generation. To achieve these design goals, the Expect scripting language was chosen, as

suggested in [28]. It allows the creation of sessions that emulate users typing at computer

keyboards.

The Expect traffic generator automatically launches specially formatted “exs”

scripts for each attack instance [10]. If an error occurs when generating or collecting the

traffic, the same “exs” scripts can be easily rerun. The “exs” scripts are also used to

automate most of the background traffic and attack traffic for the test bed. Sessions that

cannot be automated using “exs” scripts are manually executed. Examples of such

manual traffic include traffic created by GUI interaction, such as X Windows.

2.3 Input Data for Intrusion Detection Systems

There are many sources of information that an intrusion detection system can utilize for

attack detection. Some systems, called network-based intrusion detection systems, rely

on information collected by sniffing network traffic. Other systems, called host-based

16

intrusion detection systems, use data gathered from and specific to an individual host

computer. There are some systems that utilize both sources of information.

The 1998 DARPA evaluation collected the information necessary to satisfy the

inputs for all of the participating intrusion detection systems. A program called tcpdump

[12], running on the Solaris sniffer, recorded the network traffic in the test bed. In

addition, the participants were provided with various types of host data. Sun Basic

Security Module (BSM) audit data was collected from the Solaris victim machine and

nightly file dumps were provided from all three UNIX victim machines. After all of the

data was collected from the test bed for the 1998 evaluation, it was written to CD-ROMs

and posted on a web site for the participants to download [11].

17

Chapter 3

Windows NT in the 1999 Test Bed Network

Many steps were necessary to integrate Windows NT into the 1999 evaluation. Machines

were connected to the inside and outside networks and configured for the test bed,

Windows NT services and applications were installed, and host security auditing was

configured. Figure 3-1 shows the updated 1999 test bed network. Machines that were

not present in the 1998 test bed are labeled with underlined text. New machines

unrelated to Windows NT include a Linux machine for insider attack generation and an

insider sniffer to collect traffic generated by insider attacks.

3.1 Machines

Three Windows NT machines were added to the test bed. One Windows NT victim

machine is in the inside network. In addition, there are two Windows NT attack

INSIDE OUTSIDE

SOLARIS
SNIFFER

CISCO

SOLARIS LINUX SUNOS
VICTIMS

OUTSIDE
TRAFFIC
GENERATOR

OUTSIDE
ATTACKERS

LINUX SCAN
GENERATOR LINUX ATTACK

GENERATOR

HUB HUB

ALL EXTERNAL
WEB SITES INSIDE

TRAFFIC
GENERATOR

HUB

LINUX
ATTACKER

WINDOWS NT
ATTACKER

INSIDE
ATTACKERS WINDOWS NT

HUB

WINDOWS NT
ATTACKER

INSIDE
SOLARIS
SNIFFER

Figure 3-1: Detailed Diagram of the 1999 Evaluation Test Bed Network Topology with Underlined
Text Indicating Machines that did not Exist in the 1998 Evaluation.

18

machines: an inside attacker and an outside attacker. All attacks, including Windows NT

attacks, originate from one of the dedicated Windows NT or Linux attack machines. This

convention makes it possible to separately sniff and collect network traffic specific to

each attack. The collected network attack sniffer data can be used to verify the success of

attacks and for analysis of attack signatures.

3.2 Configurations and Software

Windows NT Domain Server 4.0 (Build 1381) is installed on the Windows NT victim

machine. It is the primary domain server (PDS) for the Eyrie Air Force Base Windows

NT network. The inside Windows NT attacker machine is setup with Windows NT

Workstation 4.0, as a workstation in the victim machine’s domain. The outside Windows

NT attacker is a stand-alone workstation also setup with Windows NT Workstation 4.0.

All of the Windows NT machines’ operating systems include installations of Service

Pack 1. No additional Service Packs were installed.

3.2.1 Services and Applications

Several services are installed on the Windows NT victim machine. Included in the

operating system is IIS (Internet Information Server) version 2.0, which provides FTP,

Gopher, and web services. Figure 3-2 presents the IIS settings for the 1999 evaluation.

The FTP and web services allow anonymous connections and all connections are logged.

To ensure that normal background traffic connections do not overload the services, the

maximum number of simultaneous connections for each service is set at a level high

enough to accommodate the number of connections generated in the background traffic.

19

The Resource Kit for Windows NT 4.0 is installed, separate from the operating

system. It includes various utilities and services, one of which is a mail server, called

MailSrv, used in the evaluation. The MailSrv program has a bug that can cause SMTP

connections to hang and eventually consume 100 percent of the available CPU cycles on

a Windows NT machine [23]. Unfortunately, the bug was not discovered in the

evaluation until several days of the evaluation had already been completed. The more

reliable Microsoft Exchange Mail Server could not be used because it requires Service

Pack 3. To remedy the situation for the 1999 evaluation, MailSrv was stopped and

restarted whenever the machine’s CPU utilization reached 100%. This happened about

once or twice a day.

In addition to MailSrv, the Resource Kit includes the following UNIX commands,

which are interpreted by the operating system, via the Windows NT POSIX subsystem:

The Resource Kit also provides a telnet service, telnetd.exe. However, the program is a

beta version [16]. When it was tested in the evaluation test bed, it was very unreliable

and crashed frequently. Therefore, a third party telnet service was chosen. To provide

FTP

Web

Gopher
Not used in
1999 evaluation

Port Number 21 80 N/A
Max Simultaneous
Connections

1,000 100,000 N/A

Root Directory C:\InetPub\ftproot C:\InetPub\wwwroot N/A
Anonymous
Access

Yes Yes N/A

Sessions Logged to C:\Winnt\System32\Logfiles\ C:\Winnt\System32\Logfiles\ N/A

Figure 3-2: IIS Settings for the Windows NT Victim Server.

• cat
• chmod
• chown
• cp

• mkdir
• mv
• rm
• rmdir

• find
• grep
• ln
• ls

• sh
• touch
• vi
• wc

20

reliable telnet capabilities, Ataman TCP Remote Logon Service (version 2.4) is installed

[1] on the Windows NT victim machine.

The common software applications, Netscape 4.0.8 and Microsoft Office 97, are

installed on all of the Windows NT machines in the evaluation. In addition, some

Windows NT attacks developed for the 1999 evaluation required additional common

software programs to be installed so that the attacks could be properly executed in the test

bed environment. Such software programs include a compression utility, WinZip 7.0

[43], and a utility to gather web server statistics, Wusage 6.0 [2].

3.2.2 User and Group Accounts

The Windows NT victim machine stores 92 user accounts in its user account database.

Of those 92, 89 accounts are normal users. Their accounts never expire and their

passwords never expire. Their privileges allow telnet access and FTP access to the

system, but do not allow local logins. Each user can remotely access the machine via

telnet any day of the week, at any time. The remaining three of the 92 user accounts are

the following, and exist by default:

• Administrator: This root account allows remote and local logins and full control

of system software.

• Guest: This default account, setup by the operating system, allows limited

anonymous access to system resources.

• IUSR_<machine name>: This default account, setup by IIS, provides web access

for anonymous Internet users.

Windows NT also supports group accounts. All members of a group account inherit the

privileges of the group. Figure 3-3 presents the user group accounts for the Windows NT

21

victim machine, a brief description of each group, and the users who are group members

[34].

Group Description Users
Account Operators Members can administer

domain user and group
accounts

Administrator

Administrators Members can fully
administer the
computer/domain

Administrator

Backup Operators Members can bypass file
security to back up files

Administrator

Domain Admins Designated administrators
of the domain

Administrator

Domain Guests Users granted guest access
to the domain

Administrator, Guest

Domain Users All domain users All users
EAFB_Users Ordinary users of the Air

Force Base network
All users except for Guest

Guests Users granted guest access
to the computer/domain

All users

Print Operators Designated administrators
of domain printers

Administrator

Secret Users granted access to Air
Force secret files in
d:\home\secret

Administrator and four
ordinary users chosen at
random

Replicator Supports file replication in a
domain

Administrator

Server Operators Designated administrators
of domain servers

Administrator

Users Ordinary users All users except for Guest

Figure 3-3: User Groups for the Windows NT Victim Server.

22

3.2.3 Security Auditing

The Windows NT event logging service maintains three event logs: a system log, an

application log, and a security log. The system log primarily records device failures and

I/O errors, and the starting and stopping of services. The application log records

application defined messages, such as failure to allocate memory or failure to access a

system object. The security log is the repository for all Windows NT security audit

information. Windows NT security auditing is built-in to the event logging service and

satisfies the requirements for the C2 security evaluation class [17]. These requirements

are:

• The system has the ability to record all security-related events that occur on the

system in the form of audit records.

• The system provides a way for the audit records to be reviewed by the system

administrators.

• The auditing software and logs must be protected by the operating system from

unauthorized access and modification, and access must be limited to authorized

system administrators.

• A mechanism must exist that allows the selection of security events to be audited.

• The system must be able to audit individual users.

The Windows NT User Manager audit policy window, shown in Figure 3-4, is used to

select which types of security events are audited. Full auditing for all user accounts is

enabled in the Windows NT victim machine’s User Manager for the 1999 evaluation. In

addition, auditing of base objects is enabled with the following value added to the

23

Registry key,

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\AuditBase-Objects:

Name: AuditBaseObjects

Type: REG_DWORD

Value: 1

Everything is viewed as an object by the Windows NT operating system (files, drives,

memory, etc.) By enabling base object auditing, low-level activities, such as memory

requests by a process, are recorded by the logging service. However, to audit access of

specific files, printer use, and Registry access, settings must be adjusted in the Windows

NT Explorer, Control Panels, and Registry Editor. These aspects of Windows NT

auditing were not selected for the 1999 evaluation.

Log settings are adjusted to allow very large log files, approximately 200

megabytes. This ensures that the log files do not fill up and begin to overwrite earlier log

Figure 3-4: System Auditing Policy in the Windows NT User Manager.

24

entries. In addition, it is specified that audit logs should not be automatically cleared.

Only the Administrator account has the ability to manually clear the audit logs.

It is important to note that Windows NT auditing is different and may not be as

powerful as the Basic Security Module (BSM) auditing used by the Solaris victim

machines in the 1998 and 1999 evaluations [35]. For example, BSM records all system

calls and their arguments; Windows NT auditing does not. Therefore, developers who

wish to extend their UNIX host-based intrusion detection systems to detect Windows NT

attacks may not be able to reuse their detection strategies. Attack detection that relies on

tracing system calls or analyzing their arguments cannot be implemented using Windows

NT auditing.

3.3 Background Traffic

3.3.1 General Background Traffic

Most of the Windows NT background traffic is created using the regenerator software

developed in the 1998 evaluation for UNIX machines [10]. “Exs” scripts are used to

automatically emulate telnet, FTP, and web, and email connections to the Windows NT

victim machine. These scripts are modified versions of the “exs” scripts used for UNIX

connections in the 1998 evaluation. The telnet scripts are modified to include a set of

Windows NT commands: dir, del, net, etc. In addition, the Windows NT POSIX

subsystem accepts and translates basic UNIX commands during telnet sessions (Section

3.2.1 lists these commands).

The mail scripts are modified to properly close mail connections to the Windows

NT Resource Kit MailSrv program. The reason for the modifications is a bug in the

MailSrv program [23]. MailSrv does not recognize the key combination, [CR].[CR]

25

(carriage return, period, carriage return), used by the original “exs” scripts to terminate a

SMTP connection. As a result, the connections remain open and eventually take up

100% of the CPU cycles of the Windows NT victim machine. Most of the new “exs”

scripts are modified so that they close SMTP connections with the key combination,

[CR][LF].[CR][LF] (carriage return, line feed, period, carriage return, line feed). These

modified scripts properly close SMTP connection to MailSrv. However, not all mail

scripts were properly modified, so once or twice a day during the 1999 evaluation,

MailSrv consumed 100% of the CPU cycles with hung SMTP connections, and needed to

be restarted.

No special modifications are necessary for the FTP and web scripts. Some

background traffic actions, such as creating Microsoft Office documents and opening

email attachments, are performed manually because they cannot be easily automated with

“exs” scripts.

3.3.2 AutoBrowser Web Traffic

Web browsing from the Windows NT victim machine is automated via a Javascript

program, called AutoBrowser, written for the 1999 evaluation. This script emulates

browsing activity by a human user. The AutoBrowser source code includes a list of 4140

web URLs extracted from the web server in the outside test bed network. The

AutoBrowser program is in the Startup Group of the Windows NT victim machine so that

it automatically executes at the beginning of each day of the evaluation, via the Netscape

web browser. The program emulates human-user web browsing by alternating periods of

idle time and browsing time. There is more idle time during the beginning and end of the

day and more browsing time during the middle of the day. During browsing periods, the

26

program randomly visits URLs in the list. The frequency at which pages are visited also

depends on the time of day. Pages are browsed with greater frequency during the middle

of the day than they are during the beginning and end of the day.

All time delays between user actions are determined by an exponential

distribution, computed in Javascript using the following function:

delay = -round(mean * ln(rand[0,1]))).

Studies have shown that this function roughly approximates the delay between TCP

connections initiated by a human-user [26]. When the function is used to calculate the

delay between page visits while browsing, the mean is set to 30 seconds. When the

function is used to calculate the lengths of idle times between browsing sessions, the

mean depends on the time of day. The mean is set to one hour for most of the day, except

for the middle of the afternoon (11AM – 1PM), when the mean is set to 30 minutes, and

after 4PM, when the mean is set to 2 hours. In addition, the maximum number of pages

visited during a browsing session varies throughout the day, as shown in the following

table:

Time of Day 8AM-
9AM

9AM-
11AM

11AM-
1PM

1PM-
3PM

3PM-
4PM

4PM-

Maximum # of
Pages Visited per
Browsing Session

8 15 30 15 8 3

The graph in Figure 3-5 plots the web connections initiated by the AutoBrowser

during week five, day one, of the 1999 evaluation. The x-axis (time of day) is divided

into five-minute blocks. The height of each bar in the y-axis represents the number of

web connections in each five-minute block. The graph clearly shows that the

27

AutoBrowser visits more pages during the middle of the day then during the beginning or

end of the day.

To monitor web connections from the Windows NT victim machine during the

evaluation, program activity is displayed in a browser window text box. The browser

window containing the text box is separate from the window loading the browsed pages.

Information in the text box includes durations of idle times and the URLs and access

times of web page visits. An example of AutoBrowser activity recorded in the text box is

shown in Figure 3-6.

Figure 3-5: Graph of AutoBrowser Activity in One Day of the 1999 Evaluation.

AutoBrowser Web Activity in One Day of the 1999 Evaluation

0

10

20

30

40

50

60

8:00 10:00 12:00 14:00 16:00 18:00

Time of Day

N
u

m
b

er
 o

f
W

eb
 C

o
n

n
ec

ti
o

n
s

p
er

 5

M
in

u
te

 B
lo

ck

28

3.4 Windows NT Input Data for Intrusion Detection Systems

The 1999 evaluation provided long listings of directory trees and full dumps of two

directories, C:\WINNT\system32\LogFiles and C:\WINNT\system32\config, from the

Windows NT victim machine. These files are posted at http://ideval.mit.edu/1999_index.html

[11] for download by participants of the evaluation. The following sections give more

details about the types of information contained in the data.

3.4.1 Long Listings of Directory Trees

Long listings of directory trees were collected at the end of each day of the evaluation.

They were created with the Resource Kit POSIX command, "C:\ntreskit\posix\find / -ls\",

Figure 3-6: AutoBrowser Activity Recorded in a Text Box.

29

which lists all files on the hard drive with the following information (in order from left to

right):

• File index number

• File size in 512-byte blocks

• Permissions

• Number of hard links

• Owner name

• Group name

• Size in bytes

• Modification timestamp

• Filename

Figure 3-7 shows a small portion of a directory listing.

