
Network Intrusion Detection: Evasion,
Traffic Normalization, and End-to-End ProtocolSemantics

Mark Handley andVernPaxson
AT&T Centerfor InternetResearch at ICSI (ACIRI)

InternationalComputerScienceInstitute
Berkeley, CA94704 USA�

mjh,vern� @aciri.org

ChristianKreibich
Institut für Informatik

TechnischeUniversität München
80290München,Germany

kreibich@cs.tum.edu

Abstract

A fundamentalproblemfor network intrusiondetectionsys-
temsis the ability of a skilled attacker to evadedetectionby
exploiting ambiguitiesin thetraffic streamasseenby themon-
itor. We discussthe viability of addressingthis problemby
introducinga new network forwardingelementcalleda traffic
normalizer. The normalizersits directly in the path of traf-
fic into a site andpatchesup the packet streamto eliminate
potentialambiguitiesbeforethe traffic is seenby the moni-
tor, removing evasionopportunities. We examinea number
of tradeoffs in designinganormalizer, emphasizingtheimpor-
tantquestionof thedegreeto whichnormalizationsundermine
end-to-endprotocolsemantics.We discussthe key practical
issuesof “cold start” andattackson the normalizer, andde-
velop a methodologyfor systematicallyexaminingthe ambi-
guitiespresentin a protocolbasedon walking the protocol’s
header. We thenpresentnorm, a publicly availableuser-level
implementationof anormalizerthatcannormalizeaTCPtraf-
fic streamat 100,000pkts/secin memory-to-memorycopies,
suggestingthat a kernel implementationusing PC hardware
couldkeeppacewith a bidirectional100Mbps link with suf-
ficient headroomto weathera high-speedflooding attackof
smallpackets.

1 Intr oduction

A fundamentalproblemfor network intrusiondetection
systems(NIDSs) that passively monitor a network link
is theability of a skilled attacker to evadedetectionby
exploitingambiguitiesin thetraffic streamasseenby the
NIDS [14]. Exploitableambiguitiescanarisein three

differentways:

(i) TheNIDS maylackcompleteanalysisfor thefull
rangeof behavior allowed by a particularproto-
col. For example,an attacker canevadea NIDS
that fails to reassembleIP fragmentsby inten-
tionally transmittingtheir attack traffic in frag-
mentsratherthancompleteIP datagrams.Since
IP end-systemsarerequiredto performfragment
reassembly, theattacktraffic will still have thein-
tendedeffectat thevictim, but theNIDS will miss
the attackbecauseit never reconstructsthe com-
pletedatagrams.

Of the four commercialsystemstestedby Ptacek
and Newshamin 1998, nonecorrectly reassem-
bledfragments[14].

Also note that an attacker can evade the NIDS
even if the NIDS doesperform analysisfor the
protocol(e.g.,it doesreassemblefragments)if the
NIDS’s analysisis incomplete(e.g., it doesnot
correctlyreassembleout-of-orderfragments).

(ii) Without detailedknowledge of the victim end-
system’sprotocolimplementation,theNIDS may
be unableto determinehow the victim will treat
a given sequenceof packets if different imple-
mentationsinterpret the samestreamof packets
in differentways. Unfortunately, Internetproto-
col specificationsdonotalwaysaccuratelyspecify
thecompletebehavior of protocols,especiallyfor
rareor exceptionalconditions.In addition,differ-
entoperatingsystemsandapplicationsimplement
differentsubsetsof theprotocols.



For example,whenan end-systemreceivesover-
lapping IP fragments that differ in the pur-
porteddatafor theoverlappingregion,someend-
system’s may favor thedatafirst received,others
theportionof theoverlappingfragmentpresentin
thelowerfragment,otherstheportionin theupper
fragment.

(iii) Withoutdetailedknowledgeof thenetwork topol-
ogybetweentheNIDS andthevictim end-system,
the NIDS may be unableto determinewhethera
givenpacketwill evenbeseenby theend-system.
For example,a packet seenby theNIDS thathas
a low Time To Live (TTL) field may or may not
havesufficienthopcountremainingto make it all
theway to theend-system[12]; seebelow for an
example.

If theNIDS believesa packet wasreceivedwhen
in fact it did not reachthe end-system,then its
modelof the end-system’s protocolstatewill be
incorrect.If theattacker canfind waysto system-
atically ensurethatsomepacketswill bereceived
andsomenot, the attacker may be ableto evade
theNIDS.

