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Various approaches have been proposed to discover 
patterns from system call trails of UNIX processes to 
better model application behavior. However, these 
techniques only consider relationship between system 
calls (or system audit events).  In this paper, we first 
refine the definition of maximal patterns given in [8] and 
provide a pattern extraction algorithm to identify such 
maximal patterns. We then add one additional dimension 
to the problem domain by also taking into consideration 
the overlap relationship between patterns. We argue that 
an execution path of an application is usually not an 
arbitrary combination of various patterns; but rather, 
they overlap each other in some specific order.  Such 
overlap relationship characterizes the normal behavior of 
the application.  Finally, a novel pattern matching 
module is proposed to detect intrusions based on both 
intra-pattern and inter-pattern anomalies. We test this 
idea using the data sets obtained from the University of 
New Mexico. The experimental results indicate that our 
scheme detect significantly more anomalies than the 
scheme presented in [8] while maintaining a very low 
false alarm rate.  
 
1. Introduction 
 

Intrusion detection using trails of system calls (system 
audit events) has been studied extensively for many years. 
In the original works ([2][3][4][10]) of Forrest et al, the 
application under investigation is executed under various 
normal scenarios. System calls invoked by the application 
are captured and recorded in sequences, which are usually 
referred to as training sequences. Normal behaviors of 
applications are modeled by registering fixed-length 
subsequences (i.e. patterns) of these training sequences. 

Intrusions are reported when there are significant 
deviations between the newly observed sequences (i.e. 
intrusion sequences) and the stored fixed-length patterns. 
The fixed-length pattern approach works well as long as 
the length of the pattern is properly chosen. Wespi et al 
proposed several schemes [7][8][9] to produce variable-
length patterns. In particular, the technique, presented in 
[8], showed significant improvement over the fixed-
length pattern methods.  The main idea of the scheme 
involves discovering variable length maximal patterns 
and generating “building-blocks” to compose potentially 
any possible normal system audit sequences. 

In this paper, we first refine the definition of maximal 
patterns in [8] and provide a pattern extraction algorithm 
to identify such maximal patterns. We then add one more 
dimension to the problem domain. In addition to 
examining the relationship between individual system 
calls (or system audit events), our technique also takes 
into consideration the relationship between patterns. We 
argue that an execution path of an application is usually 
not an arbitrary combination of various patterns; but 
rather, they overlap each other in some specific order.  
Such overlap relationship characterizes the normal 
behavior of the application. Finally, a novel pattern 
matching module is proposed to detect intrusions based 
on both intra-pattern and inter-pattern anomalies. We 
tested our technique using the data sets obtained from the 
University of New Mexico. The experimental results 
indicated that with approximately the same space and 
time efficiency, our scheme detected significantly more 
anomalies while maintaining a very low false alarm rate.   

To the best of our knowledge, the proposed intrusion 
detection method is the first to exploit overlap 
relationship between patterns. In [2][3][4][10], overlap 
relationship between patterns is implicitly recorded by 



sliding a window over all the system calls and capturing 
unique sequences. However, the information is not 
utilized in the detection of attacks. In [8], the main idea is 
to identify “building blocks” to model normal application 
behavior. As a result of the pattern reduction operation, 
overlapping patterns are “flatted” and overlap relationship 
between patterns is no longer preserved. 
 
2. System Architecture and Definition 
 

In this section, we first give a brief description of the 
architecture of our intrusion detection system.  Notations 
and formal definitions are then presented to facilitate 
further discussion.  

 
2.1. System Architecture 
 

The system consists of two parts: the offline training 
part and the online detection part. Operations of each 
component are described as follows: 

1. Data collection module: The application under 
investigation is executed under various normal usage 
scenarios. During each execution, the application 
spawns one or many processes. System calls invoked 
by each of these processes are captured and recorded 
in a sequence. The output of this module is a number 
of system call sequences. 

2. Data preprocessing module: First, each system call of 
the training trails is translated into a system call ID 
according to a predefined translation table.  Identical 
consecutive system call IDs are then aggregated into 
one. After aggregation, there might be groups of 
identical system call sequences. For each group, we 
only keep one representative sequence and remove 
all other sequences. 

3. Pattern extraction module: This module extracts 
maximal patterns from selected set of sequences 
generated by the data preprocessing module. 

4. Pattern overlap relationship identification module: 
Patterns are organized into adjacency lists in which 
overlap relationship between patterns is located and 
maintained. 

5. Pattern matching module: Incoming system calls of 
the application under protection are first subject to 
the same preprocessing operations as in 2. Pattern 
adjacency lists are then traversed at real time to 
identify both intra-pattern and inter-pattern 
mismatches. Significant deviations from the normal 
behavior cause the module to raise alerts. 

