

Considering Both Intra-Pattern and Inter-Pattern Anomalies for Intrusion

Detection

Ning Jiang Kien A. Hua

School of EECS, University of Central
Florida

Orlando, FL 32816-2362
{njiang, kienhua} @cs.ucf.edu

Abstract

Simon Sheu1

Department of Computer Science
National Tsing Hua University
101, Section 2, Kuang Fu Road,

Hsin-Chu, Taiwan 30013, R.O.C.
sheu@cs.nthu.edu.tw

1The author was supported by the MOE Program for Promoting Academic
 Excellent of Universities, Grant No. 89-E-FA04-1-4, Taiwan, R.O.C.

Various approaches have been proposed to discover
patterns from system call trails of UNIX processes to
better model application behavior. However, these
techniques only consider relationship between system
calls (or system audit events). In this paper, we first
refine the definition of maximal patterns given in [8] and
provide a pattern extraction algorithm to identify such
maximal patterns. We then add one additional dimension
to the problem domain by also taking into consideration
the overlap relationship between patterns. We argue that
an execution path of an application is usually not an
arbitrary combination of various patterns; but rather,
they overlap each other in some specific order. Such
overlap relationship characterizes the normal behavior of
the application. Finally, a novel pattern matching
module is proposed to detect intrusions based on both
intra-pattern and inter-pattern anomalies. We test this
idea using the data sets obtained from the University of
New Mexico. The experimental results indicate that our
scheme detect significantly more anomalies than the
scheme presented in [8] while maintaining a very low
false alarm rate.

1. Introduction

Intrusion detection using trails of system calls (system
audit events) has been studied extensively for many years.
In the original works ([2][3][4][10]) of Forrest et al, the
application under investigation is executed under various
normal scenarios. System calls invoked by the application
are captured and recorded in sequences, which are usually
referred to as training sequences. Normal behaviors of
applications are modeled by registering fixed-length
subsequences (i.e. patterns) of these training sequences.

Intrusions are reported when there are significant
deviations between the newly observed sequences (i.e.
intrusion sequences) and the stored fixed-length patterns.
The fixed-length pattern approach works well as long as
the length of the pattern is properly chosen. Wespi et al
proposed several schemes [7][8][9] to produce variable-
length patterns. In particular, the technique, presented in
[8], showed significant improvement over the fixed-
length pattern methods. The main idea of the scheme
involves discovering variable length maximal patterns
and generating “building-blocks” to compose potentially
any possible normal system audit sequences.

In this paper, we first refine the definition of maximal
patterns in [8] and provide a pattern extraction algorithm
to identify such maximal patterns. We then add one more
dimension to the problem domain. In addition to
examining the relationship between individual system
calls (or system audit events), our technique also takes
into consideration the relationship between patterns. We
argue that an execution path of an application is usually
not an arbitrary combination of various patterns; but
rather, they overlap each other in some specific order.
Such overlap relationship characterizes the normal
behavior of the application. Finally, a novel pattern
matching module is proposed to detect intrusions based
on both intra-pattern and inter-pattern anomalies. We
tested our technique using the data sets obtained from the
University of New Mexico. The experimental results
indicated that with approximately the same space and
time efficiency, our scheme detected significantly more
anomalies while maintaining a very low false alarm rate.

To the best of our knowledge, the proposed intrusion
detection method is the first to exploit overlap
relationship between patterns. In [2][3][4][10], overlap
relationship between patterns is implicitly recorded by

sliding a window over all the system calls and capturing
unique sequences. However, the information is not
utilized in the detection of attacks. In [8], the main idea is
to identify “building blocks” to model normal application
behavior. As a result of the pattern reduction operation,
overlapping patterns are “flatted” and overlap relationship
between patterns is no longer preserved.

2. System Architecture and Definition

In this section, we first give a brief description of the
architecture of our intrusion detection system. Notations
and formal definitions are then presented to facilitate
further discussion.

2.1. System Architecture

The system consists of two parts: the offline training
part and the online detection part. Operations of each
component are described as follows:

1. Data collection module: The application under
investigation is executed under various normal usage
scenarios. During each execution, the application
spawns one or many processes. System calls invoked
by each of these processes are captured and recorded
in a sequence. The output of this module is a number
of system call sequences.