3.4.2 Logfiles Directory Dump

All of the files located in C:\WINNT\system32\LogFiles were collected and distributed

for each day of the evaluation. This directory contains a log file for each day that records

all access to the IIS (i.e. web server and FTP connections). The filenames are in the

 5 17 drwx---rwx 1 Administ Administ 8192 Mar 4 04:32 /
105462 138121 -rwx---rwx 1 Administ Domain U 70717440 Mar 4 02:00 /www.tar
 17 53 drwxrwxrwx 1 Administ Administ 26624 Mar 3 06:10 /WINNT
 1079 2 -rwxrwxr-x 1 Administ NETWORK 707 Oct 13 1996 /WINNT/_DEFAULT.PIF
 1748 19 -rwxrwxr-x 1 Administ NETWORK 9522 Oct 14 1996 /WINNT/Zapotec.bmp
 1749 17 -rwxrwxrwx 1 Administ NETWORK 8312 Oct 14 1996 /WINNT/Zapotec 16.bmp
 2804 4 -rwxrwxrwx 1 Administ Domain U 1782 Mar 3 05:00 /WINNT/winzip32.ini
 3541 1 drwxrwxrwx 1 Administ Domain U 0 Feb 23 08:27 /WINNT/Winnt_mailspool
 1031 606 -rwx---r-x 1 Administ Administ 310032 Oct 13 1996 /WINNT/winhlp32.exe
 1083 501 -rwxrwxr-x 1 Administ NETWORK 256192 Oct 13 1996 /WINNT/WINHELP.EXE
 1082 1 -rwxrwxr-x 1 Administ NETWORK 3 Oct 13 1996 /WINNT/WINFILE.INI
 3591 1 -rwxrwxrwx 1 Administ Domain U 120 Feb 24 08:51 /WINNT/Winchat.ini
 1081 1 -rwxrwxrwx 1 Administ NETWORK 217 Mar 3 05:00 /WINNT/WIN.INI
 1032 44 -rwx---r-x 1 Administ Administ 22288 Oct 13 1996 /WINNT/welcome.exe

Figure 3-7: Portion of a Long Directory Listing of a Windows NT Disk.

30

format, inYYMMDD.log, based on the date when they were created. A sample log file

is shown in Figure 3-8. Each line in the file contains the following information from left

to right: client IP address, client username, date, time, service, host server name, server IP

address, elapsed time in seconds, bytes received, bytes sent, service status code,

Windows NT status code, name of operation, target of operation.

3.4.3 Config Directory Dump

All of the files located in C:\WINNT\system32\config were collected and distributed for

each day of the evaluation. This directory includes the file that stores the user database

(SAM – Security Accounts Manager), files containing Windows NT Registry data

(default, system, software, security), and the Windows NT event logs (AppEvent.Evt,

SecEvent.Evt, SysEvent.Evt). The SAM file and Registry files are collected by executing

the Resource Kit backup program, C:\ntreskit\regback.exe.

The SAM file contains an encrypted list of all user accounts and passwords. The

Registry data files can be viewed by executing the Windows NT Registry editor,

regedt32.exe, and opening the files with the “Load Hive” menu command. The Windows

NT event logs can be viewed by using the Windows NT Event Viewer.

172.16.112.105, -, 3/31/99, 9:06:50, W3SVC, HUME, 172.16.112.100, 214188, 278, 18652, 200, 0, GET, /html/index.html
172.16.112.105, -, 3/31/99, 9:07:29, W3SVC, HUME, 172.16.112.100, 16704, 325, 11853, 200, 0, GET, /icons/worldmap.jpg
172.16.112.105, -, 3/31/99, 9:07:29, W3SVC, HUME, 172.16.112.100, 16844, 280, 1276, 200, 0, GET, /html/welcome.html
172.16.112.105, -, 3/31/99, 9:07:44, W3SVC, HUME, 172.16.112.100, 11703, 324, 622, 200, 0, GET, /html/ban.html
172.16.112.105, -, 3/31/99, 9:07:46, W3SVC, HUME, 172.16.112.100, 1484, 332, 111, 404, 2, GET, /html/assignments.html
172.16.112.105, -, 3/31/99, 9:08:06, W3SVC, HUME, 172.16.112.100, 125, 328, 445, 200, 0, GET, /html/trouble.html
172.16.112.105, -, 3/31/99, 9:08:09, W3SVC, HUME, 172.16.112.100, 3140, 278, 18652, 200, 0, GET, /html/index.html
172.16.112.105, -, 3/31/99, 9:08:10, W3SVC, HUME, 172.16.112.100, 1016, 325, 636, 200, 0, GET, /html/code.html

Figure 3-8: Sample Log File Produced by Windows NT Web Server Accesses.

31

Chapter 4

Developing Windows NT Attacks

Several stages of work were involved for each Windows NT attack included in the 1999

evaluation. Each attack required development, analysis, and documentation. The process

sometimes required modifications to the test bed environment, such as adding new

software or creating new background traffic. The following list outlines the steps that

were taken in developing Windows NT attacks for the evaluation:

1) Research or invent the attack.

2) Modify the attack to work in the test bed.

3) Analyze attack signatures in Windows NT audit logs and in network data.

4) Attempt to make the attack stealthy.

5) If necessary, design background traffic to make attack traffic seem less anomalous.

6) Automate the execution of the attack or define a procedure for manual execution.

7) Define a procedure to verify attack success.

8) Define a procedure to cleanup after the attack.

9) Document the attack.

4.1 Attack Research and Development

Many of the Windows NT attacks were obtained from public sources on the Internet.

Web sites maintained by organizations, such as NTBugtraq [24], CERT [5],

NTSecurity.net [22], ISS [9], Rootshell [29], Whitehats.com [41], and Insecure.org [8],

post announcements concerning recent vulnerabilities and attacks against the Windows

32

NT operating system. They also archive information about older attacks. Sometimes,

they provide source code that exploits known vulnerabilities and also instructions on how

to execute attacks. However, even with instructions and source code, it frequently took a

significant amount of work to get an attack to function properly for the evaluation. In

addition, not all of the Windows NT attacks in the 1999 evaluation were derived from the

Internet sources. Some of the attacks were developed specifically for the evaluation in

order to test intrusion detection system performance with never-before-seen attacks.

After each attack for the evaluation was researched and downloaded from the

Internet, or invented based on known Windows NT vulnerabilities, it was deployed in the

test bed to ensure that it could successfully and reliably execute in the test bed

environment. Some attacks required new software to be installed in the test bed. For

example, the Netcat attack sent a WinZip self-extracting executable as an email

attachment to the victim. In order to make it possible for the victim to unzip the file,

WinZip 7.0 was installed on the Windows NT victim machine [43].

4.2 Determining Attack Signatures

Once the attack could successfully and reliably execute in the test bed environment, steps

were taken to make the attack less detectable. Network traffic and Windows NT audit

logs were collected and analyzed to determine what detectable signatures were left by the

attack.

Tcpdump [12] was used to filter network traffic collected by the sniffer machines.

The program allowed packet filtering by features such as, source address, destination

33

address, and port number. Packet filtering made it easy to isolate the traffic created by

each attack instance for analysis.

Net Tracker [40] also proved to be a useful program for analyzing attack

signatures in network traffic. Net Tracker takes, as input, a tcpdump file and reassembles

the data into transcripts. The transcripts are ASCII text records of what occurred during

each TCP session.

To determine host-based attack signatures, Windows NT audit logs were

analyzed. No filtering software was available for audit logs so the following procedure

was defined to isolate the events that were logged for each attack:

1) Make sure no background traffic is running in the test bed.

2) Clear all of the audit logs on the Windows NT victim machine.

3) Launch the attack.

4) Save the audit logs.

By using this procedure, most of the events in the saved audit logs were logged as a result

of the attack.

Once the signatures were defined for an attack, attempts were made to make the

attack less obvious. The source code and method of execution of some attacks were

modified to make the attack more stealthy. For example, the original probe attack,

NTInfoscan (downloaded from the Internet), established an anonymous FTP connection

to the victim machine with the password “NTInfoScan@security.check.” Any intrusion

detection system searching for this string will detect all NTInfoScan attacks launched

using the original executable. In an effort to make the attack less detectable, the

executable was modified to provide an inconspicuous anonymous FTP password,

“guestaccnt@compuserve.com.” Additional background traffic was also generated to

34

make some attack actions seem less anomalous. For example, traffic generated by the

AutoBrowser program masks attacks that require the victim to access web pages.

If possible, the attack was embedded in Expect and “exs” scripts so it could

automatically execute in the test bed. Console attacks and attacks requiring web

browsing or the opening of email attachments could not be automated. The next step was

to clearly define a procedure for verifying that the attack was successful. Verification

usually involves inspecting the network traffic for attack signatures.

Some of the attacks require cleanup actions before another instance of the attack

can occur. Attackers and/or victim administrators can perform cleanup actions. An

attacker cleans up after an attack to make detection more difficult, while an administrator

cleans up to repair and re-secure the victim machine. Cleanup actions include erasing

attack files, killing a process, restarting a service, or rebooting the victim machine. A

powerful cleanup action that may be performed by an attacker is deleting or altering audit

log data that resulted from the attack. However, as specified in the design of the 1999

evaluation, audit logs were never altered or deleted during the evaluation days. Finally,

documentation was drafted to include all of the above-mentioned characteristics and

procedures for each attack.

4.3 Extended Auditing

As stated in Section 3.2.3, full system auditing and base object auditing were enabled in

the 1999 evaluation, but individual files and Registry keys were not audited. A Windows

NT system with a different auditing policy may yield different attack signatures in the

security log, or none at all. It would be useful to know all possible audit log attack

signatures. To achieve this goal, a separate experiment was performed after the 1999

35

evaluation was completed. Each Windows NT attack was launched against the Windows

NT victim machine with maximum auditing enabled (i.e. audit settings used in the 1999

evaluation plus auditing of all files and Registry keys). The data generated in the

experiment was used to document, for each attack, an audit log attack signature that was

as complete as possible.

Chapters six through nine of this thesis document the attacks used in the 1999

evaluation. For each attack there is a section called “Host Data for the 1999 Evaluation”

that details ways in which the attack may be detected in host data generated and

distributed in the evaluation. If the file and Registry auditing experiment yielded

additional signatures for an attack, these signatures are noted in a separate section, called

“Extended Host Data.” This section also includes any attack signatures that may occur in

other types of host data that were not provided in the 1999 evaluation, such as log files

for individual applications or real-time file system monitoring.

36

Chapter 5

Assembling a Windows NT Attack Set

The Windows NT attacks in the 1999 evaluation were chosen such that, collectively, they

form a realistic and relatively comprehensive set of Windows NT attacks. An attack

taxonomy, originally presented in [39] and used in the 1998 evaluation [10], provided a

methodology for classifying Windows NT attacks. The selection of Windows NT attacks

for the 1999 evaluation was guided in part by the taxonomy. In addition, the attacks were

selected so as to include both network and console based attacks, a man-in-the-middle

attack, and an attack using code in a Microsoft application macro.

5.1 Overview of an Attack Taxonomy

For a given attack, the user begins with a specific level of privileges and either executes a

method of transition to obtain privileges at higher level, and/or performs some action.

The taxonomy provides a way to classify attacks by defining a set of privilege levels,

possible methods of transition, and a set of actions. One-character strings are used to

represent the privilege levels, methods of transition, and actions. A classification is

assigned to each attack by assembling the one-character strings to form multi-character

strings.

37

Possible levels of privilege include remote network access (R), user access (U),

root or super-user access (S), and physical access to the host (P). A set of possible

methods of transition between levels of privilege is listed below. Each method is also

represented by a one-character string.

m) Masquerading: In some cases it is possible to fool a system into giving access by

misrepresenting oneself. Examples of masquerading include using a stolen

username/password or sending a TCP packet with a forged source address.

a) Abuse of Feature : There are legitimate actions that one can perform, or is even

expected to perform, that when taken to the extreme can lead to system failure.

Example include filling up a disk partition with user files or starting hundreds of

telnet connections to a host to fill its process table.

b) Implementation Bug: A bug in a trusted program might allow an attack to proceed.

Specific examples include buffer overflows and race conditions.

c) System Misconfiguration: An attacker can exploit errors in security policy

configuration that allows the attacker to operate at a higher level of privilege than

intended.

s) Social Engineering: An attacker may be able to coerce a human operator of a

computer system into giving the attacker access.

A set of possible actions that an attacker can perform is shown in Figure 5-1.

The following classifications of example attacks demonstrate the application of

the taxonomy. If a user with remote network access (R), exploits a bug in the web server

(B) to temporarily deny service (Deny), the attack classification label is “R-b-

38

Deny(Temporary).” If a user with an local account (U), runs a program to decrypt the

password file (Use), the classification is “U-Use(Intrusion).” If a user with remote

network access (R) obtains root access (S) by tricking another user (s), and then uses the

new privileges to modify files (Alter), the classification is “U-s-S-Alter(Files).”

Category Specific Type Description

Probe Probe(Machines) Determine types and numbers of machines on a
network

 Probe(Services) Determine the services a particular system
supports

 Probe(Users) Determine the names or other information about
users with accounts on a given system

Deny Deny(Temporary) Temporary Denial-of-Service with automatic
recovery

 Deny(Administrative) Denial of Service requiring administrative
intervention

 Deny(Permanent) Permanent alteration of a system such that a
particular service is no longer available

Intercept Intercept(Files) Intercept files on a system
 Intercept(Network) Intercept traffic on a network
 Intercept(Keystrokes) Intercept keystrokes pressed by a user

Alter Alter(Data) Alteration of stored data or data in transit
 Alter(Communication) Alteration of data in transit

 Alter(Intrusion-Traces) Removal of hint of an intrusion, such as entries
in log files

Use Use(Recreational) Use of the system for enjoyment, such as playing
games or bragging on IRC

 Use(Intrusion-Related) Use of the system as a staging area/entry point
for future attacks

Figure 5-1: Summary of Possible Types of Actions.

39

5.2 Windows NT Attack Set

Figure 5-2 lists the 12 Windows NT attacks developed for the 1999 DARPA Intrusion

Detection Evaluation. The four attack categories represent groupings of the possible

attack types listed in the taxonomy. These four groups are: Denial-of-Service (R-?-

Deny), Remote-to-User (R-?-U), local-User-to-Super-user (U-?-S), and Probes (R-?-

Probe). The following four chapters present a description of each attack category and

document the individual Windows NT attacks in each category. The documentation

includes descriptions of the attacks, procedures for executing, verifying, and cleaning up

after the attack, and attack signatures detectable in network traffic and Windows NT host

data.

Attack Category Attack Name
Denial-Of-Service
(R-Deny)

CrashIIS
DoSNuke

Remote-to-User (Remote to Local)
(R-?-U,S)

Framespoofer
Netbus
NetCat
PPMacro

User-to-Super-user (User-to-Root)
(U,P-?-S)

AnyPW
CaseSen
NTFSDOS
SecHole
Yaga

Probes
(R-Probe)

NTInfoScan

Figure 5-2: Windows NT Attacks Developed for the 1999 DARPA Intrusion Detection Evaluation.

40

Chapter 6

Denial-of-Service Attacks

A denial-of-service attack prevents users from accessing the resources or services of a

victim machine or network of machines. An attacker can accomplish a denial-of-service

through a range of destructive actions, such as, disabling a network service, consuming

large amounts of network bandwidth or CPU cycles, or completely crashing a machine.

Common methods used in denial-of-service attacks include sending a specially

constructed packet to a port on a victim machine, or using many packets to sustain high

utilization of network or computer resources. Some of the denial-of-service attacks used

in the 1998 evaluation were also used to attack the Windows NT victim in the 1999

evaluation, namely, Neptune and Smurf. These attacks are fully documented in [10]. In

addition, two denial-of-service attacks, CrashIIS and DoSNuke, were developed to

specifically target the Windows NT victim machine in the 1999 evaluation. CrashIIS

disables the Windows NT web server and DoSNuke crashes a Windows NT victim

machine. The following sections describe both attacks in detail.