In the following sections of the paper, we focus on the 
description of the last three components. 
 

2.2. Notations And Definitions 
 

Consider an alphabet ∑  of size k, . In 
this paper, each element of  is a system call. A 
sequence s is defined as 
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by s . The input to the pattern extraction module is a set 

T of training sequences: { }mTT ,...,2T=T ,1

∑

. The ith 
sequence of T is defined as Ti, and the jth element of Ti is 
denoted as Tij. Each element ei of  can appear zero or 
more times in any sequence of T.  Each such occurrence 
is referred to as an instance of ei.  

A pattern p is a subsequence of any sequence of T.  
Hereafter, a pattern with length i is referred to as an i-
pattern. A pattern p can appear at various positions in 
different training sequences. We call each occurrence of a 
pattern in T an instance of that pattern. We use the 
notation N(p,T) to denote the total number of instances of 
a pattern p in T. A pattern p is considered frequent with 
respect to the training set T if and only if ( ) 2, ≥TpN  and 

2≥p . In addition, we use a location pair fd ,  to 
record the position of a pattern instance starting at the 
system call Tdf in a training sequence Td.  A set L(p) is 
used to represent all the location pairs of a pattern p. 
Apparently, ( ) ( )TpNpL ,= . 
Definition 1: Given a set T of training sequences and a 
frequent pattern p of T. Pattern p is maximal if and only if 
there exists at least one instance of p, such that it never 
appears in T as a subsequence of an instance of any other 
frequent pattern q. Suppose the length of p is i, p is also 
referred to as a maximal i-pattern. 
Basically, Definition 1 states that a frequent pattern 
cannot be maximal if it always occurs as a subsequence of 
some other frequent pattern. For a given training set T, 
the set P(T) represents all the maximal patterns of T. 

We define a Boolean function overlap on two location 
pairs 11, fd and 22 , fd  of two maximal pattern p and 
q, respectively, as follows:  

Definition 2: Consider two maximal patterns p and q (p 
and q can be identical) of a set T of training sequences. 

( ) ( )qLfdpLfd ∈∀∈∀ 2211 ,,, , a Boolean function is 
defined on the two location pairs as:  
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If ( ) TRUEfdfdoverlap =2211 ,,, 112 +− ffp, is referred to as 
the overlapping point. As an example, suppose we have 
the following set T of training sequences: 



T = {“4 2 66”, “4 2 66 105”, “2 66 105” }  
According to Definition 1, P(T)={“4 2 66”, “2 66 105”}.  
The location pairs of both of the maximal patterns in T2 
are <2,1> and <2,2>, respectively.  Obviously, 
overlap(<2,1> ,<2,2>)=TRUE.  The system call “2” in 
pattern “4 2 66” is referred to as the overlapping point.  

Definition 3: A maximal pattern p of a training set T is 
terminable if and only if there exists an instance of p such 
that  it  does  not  overlap  with  instances of  
any maximal 
pattern q. i.e., 

 ( ) ( )































¬∧

¬
∈∀∈∀∈∃

),(
),(

)(
1

1
1 loclocoverlap

loclocoverlap
qLlocTPqpLloc

For instance, the maximal pattern “4 2 66”, in the last 
example, is terminable.  

 
3. Pattern Extraction 
 

In this section, we discuss how to compute P(T) given 
a set T of training sequences. Numerous works [1][5][6] 
have been proposed to recognize patterns from sequences 
of events. However, many of them are aimed at 
discovering patterns that are more general with richer 
semantic meanings. Although it is feasible to revise some 
of them to generate maximal patterns as we defined, the 
performance of the revised algorithms will not be 
comparable to a specialized one.  

We perform a sequential scan of the training 
sequences.  For each never-inspected-before system call 
e, we determine all maximal patterns including e in an 
iterative manner.  For each iteration, the following 
operations are performed:   

1. We expand each instance of a frequent i-pattern in 
the “forward” direction of the respective training 
sequence to form i+1-patterns. 

2. Certain i-pattern instances are expanded in the 
“backward” direction of the respective training 
sequence to generate maximal patterns. 

3. Inspection of both directions is pruned based on a 
certain observation. 

After all the maximal patterns are recognized, system 
call instances that never participate in any of the maximal 
patterns are identified and output. Details of the algorithm 
will be published in the future.   
 