2. Data preprocessing module: First, each system call of
the training trails is translated into a system call ID
according to a predefined translation table. Identical
consecutive system call IDs are then aggregated into
one. After aggregation, there might be groups of
identical system call sequences. For each group, we
only keep one representative sequence and remove
all other sequences.

3. Pattern extraction module: This module extracts
maximal patterns from selected set of sequences
generated by the data preprocessing module.

4. Pattern overlap relationship identification module:
Patterns are organized into adjacency lists in which
overlap relationship between patterns is located and
maintained.

5. Pattern matching module: Incoming system calls of
the application under protection are first subject to
the same preprocessing operations as in 2. Pattern
adjacency lists are then traversed at real time to
identify both intra-pattern and inter-pattern
mismatches. Significant deviations from the normal
behavior cause the module to raise alerts.

In the following sections of the paper, we focus on the
description of the last three components.

2.2. Notations And Definitions

Consider an alphabet ∑ of size k, . In
this paper, each element of is a system call. A
sequence s is defined as

},...,,{ 21 keee=∑

∑
()naaas ,...,, 21= ,

()ni1 , ≤≤∑∈ia . The size of a sequence s is represented

by s . The input to the pattern extraction module is a set

T of training sequences: { }mTT ,...,2T=T ,1

∑

. The ith
sequence of T is defined as Ti, and the jth element of Ti is
denoted as Tij. Each element ei of can appear zero or
more times in any sequence of T. Each such occurrence
is referred to as an instance of ei.

A pattern p is a subsequence of any sequence of T.
Hereafter, a pattern with length i is referred to as an i-
pattern. A pattern p can appear at various positions in
different training sequences. We call each occurrence of a
pattern in T an instance of that pattern. We use the
notation N(p,T) to denote the total number of instances of
a pattern p in T. A pattern p is considered frequent with
respect to the training set T if and only if () 2, ≥TpN and

2≥p . In addition, we use a location pair fd , to
record the position of a pattern instance starting at the
system call Tdf in a training sequence Td. A set L(p) is
used to represent all the location pairs of a pattern p.
Apparently, () ()TpNpL ,= .
Definition 1: Given a set T of training sequences and a
frequent pattern p of T. Pattern p is maximal if and only if
there exists at least one instance of p, such that it never
appears in T as a subsequence of an instance of any other
frequent pattern q. Suppose the length of p is i, p is also
referred to as a maximal i-pattern.
Basically, Definition 1 states that a frequent pattern
cannot be maximal if it always occurs as a subsequence of
some other frequent pattern. For a given training set T,
the set P(T) represents all the maximal patterns of T.

We define a Boolean function overlap on two location
pairs 11, fd and 22 , fd of two maximal pattern p and
q, respectively, as follows:

Definition 2: Consider two maximal patterns p and q (p
and q can be identical) of a set T of training sequences.

() ()qLfdpLfd ∈∀∈∀ 2211 ,,, , a Boolean function is
defined on the two location pairs as:

() { .
)12112(

)21()21(
if

otherwise

,,,

2211












−+<−+≤∧

<∧=

=
qfpff

ffdd
TRUE

FALSE

fdfdoverlap

If () TRUEfdfdoverlap =2211 ,,, 112 +− ffp, is referred to as
the overlapping point. As an example, suppose we have
the following set T of training sequences:

T = {“4 2 66”, “4 2 66 105”, “2 66 105” }
According to Definition 1, P(T)={“4 2 66”, “2 66 105”}.
The location pairs of both of the maximal patterns in T2
are <2,1> and <2,2>, respectively. Obviously,
overlap(<2,1> ,<2,2>)=TRUE. The system call “2” in
pattern “4 2 66” is referred to as the overlapping point.

Definition 3: A maximal pattern p of a training set T is
terminable if and only if there exists an instance of p such
that it does not overlap with instances of
any maximal
pattern q. i.e.,

 () ()































¬∧

¬
∈∀∈∀∈∃

),(
),(

)(
1

1
1 loclocoverlap

loclocoverlap
qLlocTPqpLloc

For instance, the maximal pattern “4 2 66”, in the last
example, is terminable.