6.1 CrashIIS R-b-Deny(Administrative)

Description

CrashIIS is a denial-of-service attack against the Windows NT IIS web server. The

attacker sends a malformed GET request via telnet to port 80 on the Windows NT victim

41

machine. Due to a bug in IIS, the command "GET ../.." crashes the web server and

sometimes crashes the FTP and Gopher daemons as well, because they are part of IIS

[22].

Test Bed Details

Execution: The attack is fully automated by wrapping an “exs” script around the Expect

script, crashiis.exp. From an inside or outside UNIX attacker machine, crashiis.exp

telnets to port 80 on the Windows NT victim and sends the command "GET ../..".

Running "crashiis.exp <victim IP>" will crash the victim's web server (and possibly the

FTP and Gopher servers as well).

Verification: After the attack has successfully completed, the IIS web server on the

victim will be terminated. This can be verified on the victim machine by observing that

the process, inetinfo.exe, is not longer in the Task Manager processes list. Attack success

can be verified from a remote machine by typing the command "telnet <victim IP> 80" (it

should no longer connect) or by using a browser to access a page on the victim web

server (it should not load the page).

Cleanup: An administrator must manually restart the victim's web server via the

Microsoft Internet Service Manager. Usually the FTP and Gopher services need to be

restarted as well.

Detection

Network traffic: The malformed GET command string, “GET ../..” can be detected in

network traffic. However, the collected traffic must be processed first, because pieces of

the text string may have been sent in separate TCP packets due to the telnet protocol or

packet fragmentation in the network. Net Tracker [40] (a UNIX program) takes, as input,

42

a dump file generated by the tcpdump program. It reassembles the network traffic, and

outputs the results in individual transcript files for each TCP connection. The attack

occurred if a transcript file reveals the malformed GET command sent from an attacker

machine to port 80 of the victim machine, as shown in Figure 6-1. The first line in the

transcript specifies the source and destination of the connection. The victim IP address

and port number in the figure are shown in boldface text. The second line indicates the

date and time when the connection began with a SYN packet. The third line reveals the

malformed GET request and the fourth line indicates the end of the connection. The

fourth line of the connection would have ended with a letter “F” if the connection closed

with a FIN packet. However, the connection ends abnormally because IIS crashes. Net

Tracker never detects a FIN packet, so it labels the end of the transcript with the letter

“C,” which stands for “Continued.”

All queries to the web server will fail until the administrator of the victim

machine restarts the service. These failed connections can be used to detect the effects of

the attack.

Host Data from the 1999 Evaluation: When the IIS service is turned on, a process

called inetinfo.exe is created and recorded in the security log. When IIS crashes, the

default debugger for application errors, Dr. Watson, is launched and recorded in the

security log. The CrashIIS attack can be detected in the security log by matching the

202.72.1.77:8756=>172.16.112.100:80 (Attack machine to port 80 of victim machine)
04/05/1999 22:36:11 S (Start of connection – SYN packet)
GET ../.. (Malformed GET command)
04/05/1999 22:36:18 C (End of connection – no FIN packet)

Figure 6-1: CrashIIS Malformed ‘GET’ Request Revealed in Session Transcript.

43

Creator Process ID number of the drwtsn32.exe process (Dr. Watson) with the Process ID

number of inetinfo.exe (IIS) as shown in Figure 6-2.

Extended Host Data: When a CrashIIS attack occurs, the Dr. Watson log file,

C:\WINNT\user.dmp, on the Windows NT victim machine (not provided in the 1999

evaluation) will reveal that the IIS crashed. The log file will indicate that an error

occurred in an application called “exe\inetinfo.dbg.” Figure 6-3 shows a portion of a Dr.

Watson log file after a CrashIIS attack, with the application name in boldface. The log

entry also notes the date and time and the type of error that occurred.

Dr. Watson
Launches

IIS
Launches

Figure 6-2: Dr. Watson Program Launches when IIS Crashes.

11:48:05 AM
A new process has been created:
 New Process ID: 2154725408
 Image File Name: inetinfo.exe
 Creator Process ID: 2156091328
 User Name: SYSTEM
 Domain: NT AUTHORITY
 Logon ID: (0x0,0x3E7)

6:36:02 PM
A new process has been created:
 New Process ID: 2195757248
 Image File Name: drwtsn32.exe
 Creator Process ID: 2154725408
 User Name: SYSTEM
 Domain: NT AUTHORITY
 Logon ID: (0x0,0x3E7)

Microsoft (R) Windows NT (TM) Version 4.00 DrWtsn32
Copyright (C) 1985-1996 Microsoft Corp. All rights reserved.

Application exception occurred:
 App: exe\inetinfo.dbg (pid=161)
 When: 3/31/1999 @ 18:36:9.906
 Exception number: c0000005 (access violation)

Figure 6-3: A Portion of the Information in the Dr. Watson Log File after IIS Crashes.

44

6.2 DoSNuke R-b-Deny(Administrative)

Description

DoSNuke is a Denial-of-Service attack that sends Out Of Band data (MSG_OOB) to port

139 (NetBIOS), crashing the Windows NT victim machine. A NetBIOS connection is

established, followed by a series of packets sent with the MSG_OOB flag set. Due to a

bug in the operating system, Windows NT with Service Pack 1 panics and the result is

the “blue screen of death.” Windows NT 4.0 with Service Pack 4 or greater is not

vulnerable to the attack [21] [19].

Test Bed Details

Execution: The attack is prepared for execution on a Windows NT machine by opening

the PERL script, dosnuke.pl, for editing, and setting the time of day to launch the attack.

Then dosnuke.pl is executed or a shortcut to it is placed in the Windows NT Startup

group for automated execution. The script takes no arguments (always targets the IP

address of the Windows NT victim machine). Dosnuke.pl launches dosnuke.exe, which

establishes a NetBIOS connection to the victim machine, and then sends five packets

with the MSG_OOB flag set. Only one packet is necessary to crash the victim machine,

but five are sent in case packets are lost.

Verification: After successful completion of the attack, the victim machine will crash

and display a “bluescreen of death.” The success of the attack can be remotely verified

by pinging the IP address of the victim machine. If the ping times out, then the attack

succeeded.

Cleanup: An administrator must manually reboot the victim machine.

45

Detection

Network traffic: Figure 6-4 shows the network traffic created by the attack, displayed by

the tcpdump program. A three-way handshake, between the attacker machine and the

victim machine, establishes the TCP connection to the NetBIOS port of the victim (port

139). The packets following the handshake are marked with the TCP "urg" because TCP

marks Out of Band packets as urgent. The attack can be detected by searching the

network data for a NetBIOS handshake followed by a series of NetBIOS packets with the

"urg" flag. The bold line in Figure 6-4 indicates the packet that crashes the machine. The

following packet contains the data that could not fit in the first packet. The rest of the

“urg” packets are packets resent by the TCP protocol because no acknowledgement is

received from the victim machine (the victim machine is disabled). Tcpdump can be

used to search for “urg” packets by executing the command:

“tcpdump –nr <network traffic dump file> ‘tcp[13] & 1 != 0’”

The original attack downloaded from the Internet, transmitted the string “Hey, I

can't help getting these nasty VXD errors!” to the victim. The attack was modified to

send a blank string instead. Other versions of the attack may still send the string, which

can be used in detecting the attack.

Figure 6-4: A DoSNuke Signature in Network Traffic.

12:00:07.074895 172.16.115.234.1216 > 172.16.112.100.139: S 11502299:11502299(0) win 8192 <mss 1460> (DF)
12:00:07.074895 172.16.112.100.139 > 172.16.115.234.1216: S 11131218:11131218(0) ack 11502300 win 8760 <mss 1460> (DF)
12:00:07.074895 172.16.115.234.1216 > 172.16.112.100.139: . ack 1 win 8760 (DF)

12:00:07.074895 172.16.115.234.1216 > 172.16.112.100.139: P 1:50(49) ack 1 win 8760 urg 49 (DF)
12:00:07.074895 172.16.115.234.1216 > 172.16.112.100.139: FP 50:246(196) ack 1 win 8760 urg 196 (DF)
12:00:10.054895 172.16.115.234.1216 > 172.16.112.100.139: FP 1:246(245) ack 1 win 8760 urg 245 (DF)
12:00:16.064895 172.16.115.234.1216 > 172.16.112.100.139: FP 1:246(245) ack 1 win 8760 urg 245 (DF)
12:00:28.074895 172.16.115.234.1216 > 172.16.112.100.139: FP 1:246(245) ack 1 win 8760 urg 245 (DF)
12:00:52.114895 172.16.115.234.1216 > 172.16.112.100.139: FP 1:246(245) ack 1 win 8760 urg 245 (DF)
12:01:40.184895 172.16.115.234.1216 > 172.16.112.100.139: FP 1:246(245) ack 1 win 8760 urg 245 (DF) OOB Packets

NetBIOS/TCP
Handshake

46

Host Data from the 1999 Evaluation: The victim's security audit log will indicate a

hard reboot after the system is restarted by an administrator. The reboot will be a hard

reboot (turning the machine off and then back on again) and not a soft reboot (CTRL-

ALT-DEL), because a bluescreen system crash cannot be soft rebooted. A soft reboot

audit signature is a “SeShutdownPrivilege” Privilege Use Event followed by an event

stating, “Windows NT is starting up.” A hard reboot audit signature can be detected

because it does not include the “SeShutdownPrivilege” event.

A hard reboot can be used to detect but not identify the DoSNuke attack, because

other attacks may also result in hard reboots (NTFSDOS, AnyPW, etc.). In addition, a

hard reboot may occur in the absence of an attack (power outages, system halts, etc).

47

Chapter 7

Remote-to-User Attacks

A remote-to-user attack results in an attacker on a remote host obtaining unauthorized

access to another computer system. An attacker who does not have an account can gain

local access to the victim computer by sending packets over the network from a remote

computer. The attacker may exploit a vulnerability in the victim computer or network, or

use social engineering to trick an authorized user into opening a backdoor.

One remote-to-user attack, Dictionary [10], developed in the 1998 evaluation was

used to attack the Windows NT victim machine in the 1999 evaluation. In addition, four

Windows NT new remote-to-user attacks were developed for the 1999 evaluation:

Framespoofer, NetBus, NetCat, and PPMacro. Framespoofer exploits a bug in the

Netscape browser. NetBus and NetCat use trojan programs to establish back doors on the

victim system. PPMacro inserts malicious macro code in a PowerPoint presentation.

The following sections give detailed descriptions of the four attacks.

7.1 Framespoofer R-m-Alter(Data)

Description

The Framespoofer attack is a type of man-in-the-middle attack. It tricks the victim user

into believing he or she is viewing a web page with frames on a trusted web site. In

actuality, the page's main body frame is replaced with a frame created by the attacker.

48

The attacker presents false information in the “spoofed” frame, in an attempt to

manipulate the victim user’s actions.

In the version of the attack used in the 1999 evaluation, the attacker sends a

forged email, directing the victim to a web page that displays security procedures for Air

Force Base computer networks. The page resides on a computer controlled by the

attacker and contains what looks like a link to a page with security procedures specific to

the local Eyrie Air Force Base. When the victim user clicks on the “link,” it runs a

Javascript function, which brings up the trusted web site and then inserts a malicious web

page, with misleading information, into the main frame. The URL displayed in the

browser remains unchanged. The misleading information for this version of the attack

instructs the victim to disable the local intrusion detection system on specific days.

Versions of Netscape after version 4.0.8 are not vulnerable to this attack [42].

Test Bed Details

Execution: Sending the email is automated by wrapping an “exs” script around a PERL

script, sendmail.pl, written for the evaluation. Sendmail.pl takes as an argument a

preformatted mail message. From a UNIX attacker, the command “sendmail.pl mail.txt

ted, where mail.txt is a Javascript email message with

instructions for the victim. The mail can also be sent manually from a Windows NT

attacker machine. A template of the Javascript mail message is shown in Figure 7-1. The

victim must manually receive the mail and click on the links.

49

Verification: The security procedures page for the local Air Force Base will display a

page and then, a few seconds later, the main frame will switch to the frame created by the

attacker.

Cleanup: The browser cache on the victim machine must be cleared after executing the

attack. Otherwise, the browser will load a cached page during the next execution of the

attack, and no web traffic will be generated on the network.

Detection

Network Traffic: The attack can be detected in the network traffic by using Net Tracker

to reassemble the web connections. Net Tracker will output transcripts of HTTP

connections that occur during the attack. The connections will be from the victim

machine to port 80 of the attacker machine. The attack can be detected by carefully

examining the first web connection for the Javascript code shown in Figure 7-1. Variable

names may vary in different versions of the attack. However, the Javascript keywords:

“javascript,” “window.open,” “frames[1].location,” and “onclick” will appear in all

<script language="javascript">

<!--
function loadchild() {
 Wtarg=window.open("[TRUSTED SITE’S PAGE WITH FRAMES]
 setTimeout("Wtarg.frames[1].location=
[ATTACK PAGE WITH MISLEADING INFORMATION]",”[# MSEC BEFORE);
}
// -->
</script>

<body>
[TEXT INSTRUCTIONS FOR THE VICTIM]

[URL OF TRUSTED SITE’S PAGE WITH FRAMES]

</body>

Figure 7-1: Javascript Email for the Framespoofer Attack.

50

versions of this attack. A keyword intrusion detection system can use these strings to

detect the attack.

Host Data from the 1999 Evaluation: Audit logs for the 1999 evaluation reveal nothing

about the attack. Auditing additional files and Registry keys does not aid in detecting the

attack.

51

7.2 Netbus R-s-U

Description

The attacker uses a trojan program to install and run the Netbus server, version 1.7, on

the victim machine. Once the Netbus server is running, it acts as a backdoor. The

attacker can then remotely access the machine using the Netbus client [18].

The attacker sends an email with an executable attachment (a game called

whackamole). When the victim executes the “whackamole” attachment, it launches the

Netbus server (explore.exe), which is placed in C:\WINNT, and then launches the

“whackamole” game. The user plays the game, not realizing that the Netbus server was

installed. The attack also edits the Windows NT Registry so the Netbus server restarts at

every login. This is accomplished by adding explore.exe to the “HKEY_LOCAL_

MACHINE/Software/Microsoft/Windows/Current Version/Run” Registry key.

The attacker can use the Netbus client program, shown in Figure 7-2, to

manipulate files on the victim machine, download screen dumps, move the mouse

pointer, etc. The attacker's access privileges are identical to the user currently logged on

to the victim machine. If an administrator is using the victim, the attacker will have full

administrator privileges. Through use of the “Scan!” button, the Netbus client can also

be used as a probe attack to scan IP addresses for NetBus servers.

52

Test Bed Details

Execution: Sending the email with the “whackamole” attachment is automated by

wrapping an “exs” script around a PERL script, sendmail.pl, written for the evaluation.

Sendmail.pl takes as an argument a preformatted mail message. On a UNIX attacker, the

command “sendmail.pl netbus.txt <attacker@computer>” is executed, where netbus.txt is

an email text message containing the “whackamole” executable attachment. The mail

can also be sent manually from a Windows NT attacker machine.

The second stage of the attack is manually utilizing the backdoor. After the

victim has executed the email attachment, a Windows NT attack machine is used to

execute the NetBus client and connect to port 12345 of the victim machine.

Verification: After the attack has completed, the victim machine should be remotely

accessible via the Netbus client running on a Windows NT attacker machine. The

Figure 7-2: The NetBus Client GUI.

53

success of the attack can be verified in collected network traffic by the using the attack

detection methods described below, in the section on Network Traffic.