4. Discover Overlap Relationships Between 
Patterns 
 

In the last section, we discussed how to identify 
maximal patterns from the training sequences.  In the 
current section, we examine these maximal patterns to 
discover their relationships.  More specifically, for each 

maximal pattern )(TPp∈ , we find all the maximal 
patterns overlapping with p, and determine the 
corresponding overlapping points.  We also identify all 
terminable patterns in P(T). Internally, maximal patterns 
are organized into adjacency lists with each list 
corresponding to a maximal pattern. Overlapping and 
terminal information is also recorded for each maximal 
pattern. 
 
5. Pattern Matching Module 
 

In this section, we present a novel pattern matching 
module that detects both intra-pattern and inter-pattern 
mismatches.  

During the intrusion detection stage, system calls of 
various processes of the application under protection are 
captured at real time. Before being sent to the pattern 
matching module, system calls are filtered, translated and 
aggregated, in the same way as in the training phase. The 
pattern matching module processes one system call at a 
time.  

The pattern matching module verifies the intra-pattern 
and inter-pattern relationship by traversing the adjacency 
lists introduced in Section 4. Basically, a Pending Pattern 
Table (PPT) is maintained for each process of the 
application being monitored. The PPT records all 
legitimate traversing paths. A mismatch counter is 
incremented when it is impossible to further traverse the 
adjacency lists (i.e. the PPT is empty). An alarm is raised 
when at least l consecutive mismatches are encountered, 
where l is a user defined threshold. 
 
6. Experimental Study 
 

To assess the proposed technique, we compare it with 
an implementation of a building-block-based method 
similar to [8].  Hereafter, the building-block scheme is 
referred to as “the reference technique”. In our 
experiments, we applied both techniques to system call 
trails of the login and sendmail applications executed 
under various scenarios.  The test data sets can be 
downloaded from the website of the University of New 
Mexico (http://www.cs.unm.edu/~immsec/). 

We compared both techniques based on their 
effectiveness, the size of the pattern database, and time 
efficiency. To measure the effectiveness, we count the 
number of sequences reported as abnormal. The length of 
a reported abnormal sequence must be greater than or 
equal to a predefined threshold, l. The sizes of the pattern 
databases are measured by counting the internal nodes of 
the respective data structures (tree for the referenced 
technique). The time efficiency of both pattern matching 
modules is determined by their average PPT sizes. 

http://www.cs.unm.edu/~immsec/


The login data set was used to test the ability of the 
proposed technique to detect Trojan horse attacks. We 
used all 24 normal traces to train the system. Two types 
of Trojan horse intrusion scripts were employed to attack 
the target system.  One of the two scripts was recovered 
from an installation of Linux root kit based on a Linux 
version which is different from the one used to collect 
normal data. To achieve a stricter test, a second type of 
intrusion code was “home-grown” by UNM. The 
experimental result is very promising. With 
approximately the same time and space cost, our scheme 
detected at least 100% more anomalies than the 
referenced technique without raising any false alarm. 

The sendmail data set has a total of 311 normal 
sequences, containing approximately 1.5 million system 
calls.  64 sequences remained after aggregation and 
duplicate reduction. Of these 64 sequences, 57 were 
selected to train the system, accounting for approximately 
70% of all the system calls. The remaining trails were 
used to test for false alarm rate. Many intrusion scripts 
were implemented to generate anomalous behaviors. 
Again, with approximately the same time and space 
overhead, our approach detected on average 70% more 
anomalies than the reference technique. In particular, 
when the threshold l is set to 12, our scheme detected all 
the intrusions. The reference technique, on the other 
hand, failed to raise any alarm for one particular 
intrusion. However, in terms of false alarm rate, the 
referenced technique performed slightly better. It did not 
raise any false alarm while our scheme raised 2 false 
alarms when l is set to 12. 

 
7. Concluding Remarks 

 
In this paper, we propose a technique that detects 

intrusions based on both intra-pattern and inter-pattern 
anomalies. Our contributions are as follows: 

1. We refined the definition of maximal pattern based 
on the definition given in [8].  

2. An algorithm was proposed to identify maximal 
patterns in given training sequences.  

3. Techniques were developed for identifying and 
storing overlap relationship between patterns.  

4. An efficient pattern matching algorithm was 
designed.  

The proposed technique was tested against a method 
similar to the one presented in [8] using the popular 
sendmail and login data sets.  The experimental results 
indicate that our scheme  

1. Detected significantly more anomalies with time and 
space efficiency similar to the technique proposed in 
[8], 

2. Identified an intrusion missed by the technique 
proposed in [8], and 

3. Achieved a very low false alarm rate. 
We, thus, conclude that overlap relationship between 

patterns is important to intrusion detection. The concept is 
simple and inexpensive to implement. 
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