3. Pattern Extraction

In this section, we discuss how to compute P(T) given
a set T of training sequences. Numerous works [1][5][6]
have been proposed to recognize patterns from sequences
of events. However, many of them are aimed at
discovering patterns that are more general with richer
semantic meanings. Although it is feasible to revise some
of them to generate maximal patterns as we defined, the
performance of the revised algorithms will not be
comparable to a specialized one.

We perform a sequential scan of the training
sequences. For each never-inspected-before system call
e, we determine all maximal patterns including e in an
iterative manner. For each iteration, the following
operations are performed:

1. We expand each instance of a frequent i-pattern in
the “forward” direction of the respective training
sequence to form i+1-patterns.

2. Certain i-pattern instances are expanded in the
“backward” direction of the respective training
sequence to generate maximal patterns.

3. Inspection of both directions is pruned based on a
certain observation.

After all the maximal patterns are recognized, system
call instances that never participate in any of the maximal
patterns are identified and output. Details of the algorithm
will be published in the future.

4. Discover Overlap Relationships Between
Patterns

In the last section, we discussed how to identify
maximal patterns from the training sequences. In the
current section, we examine these maximal patterns to
discover their relationships. More specifically, for each

maximal pattern)(TPp∈ , we find all the maximal
patterns overlapping with p, and determine the
corresponding overlapping points. We also identify all
terminable patterns in P(T). Internally, maximal patterns
are organized into adjacency lists with each list
corresponding to a maximal pattern. Overlapping and
terminal information is also recorded for each maximal
pattern.

5. Pattern Matching Module

In this section, we present a novel pattern matching
module that detects both intra-pattern and inter-pattern
mismatches.

During the intrusion detection stage, system calls of
various processes of the application under protection are
captured at real time. Before being sent to the pattern
matching module, system calls are filtered, translated and
aggregated, in the same way as in the training phase. The
pattern matching module processes one system call at a
time.

The pattern matching module verifies the intra-pattern
and inter-pattern relationship by traversing the adjacency
lists introduced in Section 4. Basically, a Pending Pattern
Table (PPT) is maintained for each process of the
application being monitored. The PPT records all
legitimate traversing paths. A mismatch counter is
incremented when it is impossible to further traverse the
adjacency lists (i.e. the PPT is empty). An alarm is raised
when at least l consecutive mismatches are encountered,
where l is a user defined threshold.

6. Experimental Study

To assess the proposed technique, we compare it with
an implementation of a building-block-based method
similar to [8]. Hereafter, the building-block scheme is
referred to as “the reference technique”. In our
experiments, we applied both techniques to system call
trails of the login and sendmail applications executed
under various scenarios. The test data sets can be
downloaded from the website of the University of New
Mexico (http://www.cs.unm.edu/~immsec/).

We compared both techniques based on their
effectiveness, the size of the pattern database, and time
efficiency. To measure the effectiveness, we count the
number of sequences reported as abnormal. The length of
a reported abnormal sequence must be greater than or
equal to a predefined threshold, l. The sizes of the pattern
databases are measured by counting the internal nodes of
the respective data structures (tree for the referenced
technique). The time efficiency of both pattern matching
modules is determined by their average PPT sizes.

http://www.cs.unm.edu/~immsec/

The login data set was used to test the ability of the
proposed technique to detect Trojan horse attacks. We
used all 24 normal traces to train the system. Two types
of Trojan horse intrusion scripts were employed to attack
the target system. One of the two scripts was recovered
from an installation of Linux root kit based on a Linux
version which is different from the one used to collect
normal data. To achieve a stricter test, a second type of
intrusion code was “home-grown” by UNM. The
experimental result is very promising. With
approximately the same time and space cost, our scheme
detected at least 100% more anomalies than the
referenced technique without raising any false alarm.