Cleanup: The attacker clicks the “Server admin” button on the NetBus client and

chooses “Remove server.” The Registry key is removed and the server process,

explore.exe, is terminated. However, the explore.exe file is not deleted from the victim’s

file system. For full cleanup, a victim user, usually the Administrator, must delete

C:\WINNT\explore.exe.

Detection

Network Traffic: Two TCP connections are established when the NetBus server is

accessed by an attacker using the NetBus client. The attacker client sends commands via

a connection to port 12345 of the victim machine. The victim server transmits data in

response via a connection to port 12346 of the victim machine. The attack can be

detected by using the following tcpdump command to search the network traffic for

connections to port 12345 or port 12346 of the victim machine:

“tcpdump –nr <network traffic dump file> port 12345 or port 12345 and host <victim IP address>”

Net Tracker can be used to reassemble the network traffic into transcript files.

When the attacker uses the Netbus client to access the victim, it creates network traffic

that is easy to identify in the transcript files. The word “Netbus” will appear and all of

the commands are in plaintext. The format of a NetBus command is: the name of the

command, followed by a semicolon, followed by the arguments separated by semicolons.

Figure 7-3 shows some of the strings that may appear in the Net Tracker transcript files

after an instance of the Netbus attack is launched. A string-matching intrusion detection

system could use these strings to detect NetBus attacks.

54

Host Data from the 1999 Evaluation: Explore.exe is the most commonly used filename

for the Netbus attack. The Windows NT security log will show that explore.exe was

launched when the attachment was executed.

Extended Host Data: If the “HKEY_LOCAL_MACHINE/Software/Microsoft/Win-

dows/Current Version/Run” Registry key is audited (not audited in the 1999 evaluation),

then an audit log record will indicate that the key is accessed with write privileges when

explore.exe is added to it. The attack can be detected by matching the process ID of

explore.exe to the process ID that opens the Registry key. Figure 7-4 shows the audit

record indicating the process ID of explore.exe and the record generated when the

Registry key is accessed. The process IDs, Registry key name, and access privileges are

in boldface text.

NetBus 1.6 Attacker Connects to Server
GetInfo
Info;Program Path: C:\TEMP\
~WZS0400.TMP\explore.exe|
Restart persistent: Yes|Login GetInfo Command
ID: Administrator|Clients
connected to this host: 1
CaptureScreen
CaptureReady;0 CaptureScreen Command
CaptureReady;1;242654
StartApp;c:\winnt\system32\Calc.exe Calc.exe executed
RemoveServer;1 RemoveServer Command

Figure 7-3: Strings Revealed in Network Traffic After a NetBus Attack.

55

Object Open:
 Object Server:Security
 Object Type: Key
 Object Name:
 \REGISTRY\MACHINE\SOFTWARE\Microsoft
\Windows\CurrentVersion\Run
 New Handle ID:100
 Operation ID: {0,49085}
 Process ID: 2154433248
 Primary User Name: Administrator
 Primary Domain: EYRIE
 Primary Logon ID: (0x0,0x3A2F)
 Client User Name: -
 Client Domain:-
 Client Logon ID: -
 Accesses DELETE
 READ_CONTROL
 WRITE_DAC
 WRITE_OWNER
 Query key value
 Set key value
 Create sub-key
 Enumerate sub-keys
 Notify about changes to keys
 Create Link

Figure 7-4: Audit Records Show Registry Key Write Access by the Netbus Process.

12:10:19 PM
A new process has been created:
 New Process ID:
 2154433248
 Image File Name:
 explore.exe
 Creator Process ID:
 2154436192
 User Name:
 Administrator
 Domain: EYRIE
 Logon ID:
 (0x0,0x3A2F)

56

7.3 Netcat R-s-U

Description

The attacker uses a trojan to install and run the Netcat program on a Windows NT victim

machine on a specific port. Port 53 is the most commonly used port for the attack, so it

was the port chosen for the 1999 evaluation. Once the Netcat program is running, it acts

as a backdoor. The attacker can remotely access the machine via port 53, without

providing a username or password.

To begin the attack scenario, the attacker sends the victim an email with a self-

extracting executable attachment called y2ktest.exe. The email states that the file will

install a program to test the victim machine for Y2K compliance. When the victim user

opens the file, it creates a new folder C:\y2ktest and puts the y2ktest program files into it.

It also places into the folder the attack files, winlog.bat, winlog.exe, and winlog.txt.

The batch file, winlog.bat, automatically runs and controls the attack. It uses

information in the winlog.txt file to edit the “HKEY_LOCAL_MACHINE\SOFT-

WARE\Microsoft\Windows\Current Version\Run” key in the Registry so that the

command, ”winlog L –d –p 53 –t –e cmd.exe,” runs every time a user logs on to the

machine. Then winlog.bat deletes all unnecessary attack files. The y2ktest folder and its

contents, and C:\WINNT\system32\winlog.exe are what remain.

The attacker later uses the command “nc v <victim IP> <port>” on a remote

machine (UNIX or NT with the nc program) to access the victim without a username or

password.

57

Test Bed Details

Execution: The attack is automated by wrapping an “exs” script around a PERL script,

sendmail.pl, written for the evaluation. Sendmail.pl is used to send the preformatted mail

message, y2katack.txt, from a UNIX attacker machine. The victim user must manually

open the email and execute the trojan attachment. Later, on a UNIX or NT attacker

machine with the Netcat program, the command, “nc v <victim IP> <port>” is executed

to connect to the victim machine.

The files included in the self-extracting WinZip file are called winlog.bat,

winlog.exe, and winlog.txt. When the WinZip file is executed, it tells the user that it puts

a total of seven files into C:\y2ktest. The attack files are moved or deleted, resulting in

only four files in the directory. To avoid this inconsistency, the attack batch makes three

copies of one of the y2ktest files and renames them, check1, check2, and check3.

The attack modifies the Registry but does not run Netcat (winlog) right away.

The backdoor does not take affect until the victim user logs out and logs in again,

activating the Registry key. This makes the attack stealthier because the setup of the

attack is split into two steps. NetCat can use any port, but if it uses port 23, all telnet

sessions to the victim will be unauthenticated (i.e. the user will not be prompted for a

username or password.)

Verification: After the attack has completed, the victim machine should be remotely

accessible without authentication via the command “nc v <victim IP address> <port>.”

The success of the attack can also be verified by checking the victim machine’s Task

Manager process list for the winlog.exe process.

58

Cleanup: An administrator uses the Registry Editor to delete the winlog.exe command

from the Registry key, deletes C:\WINNT\system32\winlog.exe, and removes winlog.exe

from the process table via the Task Manager.

Detection

Network Traffic: The Net Tracker program can be used to generate a transcript of the

connection from the attacker machine to port 53 of the victim machine. Figure 7-5

compares a transcript of a NetCat attack to a transcript of a normal telnet session. The

NetCat session appears similar to a telnet session. However, the attack can be detected

by noting that the connection is not authenticated (no request for an account name or

password) and that the connection is to port 53 of the victim machine instead of telnet

port 23. Figure 7-5 indicates these differences in bold text.

TRANSCRIPT OF NETCAT CONNECTION

206.48.44.18:1229=>172.16.112.100:53
03/31/1999 16:11:08 S
Microsoft(R) Windows NT(TM)
(C) Copyright 1985-1996 Microsoft Corp.
C:\WINNT\Profiles\Administrator\Desktop>dir
 Volume in drive C has no label.
 Volume Serial Number is 4816-2A08
 Directory of C:\WINNT\Profiles\Administrator\Desktop
03/29/99 11:53a <DIR> .
03/29/99 11:53a <DIR> ..
02/08/99 09:32a <DIR> My Briefcase
03/29/99 07:33a 430 RealPlayer.lnk
03/09/99 08:03a 361 WinAt.lnk
03/17/99 10:20a 434 WinZip.lnk
 6 File(s) 1,225 bytes
 2,193,192,448 bytes free
C:\WINNT\Profiles\Administrator\Desktop>path
PATH=C:\Perl\bin;C:\WINNT\system32;C:\WINNT;C:
TRESKIT;C:\NTRESKIT\Perl
C:\WINNT\Profiles\Administrator\Desktop>vol
 Volume in drive C has no label.
 Volume Serial Number is 4816-2A08
C:\WINNT\Profiles\Administrator\Desktop>
03/31/1999 16:11:40 F

TRANSCRIPT OF NORMAL TELNET CONNECTION

135.8.60.182:5203=>172.16.112.100:23
03/30/1999 19:44:56 S
This copy of the Ataman TCP Remote Logon Services is
registered as licensed to:
Eyrie Air Force Base
Welcome to Eyrie Air Force Base
"Mundus Vult Decipi"
***** WARNING *****
This is an unsecured, declassified, publically
accessible, network computer cluster.
Account Name: orionc
Password:
Microsoft(R) Windows NT(TM)(C) Copyright 1985-1996
Microsoft Corp
d:\home>ver
Windows NT Version 4.0
d:\home>vol
Volume in drive D has no label
Volume Serial Number is B4F8-0D40
d:\home>exft
The name specified is not recognized as aninternal or
external command, operable program or batch file.
d:\home>exit
03/30/1999 19:54:10 F

Figure 7-5: NetCat Transcript Differs from Normal Telnet Session.

59

Host Data from the 1999 Evaluation: The security audit log will contain events

indicating the execution of REGEDIT (the trojan edits the Registry), later followed by the

execution of winlog.exe (the backdoor is setup).

Extended Host Data: If the “HKEY_LOCAL_MACHINE/Software/Microsoft/Win-

dows/CurrentVersion/Run” Registry key is audited (not audited in the 1999 evaluation),

then an audit log record will indicate that the key is accessed with full read and write

privileges. The attack can be detected by looking for this audit log record, shown in

Figure 7-6 with the key name and privileges in bold text.

Object Open:
 Object Server: Security
 Object Type: Key
 Object Name:
 \REGISTRY\MACHINE\SOFTWARE\Microsoft\
Windows \CurrentVersion\Run
 New Handle ID: 84
 Operation ID: {0,32669}
 Process ID: 2154688544
 Primary User Name: Administrator
 Primary Domain: EYRIE
 Primary Logon ID: (0x0,0x2565)
 Client User Name: -
 Client Domain: -
 Client Logon ID: -
 Accesses DELETE
 READ_CONTROL
 WRITE_DAC
 WRITE_OWNER
 Query key value
 Set key value
 Create sub-key
 Enumerate sub-keys
 Notify about changes to keys
 Create Link

 Privileges -

Figure 7-6: Audit Record Shows Modification of the “Run” Registry Key.

60

7.4 PPMacro R-s-U

Description

This PPMacro attack uses a trojan PowerPoint macro to access secret files on the victim

machine. This attack is based on a particular scenario, where the victim user periodically

receives a PowerPoint template from a trusted outside source, via an email attachment.

The victim opens the template and runs a built-in macro that inserts a graph displaying

web statistics. The victim then saves the presentation and posts it on the web.

The attacker, who has knowledge of this scenario and a copy of the template,

writes a fake email to the victim and attaches the template with additional attack code

appended to the macro. This attack code reads a secret file from the victim machine

(from d:\home\secret\) and inserts it as small font, white text in the background of the

master slide of the presentation. When the presentation is posted on the web, the attacker

downloads it and examines the PowerPoint file to reveal the text of the secret file. The

macro also stores a counter variable in the victim machine’s Registry, so that each time

the victim user runs the macro, a different file from the secret directory is inserted into

the presentation. The counter value is stored in HKEY_CURRENT_USER\Software\VB

and VBA Program Seetings\webstats\info\idx.

Test Bed Details

Execution: Sending the email with the PowerPoint template attachment is automated by

wrapping an “exs” script around a PERL script, sendmail.pl, written for the evaluation.

Sendmail.pl takes as an argument a preformatted mail message. From a UNIX attacker,

the command, “sendmail.pl ppatack.txt <attacker@computer>,” is executed, where

61

ppatack.txt is an email text message containing the template attachment. The mail can

also be sent manually from a Windows NT attacker machine.

The victim must then execute a program, called Wusage [2], which gathers web

server statistics and generates graphs. The victim renames one of the graphs in

C:\WINNT\reports to graph.gif, opens the PowerPoint template, executes the embedded

macro, and posts the PowerPoint file on the web server by saving it in

C:\inetpub\wwwroot. The attacker later uses a browser to download the PowerPoint file.

Verification: After the attack has completed, the attacker should be able to view the

secret file by downloading the PowerPoint file from the web. Net Tracker can be used to

create a transcript file for the HTTP session. The attack is successful if the transcript file

contains the text of the secret file.

Cleanup: The Administrator should delete the PowerPoint template file and the Registry

key from the victim's Registry.

Detection

Network Traffic: The attack can be detected by using Net Tracker to reassemble the

HTTP session into a transcript file, and searching the file for the text of the secret file.

However, the attacker can modify the macro to encrypt the secret file, thereby making the

attack stealthier.

Host Data from the 1999 Evaluation: Auditing for the 1999 evaluation reveals nothing

about the attack.

Extended Host Data: If the secret files, “D:\home\secret*,” are audited (not audited in

the 1999 evaluation), then an audit log record will indicate that a secret file is accessed by

62

the Powerpoint application. As shown in Figure 7-7, the attack can be detected by

matching the Powerpoint process ID to the process ID that accesses the secret file.

9:55:02 AM
Object Open:
 Object Server: Security
 Object Type: File
 Object Name:
 D:\home\secret\projects\Desert_Snake.txt
 New Handle ID: 472
 Operation ID: {0,118605}
 Process ID: 2154583776
 Primary User Name: Administrator
 Primary Domain: EYRIE
 Primary Logon ID: (0x0,0x3E8C)
 Client User Name: -
 Client Domain: -
 Client Logon ID: -
 Accesses READ_CONTROL
 SYNCHRONIZE
 ReadData (or ListDirectory)
 ReadEA
 ReadAttributes
 Privileges -

Figure 7-7: Audit Records Show Secret File Access by the PowerPoint Program.

9:54:54 AM
A new process has been created:
 New Process ID:
 2154583776
 Image File Name:
 POWERPNT.EXE
 Creator Process ID:
 2154979360
 User Name:
 Administrator
 Domain: EYRIE
 Logon ID:
 (0x0,0x3E8C)

63

Chapter 8

User-to-Root Attacks

A user-to-root attack is used by an attacker to gain unauthorized administrator privileges

on a machine. The attacker, who initially has an account with user level privileges, can

exploit a vulnerability in the system and obtain root access. Five Windows NT user-to-

root attacks were developed for the 1999 evaluation: AnyPW, CaseSen, SecHole,

NTFSDOS, and Yaga. AnyPW and NTFSDOS are console-based attacks requiring

physical access to the machine. CaseSen, SecHole, and Yaga exploit bugs in the

operating system via FTP and telnet sessions. The following sections provide detailed

descriptions of all five attacks.

8.1 AnyPW U-b-S

Description

AnyPW is a console user-to-root attack that allows the attacker to logon to the system

without a password. A bootable floppy disk is used to modify the Windows NT MSV1_0

authentication package so that a valid username can login with any password string.

Logins via telnet will also work with any password.

64

Test Bed Details

Execution: The attacker inserts, into the victim machine, a bootable floppy disk

containing the attack, and reboots the machine. A hexadecimal number appears in the

upper left of the screen. The numbers slowly increment as the attack searches for the

signature of the MSV1_0 authentication package. When an asterisk appears beside the

number, the package has been modified. The attacker removes the diskette and reboots

the machine. Later, the attacker telnets to the victim machine as Administrator and enters

any password to logon.

Note: If the attacker physically logs on to the machine with a random password

string and then locks the machine, only the password that was used to logon can unlock

the machine.

Verification: Any password will be accepted with a valid username.

Cleanup: The administrator of the victim machines must replace the file

C:\WINNT\system32\msv1_0.dll with an uncorrupted copy.

Detection

Network Traffic: The attack cannot be detected in network traffic. Even if the attacker

remotely accesses the victim machine with an incorrect password, there is no way to

determine if the password is indeed incorrect.

Host Data from the 1999 Evaluation: The victim's security audit log will indicate a

reboot after the system is restarted by the attacker. Most likely, the attacker had to hard

reboot the machine (physically press the reset button or power cycle the machine)

because he or she did not have a password to login or unlock the machine. A soft reboot

audit signature is a “SeShutdownPrivilege” Privilege Use Event followed by an event

65

stating, “Windows NT is starting up.” A hard reboot audit signature can be detected

because it does not include the “SeShutdownPrivilege” event.

A hard reboot can be used to detect but not identify the AnyPW attack, because

other attacks may also result in hard reboots (DoSNuke, NTFSDOS, etc.). In addition, a

hard reboot may occur in the absence of an attack (power outages, system halts, etc).

Extended Host Data: The AnyPW attack can be detected by using a software tool to

monitor modifications of the file, C:\WINNT\system32\msv1_0.dll. TripWire is an

example of such a tool [37].

66

8.2 CaseSen U-b-S

Description

The CaseSen attack exploits the case sensitivity of the Windows NT object directory. All

users have write permissions to the “\??” object directory. These are the default

permissions so that users are able to map network drives or alias directories to new drive

letters. Each drive has an entry in the “\??” object directory. Each entry is actually a

symbolic link which points to the device associated with that drive. For example, the

symbolic link, “\??\C:,” points to the device, “\Device\HardDisk0\Partition1.” It is

possible to create another version of this symbolic link, “\??\c:,” using lower case “c.”

By doing this, all the requests to drive “C” get routed through the new symbolic link. For

example, copying the contents of symbolic link, “\??\D:,” to the new symbolic link,

“\??\c:,” and then executing the “dir” command on drive “C” will display the directory

listing for drive “D.” By exploiting this feature, it is possible to trick the operating

system into running an attack executable with the privileges of a system executable [4].

The CaseSen attack uploads to the victim three files via FTP: soundedt.exe,

editwavs.exe, and psxss.exe. The files are uploaded to C:\inetpub\ftproot. The attack

then telnets to the victim and executes soundedt.exe. Soundedt.exe copies editwavs.exe

and psxss.exe to C:\inetpub\ftproot\WINNT\system32. It also copies all the POSIX

subsystem binaries and required DLLs (except PSXSS.EXE) from C:\WINNT\system32

to C:\inetpub\ftproot\WINNT\system32. Then soundedt.exe creates a new object in the

object directory, labeled “\??\c.” It links to C:\inetpub\ftproot and supercedes “\??\C,”

which links to drive “C.” Soundedt.exe starts a POSIX application by executing “POSIX

67

/c editwavs.exe.” The Windows NT Session Manager (smss.exe) activates the POSIX

subsystem, which loads the attack copy of psxss.ese. Psxss.exe inherits the security

context privileges of smss.exe and adds the current user to the Administrators user group

[22].

Test Bed Details

Execution: There are two stages to the attack: a setup and a break-in. The setup stage

adds the attacker username to the victim machine’s Administrator group. The break-in

stage connects to the victim machine with the new administrator privileges. Both stages

are fully automated by wrapping “exs” scripts around the Expect scripts case_s.exp and

case_b.exp. Case_s.exp uploads the attack files, telnets to the victim, and launches the

attack. It also deletes the three attack files after they have been used. Case_b.exp (the

break-in script) telnets to the victim with the new administrator privileges, executes some

generic commands (“dir”, ”ver”, etc.), and cleans up by removing the user from the

Administrators group and deleting files generated by the attack.

To prepare for the attack, the attacker places the three attack files in

“/home/<user>” of a UNIX attacker machine, where <user> is the username of the

attacker. The attacker executes case_s.exp by typing “case_s.exp <victim IP> <user>

<password>.” Later, the attacker executes "case_b.exp <victim IP> <user>

Verification: After case_s.exp is executed, the username specified in the command line

of the attack should appear in the Administrators group of the victim machine (check the

User Manager). After case_b.runs, the username should no longer be in the

Administrators group.

68

The collected network traffic data can also be used to verify the attack. Net

Tracker can be used to create a transcript of the telnet sessions. The transcript of the

break-in telnet session should contain the line "command completed successfully." This

indicates that the command to remove the user from the Administrators group was

successful, which implies that the entire attack was successful.

Cleanup: No manual cleanup is necessary. The setup script deletes the three attack files.

The break-in script removes the user from the Administrators group and deletes the

directory, C:\inetpub\ftproot\WINNT\, which is created during the attack setup.

The attack results in some system instability. Usually the victim machine must be

rebooted before the attack can be launched a second time. The attack cannot be launched

more than two twice without rebooting the victim.

Detection

Network Traffic: The attack can be detected by using Net Tracker to create transcripts

of the FTP and telnet sessions. Searching the FTP transcript for the strings “psxss.exe,”

xe,” will reveal the transfer of the three attack files in

this version of the attack. Searching the telnet transcript for the string “soundedt.exe”

will reveal the execution of that file. However, editwavs.exe and soundedt.exe were

names chosen specifically for the simulation. The original version of the attack, available

on the Internet [22], uses the filenames, dummyapp.exe and besysadm.exe, respectively.

The filename, psxss.exe, cannot be changed in different instances of the attack.

Host Data from the 1999 Evaluation: The security log shows the execution of the files

posix.exe and psxss.exe, whose filenames will not differ in other versions of the attack.

In addition, a log entry will state that a username is added to the Administrators group by

69

“NT AUTHORITY/SYSTEM.” This is because the username is added via an application

(very uncommon). Normally, the Administrator would use the User Manager program,

Usrmgr, to add the user to a group. The corresponding log entry would indicate that the

user was added by “Administrator,” not “NT AUTHORITY/SYSTEM.”

Figure 8-1 compares two audit log entries. The first entry was created when a

CaseSen attack added a user to the Administrators group of the victim machine. The

second entry was created when the Administrator of the victim machine added the same

user to the Administrators group via the User Manager. The Caller User Names in the

two audit log entries differ as indicated by the boldface text.

Figure 8-1: A User is Added to the Administrators Group by SYSTEM in a Casesen Attack.

CASESEN ATTACK ADDS USER TO ADMINISTRATORS GROUP

Local Group Member Added:
 Member: S-1-5-21-742865521-1025978620-313593124-1040
 Target Account Name: Administrators
 Target Domain: Builtin
 Target Account ID: S-1-5-32-544
 Caller User Name: SYSTEM
 Caller Domain: NT AUTHORITY
 Caller Logon ID: (0x0,0x3E7)
 Privileges:-

ADMINISTRATOR ADDS USER TO ADMINISTRATORS GROUP

Local Group Member Added:
 Member: S-1-5-21-742865521-1025978620-313593124-1040
 Target Account Name: Administrators
 Target Domain: Builtin
 Target Account ID: S-1-5-32-544
 Caller User Name: Administrator
 Caller Domain: EYRIE
 Caller Logon ID: (0x0,0x3AAB)
 Privileges:-

70

8.3 NTFSDOS U-b-S

Description

This console-based attack reboots the system from a floppy disk containing the program,

NTFSDOS.EXE. This executable is able to recognize and mount NTFS drives. It makes

them appear indistinguishable from standard FAT drives, giving the attacker the ability to

read and copy files that would otherwise be protected by Windows NTFS security. The

attacker does not need to be an authorized user of the victim machine. However, the

attack is considered to be a user-to-root attack because physical access to the machine is

required to initiate the attack [36].

Test Bed Details

Execution: The attack is completely manual. The attacker inserts the diskette (a bootable

floppy disk containing the ntfsdos.exe program) into the “A” drive of the victim machine,

and pushes the reset button on the CPU. After the system reboots, the attacker types

“ntfsdos” at the DOS prompt. He or she then changes directories to “C:\secret,” copies

the secret files to the diskette, removes the diskette, and reboots the machine.

Verification: The secret files will be stored on the diskette.

Cleanup: No cleanup is necessary.

Detection

Network Traffic: The attack does not create network traffic.

Host Data from the 1999 Evaluation: The victim's security audit log will indicate a

reboot after the system is restarted by the attacker. Most likely, the attacker had to hard

reboot the machine (physically press the reset button or power cycle the machine)

71

because he or she did not have a password to login or unlock the machine. A soft reboot

audit signature is a “SeShutdownPrivilege” Privilege Use Event followed by an event

stating, “Windows NT is starting up.” A hard reboot audit signature can be detected

because it does not include the “SeShutdownPrivilege” event.

A hard reboot can be used to detect but not identify the NTFSDOS attack,

because other attacks may also result in hard reboots (DoSNuke, AnyPW, etc.). In

addition, a hard reboot may occur in the absence of an attack (power outages, system

halts, etc).

72

8.4 SecHole U-b-S

Description

The attacker, a malicious user, establishes an FTP connection to the victim and uploads

the files test.exe and testfile.dll (filenames were chosen to be stealthy). The attacker then

telnets to the victim and executes test.exe. As a result, the attacker is added to the

Administrators group.

Test.exe locates the memory address of a particular API function (OpenProcess)

and modifies the instructions at that address. This is possible because the function is in

the user space of test.exe. The function is modified so that it returns a success response,

instead of a failure response, when it is asked to open a process to which it does not have

privileges. Test.exe then calls DebugActiveProcess with the RPCSS system process

(Remote Procedure Call Service) as an argument. Before granting test.exe debug access

to the RPCSS process, DebugActiveProcess calls OpenProcess to check for privileges.

The request is successful because of the modifications made to OpenProcess. Once

test.exe has debug access to the RPCSS process, it exploits the system process privileges

to add the attacker username to the local Administrators group [32][33]. The user later

telnets to the victim machine with administrator privileges.

Test Bed Details

Execution: There are two stages to the attack: a setup and a break-in. The setup stage

adds the user to the victim machine’s Administrator group. The break-in stage connects

to the victim machine with the new administrator privileges. Both stages are fully

automated by wrapping “exs” scripts around the Expect scripts sec_s.exp and sec_b.exp.

73

Sec_s.exp uploads the attack files, telnets to the victim, and executes the attack. It

deletes the two attack files after they have been used. Sec_b.exp (the break-in script)

telnets to the victim with the new Administrator privileges, executes some generic

commands, and cleans up by removing the user from the Administrators user group and

deleting files generated by the attack.

The attacker prepares the attack by placing test.exe and testfile.dll in

/home/<user> of an UNIX attacker machine, where <user> is the username of the

attacker. Sec_s.exp is executed by typing “sec_s.exp <victim IP> <user> <password>.”

Later, the attacker executes "sec_b.exp <victim IP> <user> <password>,” to connect to

the machine with administrator privileges.

Verification: After sec_s.exp is launched, the username specified in the command line of

the attack should appear in the Administrators user group on the victim machine (check

the User Manager). After sec_b.exp executes, the username should no longer be in the

Administrators user group.

The collected network traffic data can also be used to verify the attack. Net

Tracker can be used to create a transcript of the telnet sessions. The transcript of the

break-in telnet session should contain the line "command completed successfully." This

indicates that the command to remove the user from the Administrators group was

successful, which implies that the entire attack was successful.

Cleanup: The setup script deletes the two attack files. The break-in script removes the

user from the Administrators group. The attack may result in system instability. It is

unlikely, but the victim system may lock up after the attack. If this happens, the victim

user must reboot the machine. The attack still succeeds.

74

Detection

Network Traffic: The attack can be detected by using Net Tracker to create transcripts

of the FTP and telnet sessions. Searching the FTP transcript for the strings “test.exe” and

“testfile.dll,” will reveal the transfer of the two attack files in this version of the attack.

Searching the telnet transcript for the string “test.exe” will reveal the execution of that

file. However, filenames were chosen specifically for the simulation. The original

version of the attack uses the filenames, sechole.exe and admindll.exe.

Host Data from the 1999 Evaluation: After a SecHole attack, the Windows NT security

log will contain a log entry indicating the execution of the file, test.exe (sechole.exe). In

addition, a log entry will show that a username was added to the Administrators user

group by “NT AUTHORITY/SYSTEM.” This is because the username is added via an

application (very uncommon). Normally, the Administrator would use the User Manager

program, Usrmgr, to add the user to a group. The corresponding log entry would indicate

that the user was added by “Administrator,” not “NT AUTHORITY/SYSTEM.”

75

8.5 Yaga U-b-S

Description

The Yaga attack (Yet Another Get Admin) edits the victim's Registry so that the next

time a service crash occurs on the victim machine, the attacker is added to the Domain

Admins group. To setup the attack, the attacker must upload to the victim machine a file

with Registry key information and then use it to edit the Registry. This is accomplished

via a telnet session. The Registry key originally contains a value indicating that the Dr.

Watson debugger program (drwtsn32.exe) should execute when an application error

occurs (e.g. a service crashes). The Yaga attack modifies the key value so that the

drwtsn32.exe command is replaced with a command that adds the attacker username to

the Domain Admins user group. Once the setup is complete, the attacker uses a denial-

of-service attack, CrashIIS, to remotely crash a service on the victim machine. As a

result, the attacker username is added to the Domain Admins user group.

Test Bed Details

Execution: The attack is fully automated by wrapping a “exs” scripts around the Expect

scripts, yaga_s.exp and yaga_b.exp. The Expect setup script, yaga_s.exp, establishes a

telnet connection with the Windows NT victim computer. It uses the “cat” command to

create the file, “entry,” with Registry key information and then edits the Registry key,

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDe-

bug,” so that the Dr. Watson command, “drwtsn32 –p %ld –e %ld -g,” is replaced with

the command, “net group “Doman Admins” <attacker username> /ADD.” The attack

then executes the CrashIIS attack to crash the IIS web server. As a result, the Registry

76

key is accessed, the net.exe command is executed, and the attacker username is added to

the Domain Admins group. The web server remains disabled.

The break-in expect script, yaga_b.exp, telnets to the victim machine with the

new Domain Admin permissions, executes some generic commands, and cleans up by

removing the user from the Domain Admins group and restoring the original Registry

key.

Verification: After yaga_s is launched, its success can be verified by accessing the User

Manager on the victim machine to verify that the attacker username is in the Domain

Admins group. After yaga_b executes, the username should no longer be in the Domain

Admins group.

The collected network data can also be used to verify the attack. Examining

transcripts created by Net Tracker will reveal the line "command completed

successfully." This indicates that the command to remove the user from the Domain

Admins group was successful, which implies that the entire attack was successful.

Cleanup: The break-in script removes the attacker username from the Domain Admins

group and restores the original AeDebug Registry key. The Administrator must manually

restart the IIS service(s).

Detection

Network Traffic: Net Tracker can be used to reassemble the collected network traffic in

TCP transcripts. These transcripts can be examined for attack keywords. The creation of

the file, “entry,” containing the Registry information, is done with the “cat” command.

As a result, the TCP transcripts will reveal the text strings of the file, shown in Figure 8-

2. The text strings can be used by a string-matching intrusion detection system to detect

77

the attack. A good string to search for is “Aedebug.” In addition, the transcripts will

show that regedit.exe was run by the attacker.

Host Data from the 1999 Evaluation: Similar to the way a CrashIIS attack can be

detected, a Yaga attack can be detected in the Windows NT security log by observing that

a command is executed by the inetinfo.exe service when the service crashes. In this case,

the process ID of the inetinfo.exe process will match the process ID that launches the

net.exe command, as shown in Figure 8-3.

Net.exe
Launches

IIS
Launches

Figure 8-3: Net.exe Program Launches when IIS Crashes in a Yaga Attack.