The sendmail data set has a total of 311 normal
sequences, containing approximately 1.5 million system
calls. 64 sequences remained after aggregation and
duplicate reduction. Of these 64 sequences, 57 were
selected to train the system, accounting for approximately
70% of all the system calls. The remaining trails were
used to test for false alarm rate. Many intrusion scripts
were implemented to generate anomalous behaviors.
Again, with approximately the same time and space
overhead, our approach detected on average 70% more
anomalies than the reference technique. In particular,
when the threshold l is set to 12, our scheme detected all
the intrusions. The reference technique, on the other
hand, failed to raise any alarm for one particular
intrusion. However, in terms of false alarm rate, the
referenced technique performed slightly better. It did not
raise any false alarm while our scheme raised 2 false
alarms when l is set to 12.

7. Concluding Remarks

In this paper, we propose a technique that detects

intrusions based on both intra-pattern and inter-pattern
anomalies. Our contributions are as follows:

1. We refined the definition of maximal pattern based
on the definition given in [8].

2. An algorithm was proposed to identify maximal
patterns in given training sequences.

3. Techniques were developed for identifying and
storing overlap relationship between patterns.

4. An efficient pattern matching algorithm was
designed.

The proposed technique was tested against a method
similar to the one presented in [8] using the popular
sendmail and login data sets. The experimental results
indicate that our scheme

1. Detected significantly more anomalies with time and
space efficiency similar to the technique proposed in
[8],

2. Identified an intrusion missed by the technique
proposed in [8], and

3. Achieved a very low false alarm rate.
We, thus, conclude that overlap relationship between

patterns is important to intrusion detection. The concept is
simple and inexpensive to implement.

8. References

[1] Rakesh Agrawal, Ramakrishnan Srikant. Mining sequential
patterns. In Proc. of the 11th International Conference on Data
Engineering, Taipei, Taiwan, March 1995.

[2] Stephanie Forrest, Steven A. Hofmeyr, Anil Somahaji, and
Thomas A. Longstaff. A sense of self for Unix processes. In
Proceedings of the 1996 IEEE Symposium on Research in
Security and Privacy, pages 120-128. IEEE Computer Society,
IEEE Computer Society Press, May 1996.
[3] Stephanie Forrest, Alan S. Perelson, Lawrence Allen, and
Rajesh Cherukuri. Self-nonself discrimination. In Proceedings
of the 1996 IEEE Symposium on Research in Security and
Privacy, pages 202-212. IEEE Computer Society, IEEE
Computer Society Press, May 1994.
[4] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji.
Intrusion detection using sequences of system calls. Journal of
Computer Security, 6(3):151-180, 1998.
[5] Heikki Mannila, Hannu Toivonen, A. Inkeri Verkamo.
Discovery of frequent episodes in event sequences. Data Mining
and Knowledge Discovery, 1997. 1(3): p. 259-289.
[6] Ramakrishnan Srikant, Rakesh Agrawal. Mining sequential
patterns: generalizations and performance improvements. In
International Conference on Extending Database Technology
(EDBT’1996).
[7] Andreas Wespi, Marc Dacier, and Hervé Debar. An
intrusion-detection system based on the Teiresias pattern-
discovery algorithm. In Urs E. Gattiker, Pia Pedersen, and
Karsten Petersen, editors, Proceedings of EICAR ’99, Aalborg,
Denmark, February 1999. European Institute for Computer
Anti-Virus Research. ISBN 87-987271-0-9.
[8] Andreas Wespi, Marc Dacier, and Hervé Debar. Intrusion
detection using variable-length audit trail patterns. In Hervé
Debar, Ludovic Mé, S. Felix Wu, editors, Proceedings of RAID
00, Workshop on Recent Advances in Intrusion Detection,
Toulouse, France, October 2000.
[9] Andreas Wespi, Marc Dacier, Hervé Debar, and Mehdi M.
Nassehi. Audit trail pattern analysis for detecting suspicious
process behavior. In Proceedings of RAID 98, Workshop on
Recent Advances in Intrusion Detection, Louvain-la-Neuve,
Belgium, September 1998.

[10] Christina Warrender, Stephanie Forrest, Barak Pearlmutter.
Detecting intrusions using system calls: alternative data models.
IEEE Symposium on Security and Privacy. May 1999.

	2.1. System Architecture
	2.2. Notations And Definitions
	7. Concluding Remarks
	8. References