10:32:08 AM
A new process has been created:
 New Process ID: 2155093504
 Image File Name: inetinfo.exe
 Creator Process ID:
 2156665984
 User Name: SYSTEM
 Domain: NT AUTHORITY
 Logon ID: (0x0,0x3E7)

10:35:12 AM
A new process has been created:
 New Process ID: 2155165088
 Image File Name: net.exe
 Creator Process ID:
 2155093504
 User Name: SYSTEM
 Domain: NT AUTHORITY
 Logon ID: (0x0,0x3E7)

REGEDIT4
 [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AeDebug]
"UserDebuggerHotKey"=dword:00000000"
"Debugger"="net group \"Domain Admins\" <attacker username /ADD"
"Auto"="1"

Figure 8-2: The Yaga Attack Creates a Text File Containing Registry Information.

78

In addition, an entry in the security log will indicate that the attacker username

was added to the Administrators group by “NT AUTHORITY/SYSTEM.” This is

because the user is added via an application (very uncommon). Normally, the

Administrator would use the User Manager program, Usrmgr, to add the user to a group.

The corresponding log entry would indicate that the user was added by “Administrator,”

Extended Host Data: If the “HKEY_LOCAL_MACHINE/Software/Microsoft/Win-

dows NT/CurrentVersion/AeDebug” Registry key is audited (not audited in the 1999

evaluation), then an audit log record will indicate that the key is accessed with privileges

to modify key values. The attack can be detected by looking for this audit log record log,

shown in Figure 8-4 with the key name and “set key value” privilege in bold text.

Object Open:
 Object Server: Security
 Object Type: Key
 Object Name:
 \REGISTRY\MACHINE\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\AeDebug
 New Handle ID: 16
 Operation ID: {0,38791}
 Process ID: 2154622176
 Primary User Name: alie
 Primary Domain: EYRIE
 Primary Logon ID: (0x0,0x960D)
 Client User Name: -
 Client Domain: -
 Client Logon ID: -
 Accesses READ_CONTROL
 Query key value
 Set key value
 Create sub-key
 Enumerate sub-keys
 Notify about changes to keys

 Privileges -

Figure 8-4: Audit Record Shows Modification of the “AeDebug” Registry Key.

79

Chapter 9

Probes

A probe or scan attack is used by an attacker as a reconnaissance tool. A probe may

search a network for valid IP addresses, scan a single computer for active ports, or gather

information about a computer’s configuration, operating system, or TCP services.

Information obtained with a probe attack may reveal vulnerabilities that the attacker can

exploit in later attacks. Some probe attacks developed in the 1998 evaluation were also

used against the Windows NT victim in the 1999 evaluation, namely, Ipsweep and Nmap

(portscan). These attacks are fully documented in [10]. In addition, one Windows NT

probe attack, NTInfoScan, was developed for the 1999 evaluation.

9.1 NTInfoScan R-a-Probe(Services/Known Vulnerabilities)

Description

NTInfoScan (Version 4.2.1) is a security scanner tool that administrators can used to test

Windows NT systems for security holes. However, an attacker can use the same tool to

scan a Windows NT victim machine and obtain share information, the names of all the

users, services running, and vulnerabilities in the system configuration. The results are

saved in an HTML file, named <victim>.html, where <victim> is the IP address of the

victim machine [25].

80

Test Bed Details

Execution: To execute the attack, a PERL script, ntis.pl, runs on a Windows NT attacker

machine. The attack is prepared by editing the first line of ntis.pl with the time of day the

attack will run. Ntis.pl is then executed or placed it in the Startup group for automated

execution. Ntis.pl takes no input arguments and automatically scans the Windows NT

victim machine. The attack may take up to 20 min. to complete.

 Ntis performs many tests of the victim machine. It attempts anonymous FTP

interaction, tests for many vulnerabilities in the web server, and gathers information

about users and shared directories via NetBIOS connections. Ntis temporarily hangs

during the web services portion of the attack when it executes a particular server-side

CGI application (newdsn.exe). There is a timeout of 15min, after which the attack will

continue executing.

Verification: If the attack succeeds, there will be a file on the attacker machine, named

<victim>.html, where <victim> is the IP address of the victim machine. In addition, the

“last modified” date must agree with the date and time when the attack was launched, and

the file must be opened to verify that data was collected by the scan.

Cleanup: No cleanup is required.

Detection

Network Traffic: Net Tracker can be used to reconstruct the FTP and HTTP connections

that occur during the attack. Figure 9-1 shows the text of the generated transcripts. The

attack can be detected with a keyword matching intrusion detection system by searching

for the text strings shown in boldface. The FTP transcript shows the attacker logging into

the victim machine and attempting to upload a file called, “ntis-ftp.txt.” The HTTP

81

transcripts show the attacker testing for vulnerabilities in the victim system by attempting

several “GET” requests to the victim web server.

In this version of the attack, the attacker uses the password,

“guestaccnt@compuserve.com” to establish an anonymous FTP connection to the victim

machine. The original version of NTInfoScan uses the password,

“NTInfoScan@security.check.”

Host Data from the 1999 Evaluation: The NTInfoscan attack can be detected by

searching for a particular series of events in the 1999 evaluation Windows NT audit logs.

When the attack connects to the victim machine to collect user account information, there

will be an individual audit log entry created for each access of the Security Account

Manager (SAM). The number of accesses will be equal to the number of user accounts

on the system. Figure 9-2 shows one of the 92 audit log entries created during an

FTP CONNECTION

206.48.44.18:1256=>172.16.112.100:21
user anonymous
pass guestaccnt@compuserve.com
port 199,199,199,199,0,80
port 199,199,199,199,10,10
cwd /c
stor ntis-ftp.txt
quit
500 Invalid PORT Command.
500 Invalid PORT Command.
250 CWD command successful.
150 Opening ASCII mode data connection for ntis-
ftp.txt.
425 Can't open data connection.

HTTP CONNECTION

206.48.44.18:1256=>172.16.112.100:80
HEAD / HTTP/1.0

HTTP/1.0 200 OK
Server: Microsoft -IIS/2.0
Date: Thu, 08 Apr 1999 15:27:33 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Wed, 03 Mar 1999 16:40:55 GMT
Content-Length: 1513

HTTP CONNECTIONS

206.48.44.18:1256=>172.16.112.100:80
GET /*.idc HTTP/1.0
HTTP/1.0 400 Bad Request
GET /cgi-bin/ HTTP/1.0
HTTP/1.0 403 Access Forbidden
GET /scripts/ HTTP/1.0
HTTP/1.0 403 Access Forbidden
GET /cgi-bin/perl.exe?-v HTTP/1.0
HTTP/1.0 403 Access Forbidden
GET /scripts/perl.exe?-v HTTP/1.0
HTTP/1.0 403 Access Forbidden
GET /scripts/tools/newdsn.exe HTTP/1.0
HTTP/1.0 502 Gateway Error
Server: Microsoft -IIS/2.0
Content-Type: text/html
<head><title>CGI Application Timeout</title></head>
<body><h1>CGI Timeout</h1>
The specified CGI application exceeded the allowed
time for processing. The server has deleted the process.</body>
GET /_vti_bin/fpcount.exe?Page=default.htm|Image=3|Digits=15
HTTP/1.0
HTTP/1.0 403 Access Forbidden
GET /scripts/*%0a.pl HTTP /1.0
HTTP/1.0 403 Access Forbidden
GET /samples/search/queryhit.htm HTTP/1.0
HTTP/1.0 404 Object Not Found

Figure 9-1: Transcripts of FTP and HTTP Connections from an NTInfoScan Attack.

82

NTInfoScan attack against the Windows NT victim machine. SYSTEM accesses the

Security Account Manager with read-only privileges to gather user account information.

The NTInfoScan attack can also be detected in the IIS log file. The same

keywords that are revealed in network traffic transcripts will be revealed in the IIS log

file. Figure 9-3 shows the IIS log file entries generated by an NTInfoScan attack with

keywords in boldface text.

Object Open:
 Object Server: Security Account Manager
 Object Type: SAM_USER
 Object Name: DOMAINS\Account\Users\0000040E
 New Handle ID: 1509008
 Operation ID: {0,32531}
 Process ID: 2156644800
 Primary User Name:SYSTEM
 Primary Domain: NT AUTHORITY
 Primary Logon ID: (0x0,0x3E7)
 Client User Name:
 Client Domain:
 Client Logon ID: (0x0,0x25D8)
 Accesses READ_CONTROL
 ReadGeneralInformation
 ReadPreferences
 ReadLogon
 ReadAccount
 ListGroups

 Privileges -

Figure 9-2: One Access of the Security Account Manager by an NTInfoScan Attack.

206.48.44.18, anonymous, 4/1/99, 7:59:59, MSFTPSVC, HUME, -, 0, 15, 0, 0, 0, [1] USER , anonymous, -,
206.48.44.18, guestaccnt@compuserve.com, 4/1/99, 7:59:59, MSFTPSVC, HUME, -, 469, 31, 0, 0, 0, [1] PASS ,
guestaccnt@compuserve.com, -,
206.48.44.18, guestaccnt@compuserve.com, 4/1/99, 8:00:01,MSFTPSVC,HUME, -, 1625, 78, 0, 0, 10061, [1] created , ntis-ftp.txt, -,
206.48.44.18, guestaccnt@compuserve.com, 4/1/99, 8:00:59, MSFTPSVC, HUME, -, 0, 5, 0, 0, 0, [1] QUIT , -, -,
206.48.44.18, -, 4/1/99, 8:00:59, W3SVC, HUME, 172.16.112.100, 63, 17, 198, 200, 0, HEAD, /Default.htm, -,
206.48.44.18, -, 4/1/99, 8:00:59, W3SVC, HUME, 172.16.112.100, 0, 21, 101, 400, 123, GET, /*.idc, -,
206.48.44.18, -, 4/1/99, 8:00:59, W3SVC, HUME, 172.16.112.100, 15, 24, 111, 403, 5, GET, /cgi-bin/, -,
206.48.44.18, -, 4/1/99, 8:00:59, W3SVC, HUME, 172.16.112.100, 0, 24, 273, 403, 5, GET, /scripts/, -,
206.48.44.18, -, 4/1/99, 8:00:59, W3SVC, HUME, 172.16.112.100, 0, 35, 273, 403, 5, GET, /scripts/perl.exe , -v,
206.48.44.18, -, 4/1/99, 8:15:59, W3SVC, HUME, 172.16.112.100, 900094, 40, 275, 502, 0, GET, /scripts/tools/newdsn.exe, -,
206.48.44.18, -, 4/1/99, 8:15:59, W3SVC, HUME, 172.16.112.100, 0, 31, 273, 403, 5, GET, /scripts/*.pl , -,
206.48.44.18, -, 4/1/99, 8:15:59, W3SVC, HUME, 172.16.112.100, 32, 43, 111, 404, 3, GET, /samples/search/queryhit.htm, -,

Figure 9-3: IIS Log Entries Recorded During a NTInfoScan Attack.

83

Chapter 10

Detectability of Attacks

This chapter presents an experiment to determine the detectability of the new 1999

evaluation Windows NT attacks in Windows NT audit logs. The detection information

included in chapter six through chapter nine is assembled into attack signatures for each

of the 12 attacks. These signatures are coded into a PERL script program called NT

Audit Detect (NTAD), developed specifically for this experiment. NTAD uses Windows

NT audit logs, from the 1999 evaluation test data, as input data. Detection and false

alarm results are presented.

10.1 Motivation and Goal

The motivation for this experiment is to promote more research and development of

intrusion detection systems that utilize Windows NT audit data. Windows NT hosts are

essential components in many computing environments. Despite their growing

importance, researchers are only beginning to develop intrusion detection systems that

use Windows NT audit data. Only one participant in the 1999 DARPA Intrusion

Detection Evaluation submitted a system that could detect attacks against Windows NT

hosts using Windows NT audit data [7].

The goal of the experiment is to present the detectability of the 1999 Windows

NT attacks in audit data and provide information that will make it easier for researchers

84

to extend their existing systems to process Windows NT audit data and begin detecting

Windows NT attacks.

10.2 Testing Audit Log Signatures

To test the validity of the signatures described in chapters six through nine, a PERL

program called NTaudit-detect.pl (NTAD) was written (full source code in Appendix A).

NTAD uses the signatures defined in the attack documentation to scan for the new 1999

Windows NT attacks in audit log data. It processes comma-separated text versions of the

audit logs. These are created by using the Windows NT Event Viewer to save the original

event logs as comma-delimited text files.

Figure 10-1 shows one function of the NTAD program. This function detects

CrashIIS attacks in a Windows NT security event log. Line six begins the loop that

searches through the event log, one line at a time. Lines seven through 11 look for the

process ID of the IIS process (inetinfo.exe). Lines 12 through 17 look for the Dr. Watson

process (drwtsn32.exe), and checks to see if its Creator Process ID matches the process

ID of inetinfo.exe. If the ID’s match, lines 18 through 25 parse the date and time from

the event log and print an alert indicating that a CrashIIS attack was detected (See

Section 6-1 for CrashIIS documentation). There are similar functions in the NTAD code

for all of the Windows NT attacks developed for the 1999 evaluation (Appendix A

contains the full source code).

The results of running NTAD on the 1999 test data are shown in Figure 10-2.

Note that this is not an official set of results and that the results are overly optimistic

because the same attack generation tools were used twice, both to create test data and to

develop signatures.

85

 Column one indicates the week and day when the attack instance occurred. Week one

through week three were training data weeks, so week four translates to week one of the

test data and week five translates to week two of the test data. Days numbered one

through five represent the days Monday through Friday respectively. Column two lists

the time of day for each attack, in the form HH:MM:SS. Columns three and four indicate

the name and type of each attack. Attack instances labeled “CrashIIS-Yaga” indicate that

the CrashIIS attack was launched as part of the Yaga attack (See documentation of the

Yaga attack in Section 8.5). The fifth column of the table contains a “1” if NTAD issued

1 sub detect_crashiis {
 # drwtsn.exe started by the inetinfo.exe process will indicate a CrashIIS attack
 print "Looking for CrashIIS attacks...\n";
 # save previous line for process ID of inetinfo
5 $prevline = "";
 while (<EVENTLOG>) {
 if (($_ =~ "inetinfo.exe") && ($prevline =~ "New Process")) {
 print "Discovered inetinfo.exe \n";
 # get process ID for IIS
10 @fields = split (" ", $prevline);
 $processID = $fields[3];}
 if ($_ =~ "drwtsn32.exe") {
 print "Discovered drwtsn32.exe \n";
 # skip 1 line to look for the creator process ID
15 $_ = <EVENTLOG>;
 # compare with inetinfo ID
 if ($_ =~ $processID) {
 # skip down to get date and time
 while (!($_ =~ "HUME")) {
20 $_ = <EVENTLOG>;}
 @fields = split /,/, $_;
 $date = $fields[0];
 $time = $fields[1];
 print "CrashIIS attack detected!!:\n";
25 print "on $date at $time.\n";}
 else {print "\n"};}
 $prevline = $_;}}

Figure 10-1: Function in NTAD Detects CrashIIS Attacks in an Audit Log.

86

an alert for the attack and a “0” if it did not. The sixth and final column displays, for the

given attack, the total number of false alarms generated by NTAD in the two weeks of

test data. For example, a “1” in this column for a CrashIIS attacks indicates that NTAD

only generated one false alarm when searching the test data for CrashIIS attacks.

As indicated in the table, the audit logs for day five of week five were not

collected properly and therefore could not be used. In addition, the audit logs from some

days of the evaluation were cleared in the beginning of the day, but after the Windows

NT victim machine booted up. As a result, the initiation of the IIS process (inetinfo.exe)

in the beginning of the day was not audited. NTAD was unable to detect CrashIIS

attacks, because the IIS process ID could not be matched with the process ID of the

drwtsn32.exe process (See CrashIIS documentation in Section 6.1). The CrashIIS attacks

marked with asterisks (*CrashIIS) are the attacks that NTAD was unable to detect. The

attacks are still labeled as detected because they would have been detected if the audit

logs were not cleared after the Windows NT victim machine was booted.

As can be seen, 26 of the 29 (90%) attacks that occurred during periods where

Windows NT audit records were available were detected and only 1 false alarm was

generated. This good result, and the relatively simple nature of the signatures,

demonstrates that the Windows NT audit records collected in the 1999 evaluation contain

much useful information concerning the 1999 Windows NT attacks. This information,

however, needs to be supplemented to detect attacks, such as PPMacro and other attacks

where information on file and Registry access is important. An audit policy that audits

the Registry key and files modified by the PPMacro program would make it possible to

detect the attack in audit data (see documentation of PPMacro in Section 7.4).

87

Week-Day Time Name Category Detected Total False Alarms
All All All Attacks All 26 of 29 1
4-1 09:00:00 NTFSDOS U2R 1 0
4-1 15:50:48 Yaga U2R 1 0
4-1 16:13:08 *CrashIIS-Yaga DoS 1 1
4-2 12:00:00 NTFSDOS U2R 1 0
4-2 14:32:28 SecHole U2R 1 0
4-2 21:04:10 *CrashIIS DoS 1 1
4-3 10:00:00 PPMacro R2L 0 0
4-3 11:00:00 NetCat R2L 1 0
4-4 08:00:00 NTInfoScan Probe 1 0
4-4 08:30:00 NetBus R2L 1 0
4-4 11:00:00 DoSNuke DoS 1 0
4-4 12:05:00 PPMacro R2L 0 0
4-5 12:01:46 NetBus R2L 1 0
4-5 16:50:09 SecHole U2R 1 0
5-1 11:45:00 DoSNuke DoS 1 0
5-1 18:36:23 CrashIIS DoS 1 1
5-1 19:47:15 DoSNuke DoS 1 0
5-2 08:53:57 CaseSen U2R 1 0
5-2 13:50:03 CrashIIS DoS 1 1
5-2 14:02:07 PPMacro R2L 0 0
5-2 20:56:05 DoSNuke DoS 1 0
5-3 09:48:00 NetBus R2L 1 0
5-3 11:05:00 NetCat R2L 1 0
5-4 09:12:00 CaseSen U2R 1 0
5-4 10:21:02 NTFSDOS U2R 1 0
5-4 11:04:16 NTInfoScan Probe 1 0
5-4 11:50:00 Yaga U2R 1 0
5-4 11:57:01 *CrashIIS-Yaga DoS 1 1
5-4 16:03:41 SecHole U2R 1 0
5-4 18:30:02 NTInfoScan Probe 1 0
Audit logs for Week 5, Day 5 were not collected properly:
5-5 08:14:18 CrashIIS DoS - -
5-5 08:55:14 NetCat R2L - -
5-5 10:06:00 AnyPW U2R - -
5-5 11:08:00 Framespoofer R2L - -
5-5 12:44:00 Yaga U2R - -
5-5 12:51:12 CrashIIS-Yaga DoS - -
5-5 12:58:30 CrashIIS DoS - -
5-5 20:49:25 Casesen U2R - -

Figure 10-2: Detection Results of the ntaudit-detect.pl Script (NTAD) for the New 1999 Windows NT
Attacks.

88

Chapter 11

Results and Future Work

Overall, the 1999 DARPA Off-Line Intrusion Detection Evaluation was a success and a

major improvement over the 1998 evaluation. It provided training data containing no

attacks for training anomaly detection systems. Systems were scored on attack

identification in addition to attack detection. Scoring and verification procedures were

simplified, a written security policy was provided, and a more detailed analysis of attack

misses and false alarms was performed. In addition, the 1999 attack set was extended to

include more stealthy attacks, insider attacks, and attacks against the Windows NT

operating system. This chapter summarizes the results of the 1999 evaluation regarding

Windows NT attacks and presents suggestions related to Windows NT for future

evaluations.

11.1 Windows NT Results of the 1999 Evaluation

The results of the 1999 evaluation [11] were analyzed to determine how well the best

systems performed in detecting Windows NT attacks. Systems that were designed to

detect denial-of-service and probe attacks against the Windows NT victim machine

performed well. The top two systems in this category are UCSB [38] and Emerald

Expert [20]. Systems that were designed to detect remote-to-local and user-to-root

89

attacks against Windows NT performed poorly. In fact, only one participant, RST [7],

designed systems to detect these types of attacks.

 The Windows NT attack detection results for the 1999 evaluation can be found in

[11]. Figure 11-1 shows the detections results for the two systems best at detecting probe

and denial-of-service attacks. There were a total of 16 instances of Windows NT denial

of service attacks and 8 instances of Windows NT probe attacks. These numbers include

new attacks developed for the 1999 evaluation and old attacks that were developed in the

1998 evaluation. The detection results shown in the table are relative to a maximum of

10 false alarms per day for each system. The highest scoring system was the Emerald

Expert system, which detected 69% of the Windows NT denial-of-service attacks (11 of

16) and 63% of the Windows NT probe attacks (5 of 8). One reason why these systems

did so well is that many of the attacks were not new to them. Six of the eight probe

attacks, instances of NTInfoScan, Ipsweep and Portsweep, and nine of the 16 denial-of-

service attacks, instances of CrashIIS and Smurf, were attacks seen in the 1999 training

data.

 RST was the only participant that designed systems that detect Windows NT

remote-to-local and user-to-root attacks. The RST system that was best at detecting these

attacks in the 1999 evaluation was RST State-Tester [7]. However, this system detected

fewer than 20% of the Windows NT remote-to-local and user-to-root attacks. This result

may not reflect the performance that can be achieved by the state-tester approach. This

approach uses Windows NT audit log data to detect attacks. It examines audit logs for

sequences of records that are anomalous for known processes. The state-tester approach

works well in detecting UNIX remote-to-local and user-to-root attacks, because many of

90

those attacks misuse existing programs, thereby creating anomalous BSM log records.

However, many of the 1999 Windows NT remote-to-local and user-to-root attacks, such

as NetBus and NetCat, do not misuse existing programs. Instead, these attacks introduce

new malicious code. In addition, BSM auditing information differs from Windows NT

auditing information. BSM auditing records system calls while Windows NT auditing

records higher-level information, such as object access. Finally, this was the first year

that RST designed a system to detect Windows NT attacks in audit log data.

Week-Day Time Name Category UCSB Emerald Expert
All All All DoS DoS 69% (11/16) 69% (11/16)
All All All Probe Probe 38% (3/8) 63% (5/8)
4-1 12:22:22 Portsweep Probe 0 0
4-1 16:13:08 CrashIIS DoS 1 1
4-2 21:04:10 CrashIIS DoS 1 1
4-3 14:45:47 Smurf DoS 1 1
4-3 16:43:34 Portsweep Probe 0 0
4-4 08:00:59 NTInfoScan Probe 1 1
4-4 11:00:00 DoSNuke DoS 0 1
4-5 19:25:23 Ipsweep Probe 0 1
5-1 11:45:00 DoSNuke DoS 0 0
5-1 13:30:19 ArpPoison DoS 0 0
5-1 18:36:23 CrashIIS DoS 1 1
5-1 19:47:15 DoSNuke DoS 1 0
5-2 13:50:03 CrashIIS DoS 1 1
5-2 20:56:05 DoSNuke DoS 0 1
5-4 11:04:16 NTInfoScan Probe 1 1
5-4 11:57:01 CrashIIS DoS 1 1
5-4 17:01:32 ResetScan Probe 0 0
5-4 18:30:02 NTInfoScan Probe 1 1
5-4 22:51:31 ArpPoison Dos 1 0
5-5 08:14:18 CrashIIS DoS 1 1
5-5 08:55:50 InsideSniffer Probe 0 1
5-5 10:20:00 TCPReset DoS 0 0
5-5 12:51:12 CrashIIS DoS 1 1
5-5 12:58:30 CrashIIS DoS 1 1

Figure 11-1: Detection Results for Probe and Denial-of-Service Attacks with a Maximum of 10
False Alarms per Day.

91

Despite the poor detection results for Windows NT remote-to-local and user-to-

root attacks, it is evident by the experiment performed in Chapter 10 that the attacks are

detectable in Windows NT audit logs. The experiment in Chapter 10 validated the

usefulness of the attack signatures documented in Chapters 6 through 9. These signatures

provide a good set of features that could be used to develop host-based signature-based

Windows NT intrusion detection systems. In future DARPA evaluations, the 1999

Windows NT test data will be available for training. This data, combined with other

Windows NT data, can be used to develop improved Windows NT intrusion detection

systems.

11.2 Windows NT Suggestions for Future Evaluations

This section provides suggestions regarding Windows NT in future evaluations. These

suggestions span four aspects of Windows NT in the evaluation: hardware and software,

distributed host data, traffic automation, and the attack set.

11.2.1 Hardware and Software

The following is a list of suggestions related to Windows NT hardware and software for

future evaluations:

• Use Microsoft Exchange Server as the mail server for the Windows NT victim

machine.

• Add additional Windows NT victim machines with more up-to-date Service Packs

to the test bed.

Microsoft Exchange Server [15] is the recommended Windows NT mail server for future

evaluations because it is the most popular Windows NT mail server in business and

military environments. It is more realistic to use Microsoft Exchange Server than the

92

Resource Kit mail server (Mailsrv), which has been announced as faulty and unsupported

by Microsoft [23]. At least one Windows NT victim machine must be equipped with

Service Pack 3 to be capable of running Microsoft Exchange Server. Introducing

machines with more recent Service Packs will also make the evaluation more realistic.

11.2.2 Distributed Host Data

The following is a list of suggestions related to Windows NT distributed host data for

future evaluations:

• Generate and distribute audit logs with a more extensive security auditing policy.

• Distribute other log files.

Several attack signatures were listed in the “Extended Host Data” sections of Chapters

six through ten. If the data indicated in these sections is provided in future evaluations,

participating systems that utilize host data will have a better chance of detecting

Windows NT attacks. For this reason, a more extensive Windows NT auditing policy

should be adopted in future evaluations. Such an audit policy should audit important

Registry keys and important files on the system. However, too much auditing can

significantly affect system performance. Experiments should be conducted to determine

an audit policy that provides the most useful information without severely affecting

system performance. Other Windows NT files mentioned in the “Extended Host Data”

sections contain attack signatures, and should also be distributed in future evaluations.

An example of such a file is the Dr. Watson log file, C:\WINNT\user.dmp.

11.2.3 Traffic Automation

The following is a list of suggestions related to Windows NT traffic automation for future

evaluations:

93

• Samba automation

• Other automation (macros)

In the 1999 evaluation, Windows NT attacks were executed manually when attack

actions, such as executing an email attachment or visiting a specific web page, were

necessary. If these types of actions and other Windows NT actions were automated, it

would be simpler and less time consuming to deploy Windows NT attacks in the

evaluation test bed. Automation possibilities that should be explored for future

evaluations include Samba [31], which allows UNIX machines to control Windows NT

machines, and other types of automation, such as Windows NT macros.

11.2.4 The Attack Set

The following is a list of suggestions related to the Windows NT attack set for future

evaluations:

• Buffer overflow attacks.

• More probe attacks.

• More attacks requiring the execution of Visual Basic and ActiveX email

attachments of various types.

The Windows NT attack set must be updated and extended in each successive evaluation,

to remain realistic and relatively comprehensive. Attack types that were lacking in the

1999 Windows NT attack set, and that should be considered for future attack sets include,

buffer overflow attacks and more probe attacks. In addition, Windows NT attacks that

require the victim to execute Visual Basic and ActiveX email attachments are currently

popular. Future evaluations should include more of these types of attacks to create

realistic attack sets.

94

Appendix A

Source Code for NTAD (ntaudit-detect.pl)

#!/usr/local/bin/perl

NTAD - NTAUDIT-DETECT.PL
Jonathan Korba - Last Updated 5/18/2000

This program demonstrates the detectability of NT attacks
in the NT audit data gathered from the victim NT server (HUME) in the
1999 DARPA Off-Line Intrusion Detection Evaluation.
Detection is signature based.

Input parameters for this program are the name of the audit log
text file to scan for attacks, and the type of attack(s) to detect.
The audit log text file must be created by opening an audit log
in NT EventViewer, ordering it from oldest record to newest record,
and then saving it as a comma-delimited text file.

sub usage {
 print "\nUsage:\n";
 print "ntaudit-detect.pl <audit log text file> <attack(s) to detect>\n";
 print "\nPossible attack(s) to detect:\n";
 print " casesen (U2R)\n";
 print " crashiis (DoS)\n";
 print " hardboot (Hard Reboot - Could indicate DoSNuke, AnyPW, NTFSDOS, etc.)\n";
 print " netbus (R2L)\n";
 print " netcat (R2L)\n";
 print " ntis (NTInfoScan - Probe)\n";
 print " sechole (U2R)\n";
 print " yaga (U2R)\n";
 print " all (All of the above)\n\n";
 print "\nUndetectable with 1999 Auditing Policy:\n";
 print " FrameSpoofer\n";
 print " PPMacro\n\n";
}

sub detect_casesen {
A good signature for the CaseSen Attack is:
POSIX.EXE executes, PSXSS.EXE executes,
then a user added to Admin group by SYSTEM
 $posix = 0;
 $psxss = 0;
 print "Looking for CaseSen Attacks...\n";
 while (<EVENTLOG>) {
 if (($_ =~ "POSIX.EXE") && ($posix == 0)) {
 print "Discovered execution of POSIX.EXE ";
 for ($x = 0; $x < 2; $x++) {
 # skip 2 lines to look for the User
 $_ = <EVENTLOG>;}
 if (($_ =~ "User\ Name\:") && !($_ =~ "Administrator")) {
 $posix = 1;
 print ": not run by Administrator"; }
 print "\n";
 }
 if (($_ =~ "PSXSS.EXE") && ($posix == 1) && ($psxss == 0)) {
 print "Discovered execution of PSXSS.EXE\n";
 $psxss = 1;
 }
 if (($_ =~ "Group\ Member\ Added") && ($psxss == 1)) {
 print "Discovered Group Member Added";
 # get date and time

95

 @fields = split /,/, $_;
 $date = $fields[0];
 $time = $fields[1];
 for ($x = 0; $x < 5; $x++) {
 # skip 5 lines to look for the User
 $_ = <EVENTLOG>;}
 if (($_ =~ "Caller\ User\ Name\:") && ($_ =~ "SYSTEM")) {
 print ": by SYSTEM\n";
 # CaseSen has been detected!!!
 print "CaseSen Detected at $date $time\n";
 # Reset variables because there may be more casesens
 $posix = 0;
 $psxss = 0;}
 }
 }
}

sub detect_crashiis {
drwtsn.exe started by the inetinfo.exe process will indicate a CrashIIS attack
 print "Looking for CrashIIS attacks...\n";
 # save previous line for process ID of inetinfo
 $prevline = "";
 while (<EVENTLOG>) {
 if (($_ =~ "inetinfo.exe") && ($prevline =~ "New Process")) {
 print "Discovered inetinfo.exe\n";
 # get process ID for IIS
 @fields = split (" ", $prevline);
 $processID = $fields[3];
 }
 if ($_ =~ "drwtsn32.exe") {
 print "Discovered drwtsn32.exe\n";
 # skip 1 line to look for the creator process ID
 $_ = <EVENTLOG>;
 # compare with inetinfo ID
 if ($_ =~ $processID) {
 # skip down to get date and time
 while (!($_ =~ "HUME")) {
 $_ = <EVENTLOG>;}
 @fields = split /,/, $_;
 $date = $fields[0];
 $time = $fields[1];
 print "CrashIIS attack detected!!:\n";
 print "on $date at $time.\n";}
 else {print "\n"};
 }
 $prevline = $_;
 }
}

sub detect_hardboot {
if a "Windows NT is starting up" System Event
is not preceded by "SeShutdownPrivilege" Privilege Use Event
then a hard reboot occurred
Possible attacks: DoSNuke, WinNuke, AnyPW, NTFSDOS
 print "Looking for Hard Reboots...\n";
 $privilege = 0; # flag indicating SeShutdownPrivelege Event
 while (<EVENTLOG>) {
 if ($_ =~ "SeShutdownPrivilege") {
 $privilege = 1;}
 if ($_ =~ "Windows NT is starting up.") {
 if ($privilege == 1) {
 print "Detected soft reboot.\n";}
 else {
 # skip down to get date and time
 while (!($_ =~ "HUME")) {
 $_ = <EVENTLOG>;}
 @fields = split /,/, $_;
 $date = $fields[0];
 $time = $fields[1];
 print "Detected hard reboot!!:\n";
 print "on $date at $time. (Possible attacks: DoSNuke, AnyPW, NTFSDOS)\n";}

96

 $privilege = 0; # Reset variable because there may be more reboots
 }
 }
}

sub detect_netbus {
the execution of a file called explore.exe
is an indicator of the NetBus attack
Note: If Netbus uses a different file name it will not be detected by this program
 print "Looking for NetBus Attacks...\n";
 while (<EVENTLOG>) {
 if ($_ =~ "explore.exe") {
 print "Discovered execution of explore.exe (common name for NetBus)\n";
 # skip down to get date and time
 while (!($_ =~ "HUME")) {
 $_ = <EVENTLOG>;}
 @fields = split /,/, $_;
 $date = $fields[0];
 $time = $fields[1];
 print "NetBus attack detected!!:\n";
 print "on $date at $time.\n";}
 }
}

sub detect_netcat {
A good signature for netcat is: REGEDIT.EXE executes,
and later winlog.exe executes (common name for netcat trojan)
Note: A netcat attack which uses a name other than winlog.exe will not be detected
 print "Looking for NetCat Attacks...\n";
 $reg = 0; # flag will be set to 1 if REGEDIT.EXE is run
 while (<EVENTLOG>) {
 if ($_ =~ "REGEDIT.EXE") {
 print "Discovered REGEDIT.EXE\n";
 $reg = 1;
 }
 if (($_ =~ "winlog.exe") && ($reg == 1)) {
 # skip down to get date and time
 while (!($_ =~ "HUME")) {
 $_ = <EVENTLOG>;}
 @fields = split /,/, $_;
 $date = $fields[0];
 $time = $fields[1];
 print "Detected Netcat Attack!!:\n";
 print "on $date at $time.\n";
 $reg = 0; # Reset variable because there may be more netcat attacks
 }
 }
}

sub detect_ntis {
Successful Logon IUSR via Advapi + newdsn.exe executed by SYSTEM => web scan
Successful Logon via KSecDD + multiple SAM_USER accessed by SYSTEM => netbios scan
 print "Looking for NTIS attacks...\n";
 $wlogon = 0; # web scan login
 $nlogon = 0; # netbios scan login
 $iuser = 0; # IUSR login
 $readusr = 0; # num times user database was read (at least 50 for netbios scan)
 while (<EVENTLOG>) {
 if ($_ =~ "Successful Logon") {
 $_ = <EVENTLOG>;
 if ($_ =~ "IUSR") {
 $iuser = 1;}
 for ($x = 0; $x < 4; $x++) {
 # skip 4 lines to get Logon Process
 $_ = <EVENTLOG>;}
 if ($_ =~ "KSecDD") {
 print "Detected logon via KSecDD.\n";
 $nlogon = 1;}
 if (($_ =~ "Advapi") && ($iuser == 1)) {
 print "Detected IUSR logon using Advapi.\n";
 $iuser = 0;

97

 $wlogon = 1;}}
 if (($_ =~ "newdsn.exe") && ($wlogon == 1)) {
 # skip down to get date and time
 while (!($_ =~ "HUME")) {
 $_ = <EVENTLOG>;}
 @fields = split /,/, $_;
 $date = $fields[0];
 $time = $fields[1];
 print "Detected NTIS Web Scan!!!:\n";
 print "on $date at $time.\n";
 # reset variables and look for more scans
 $wlogon = 0;
 }
 if (($_ =~ "SAM_USER") && ($nlogon == 1)) {
 for ($x = 0; $x < 5; $x++) {
 # skip 5 lines to look for the User
 $_ = <EVENTLOG>;}
 if (($_ =~ "Primary\ User\ Name\:") && ($_ =~ "SYSTEM")) {
 $readusr += 1;}
 if ($readusr == 50) {
 # skip down to get date and time
 while (!($_ =~ "HUME")) {
 $_ = <EVENTLOG>;}
 @fields = split /,/, $_;
 $date = $fields[0];
 $time = $fields[1];
 print "Detected NTIS NetBios Scan!!!:\n";
 print "on $date at $time.\n";
 # reset variables and look for more scans
 $nlogon = 0;
 $readusr = 0;}
 }
 }
}

sub detect_sechole {
A good signature for the SecHole Attack is:
a user added to Admin group by SYSTEM
Note: Could also indicate a different attack (e.g. casesen, yaga)
 print "Looking for SecHole attacks...\n";
 while (<EVENTLOG>) {
 if ($_ =~ "Group\ Member\ Added") {
 print "Discovered Group Member Added";
 # get date and time
 @fields = split /,/, $_;
 $date = $fields[0];
 $time = $fields[1];
 for ($x = 0; $x < 5; $x++) {
 # skip 5 lines to look for the User
 $_ = <EVENTLOG>;}
 if (($_ =~ "Caller\ User\ Name\:") && ($_ =~ "SYSTEM")) {
 print ": by SYSTEM\n";
 # Possible Sechole has been detected!!!
 print "Possible Sechole Detected at $date $time\n";}
 else {print "\n";}
 }
 }
}

sub detect_yaga {
A good signature for the Yaga Attack is:
1) CAT.EXE runs (not necessary)
2) REGEDIT.EXE run by a user other than Administrator
3) net.exe command run by SYSTEM (not a user)
4) Group Member Added by SYSTEM (not Administrator)
(this last one happens with CaseSen and SecHole as well)
 $cat = 0; # flag set to one if CAT.EXE runs
 $reg = 0; # flag set to one if REGEDIT.EXE runs
 $net = 0; # flag set to one if net.exe runs
 print "Looking for Yaga Attacks...\n";
 while (<EVENTLOG>) {

98

 if ($_ =~ "CAT\.EXE") {
 print "Discovered CAT.EXE\n";
 $cat = 1;}
 if (($_ =~ "REGEDIT\.EXE") && ($reg != 1)) {
 print "Discovered REGEDIT.EXE";
 for ($x = 0; $x < 2; $x++) {
 # skip 2 lines to look for the User
 $_ = <EVENTLOG>;}
 if (($_ =~ "User\ Name\:") && !($_ =~ "Administrator")) {
 $reg = 1;
 print ": not run by Administrator"; }
 print "\n";
 next;}
 if (($_ =~ "net\.exe") && ($reg == 1)) {
 print "Discovered net.exe";
 for ($x = 0; $x < 2; $x++) {
 # skip 2 lines to look for the User
 $_ = <EVENTLOG>;}
 if (($_ =~ "User\ Name\:") && ($_ =~ "SYSTEM")) {
 $net = 1;
 print ": run by SYSTEM";}
 print "\n";
 next;}
 if (($_ =~ "Group\ Member\ Added") && ($net == 1)) {
 print "Discovered Group Member Added";
 # get date and time
 @fields = split /,/, $_;
 $date = $fields[0];
 $time = $fields[1];
 for ($x = 0; $x < 5; $x++) {
 # skip 5 lines to look for the User
 $_ = <EVENTLOG>;}
 if (($_ =~ "Caller\ User\ Name\:") && ($_ =~ "SYSTEM")) {
 print ": by SYSTEM\n";
 # Yaga has been detected!!!
 print "Yaga Attack Detected at $date $time\n";
 # Reset cause there may be more yagas
 $cat = 0;
 $reg = 0;
 $net = 0;
 }
 else {print "\n";}
 next;}
 }
}

if ($#ARGV != 1) {
 # requires exactly 2 args
 usage;}
else {
 # open security event log textfile
 open(EVENTLOG,"<$ARGV[0]") ||
 die "Cannot open Event Log File $!";
 $attack = $ARGV[1];
 if ($attack eq "casesen") {
 detect_casesen;}
 elsif ($attack eq "crashiis") {
 detect_crashiis;}
 elsif ($attack eq "hardboot") {
 detect_hardboot;}
 elsif ($attack eq "netbus") {
 detect_netbus;}
 elsif ($attack eq "netcat") {
 detect_netcat;}
 elsif ($attack eq "ntis") {
 detect_ntis;}
 elsif ($attack eq "sechole") {
 detect_sechole;}
 elsif ($attack eq "yaga") {
 detect_yaga;}
 elsif ($attack eq "all") {

99

 detect_casesen;
 detect_crashiis;
 detect_hardboot;
 detect_netbus;
 detect_netcat;
 detect_ntis;
 detect_sechole;
 detect_yaga;}
 else {usage;}}

exit;

100

References

[1] Ataman Software web site, http://www.ataman.com/.

[2] Boutell.com web site, http://www.boutell.com/wusage/.

[3] Bugtraq Archives (e-mail regarding Apache vulnerability). http://www.geek-

girl.com/bugtraq/1998_3/0442.html/. August 7, 1998.

[4] “Case Sensitivity Vulnerabiliy,” NT Security News,

http://www.ntsecurity.net/scripts/loader.asp?iD=/security/casesensitive.htm.

[5] Computer Emergency Response Team Website. http://www.cert.org/.

[6] Kumar Das, “Attack Development for Intrusion Detection Evaluation,” M.Eng. Thesis, MIT

Department of Electrical Engineering and Computer Science, June 2000.

[7] A. K. Ghosh, A. Schwatzbard and M. Shatz, “Learning Program Behavior Profiles for Intrusion

Detection,” in Proceedings 1st USENIX Workshop on Intrusion Detection and Network Monitoring,
Santa Clara, California, April 1999, http://www.rstcorp.com/~anup/..

[8] Insecure.org. http://www.insecure.org/.

[9] Internet Security Systems X-Force. http://www.iss.net/.

[10] Kris Kendall, “A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems,”

M.Eng. Thesis, MIT Department of Electrical Engineering and Computer Science, June 1999.

[11] Lincoln Laboratory ID Evaluation Website, MIT, http://www.ll.mit.edu/IST/ideval/index.html/, 2000,

contains information on the 1998 and 1999 evaluations. Follow instructions on this web site or send
email to the authors (rpl or jwh@sst.ll.mit.edu) to obtain access to a password protected site with
complete up-to-date information on these evaluations and results.

[12] Lawrence Berkeley National Laboratory, Network Research Group Homepage.

http://www.nrg.ee.lbl.gov/. May 1999.

[13] Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines, Kristopher R. Kendall, David

McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod, Robert K. Cunningham, and Marc A.
Zissman, “Evaluating Intrusion Detection Systems: the 1998 DARPA Off-Line Intrusion Detection
Evaluation,” in Proceedings of the 2000 DARPA Information Survivability Conference and Exposition
(DISCEX), Vol. 2 (2000).

[14] Richard P. Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, Kumar Das, “The 1999

DARPA Off-Line Intrusion Detection Evaluation,” submitted to Proceedings of the 3rd International
Workshop on Recent Advances in Intrusion Detection (RAID 2000).

[15] “Microsoft Exchange Server Site,” Microsoft BackOffice, http://www.microsoft.com/exchange/.

[16] Microsoft Windows NT Server Resource Kit, Version 4.0, Microsoft Press, One Microsoft Way,

Redmond, Washington, 98052, October 1996.

[17] James D. Murray. Windows NT Event Logging. O’Reilly & Associates, Inc., 101 Morris Street,

Sebastopol CA, 95472, September 1998.

101

[18] NetBus web site, http://www.netbus.com.

[19] Net Security web site, http://www.net-security.sk/bugs/NT/oob.html.

[20] P. Neumann and P. Porras, “Experience with EMERALD to DATE”, in Proceedings 1st USENIX

Workshop on Intrusion Detection and Network Monitoring, Santa Clara, California, April 1999, pp. 73-
80, http://www.sdl.sri.com/emerald/index.html/.

[21] Next Step Software web site, http://nssoft.hypermart.net/.

[22] NT Security News, http://www.ntsecurity.net/.

[23] “NT 4.0 Resource Kit Utilities Corrections and Comments,” Microsoft Product Support Services,

http://support.microsoft.com/support/kb/articles/Q159/5/64.asp.

[24] NTBugTraq web site, http://www.ntbugtraq.com/.

[25] NTInfoScan Home Page, http://www.infowar.co.uk/mnemonix/ntinfoscan.htm/.

[26] Vern Paxson, “Empirically-Derived Analytic Models of Wide-Area TCP Connections”, IEEE/ACM

Transactions on Networking, Vol. 2, No. 4, August, 1994, ftp://ftp.ee.lbl.gov/papers/WAN-TCP-
models.ps.Z..

[27] Nicholas Puketza, Mandy Chung, Ronald Olsson, and Biswanath Mukherjee. “A Software Platform

for Testing Intrusion Detection Systems,” IEEE Software, September/October, 1997.

[28] Nicholas Puketza, Kui Zhang, Mandy Chung, Biswanath Mukherjee, Ronald Olsson. “A

Methodology for Testing Intrusion Detection Systems.” Technical report, University of California,
Davis, Department of Computer Science, Davis, CA 95616, September 1995.

[29] Rootshell Website. http://www.rootshell.com/, 1999.

[30] Ko, C., M. Ruschitzka, and K. Levitt. “Execution Monitoring of Security-Critical Programs in a

Distributed System: A Specifications-Based Approach,” In Proceedings 1997 IEEE Symposium on
Security and Privacy, pp. 134-144, Oakland, CA: IEEE Computer Society Press.

[31] Samba web site, http://www.samba.org/.

[32] “Sechole Lets Non-administrative Users Gain Debug Level Access to a System Process,” Microsoft

Product Support Services, http://support.microsoft.com/support/kb/articles/Q190/2/88.ASP?LN=EN-
US&SD=gn&FR=0/.

[33] “Security Hole #1,” Cybermedia Software Private Limited,

http://www.cybermedia.co.in/cspl21/nt_security/Sechole.htm.

[34] Tom Sheldon. Windows NT Security Handbook . Osborne McGraw-Hill, 2600 Tenth Street, Berkeley

CA, 94710, 1997.

[35] Sun Microsystems, Solaris Security Website. http://www.sun.com/solaris/2.6/ds-security.html. May

1999.

[36] Sysinternals web site, http://www.sysinternals.com/.

[37] Tripwire web site, http://www.tripwire.com/.

102

[38] G. Vigna and R. Kemmerer, "NetSTAT: A network-based intrusion detection approach”, in
Proceedings of the 14th Annual Computer Security Applications Conference, Scottsdale, Arizona,
December 1998, http://www.cs.ucsb.edu/~kemm/netstat.html/.

[39] Daniel Weber, “A Taxonomy of Computer Intrusions,” M.Eng Thesis, MIT Department of Electrical

Engineering and Computer Science, June 1998.

[40] Seth Webster. “The Development and Analysis of Intrusion Detection Algorithms.,” Master’s Thesis,

Massachusetts Institute of Technology, Cambridge, MA, 02139, 1998.

[41] “Whitehats Max Vision Network Security and Penetration Testing,” http://www.whitehats.com/.

[42] “Windows spoofing security bug,” http://www.whitehats.com/browsers/b14/b14.html.

[43] Winzip web site, http://www.winzip.com/.