The first of theseshortcomingscan in principle be ad-
dressedby a sufficiently diligent NIDS implementa-
tion, making surethat its analysisof eachprotocol is
complete. However, the other two shortcomingsare
more fundamental: in the absenceof external knowl-
edge(end-systemimplementationdetails,topologyde-
tails), no amountof analyzercompletenesswithin the
NIDS canhelp it correctlydeterminethe end-system’s
ultimateprocessingof the packet stream.On the other
hand,the attacker maybe ableto determinetheseend-
systemcharacteristicsfor a particularvictim by actively
probingthevictim, perhapsin quitesubtle(veryhardto
detect)ways. Thus,anattacker cancraft their traffic so
that,whateveralgorithmstheNIDS analyzeruses,it will
err in determininghow theend-systembehaves.

Figure1 showsanexampleof anevasionattackthatcan
exploit eitherof the last two shortcomingsabove. The
attacker fakesa missingpacket, thensendsa sequence
of TCP packetsabove the sequencehole that contains
the attack,and also sendsa sequenceof TCP packets
containinginnocuousdatafor the sameTCP sequence
space.

For the moment, ignore the “timed out” packets and
assumeall of the packetson the left arrive at the vic-
tim. Even in this case,the NIDS needsto know pre-
ciselyhow theend-systemwill interprettheinconsistent
“retransmissions”—whetherit will use“n” or “r” for
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Figure1: InconsistentTCP“retransmissions”

sequence#1, “o” or “i” for sequence#2, etc.—when
constructingthe byte streampresentedto the applica-
tion. Unfortunately, different TCP stacksdo different
things in this error case;someacceptthe first packet,
and somethe second. Thereis no simple-and-correct
rule theNIDS canusefor its analysis.

In addition, the attacker may also be able to control
which of the packetsseenby the NIDS actuallyarrive
at the end-systemandwhich do not. In Figure 1, the
attacker doesso by manipulatingthe TTL field so that
someof the packets lack sufficient hop count to travel
all the way to the victim. In this case,to disambiguate
the traffic theNIDS mustknow exactly how many for-
wardinghopslie betweenit andthevictim.

Onemightarguethatsuchevasive traffic or activeprob-
ing will itself appearanomalousto theNIDS, andthere-
fore the NIDS candetectthat an attacker is attempting
to evadeit. However, doing so is greatlycomplicated
by two factors. First, detectionof an attemptat eva-
siondegradestheprecisionof a NIDS’s detectiondown
from identifying thespecificsof anattackto only being
ableto flag thatanattackmightpossiblybein progress.
Second,network traffic unfortunatelyoften includesa
non-negligibleproportionof highly unusual,but benign,
traffic, that will often result in falsepositivesconcern-
ing possibleevasionattempts.This is discussedin [12]
astheproblemof “crud”; examplesincludeinconsistent
TCPretransmissionsandoverlappinginconsistentfrag-
ments.

In theabove argumentwe assumetheattacker is aware
of the existenceof the NIDS, hasaccessto its source
code(or candeducetheoperationof its algorithms)and
attackprofile database,andthat the attacker is actively



trying to evadethe NIDS. All of theseare prudentor
plausibleassumptions;for example,alreadythecracker
communityhasdiscussedthe issues[5] andsomeeva-
siontoolkits (developedby “white hats”to aid in testing
andhardeningNIDSs)have beendeveloped[2]. Thus,
we againemphasizethe seriousanddifficult natureof
this problem:unlessstepsaretakento addressall three
of the evasion issuesdiscussedabove, network intru-
siondetectionbasedonpassivemonitoringof traffic will
eventually be completelycircumventable,and provide
no realprotectionto sitesrelyingon it.

In this paperwe considerthe viability of addressing
theevasion-by-ambiguityproblemby introducinganew
network forwardingelementcalleda traffic normalizer.
Thenormalizer’sjob is to sit directlyin thepathof traffic
into a site (a “bump in the wire”) andpatchup or nor-
malizethe packet streamto remove potentialambigui-
ties.Theresultis thataNIDSmonitoringthenormalized
traffic streamno longerneedsto considerpotentialam-
biguitiesin interpretingthestream:thetraffic asseenby
theNIDS is guaranteedunambiguous,thanksto thenor-
malizer. For example,anormalizerprocessingthetraffic
shown in Figure1 might replacethedatain any subse-
quentinconsistentretransmissionswith thedatafromthe
originalversionof thesamesequencespace,sotheonly
text theNIDS (andtheend-system) wouldseewould be
noct.

Internet Intranet
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Monitor

Exchange
of control
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Figure2: Typical locationsof normalizerandNIDS

A normalizerdiffers from a firewall in that its purpose
is not to prevent accessto serviceson internal hosts,
but to ensurethataccessto thosehoststakesplacein a
mannerthatis unambiguousto thesite’sNIDS.Figure2
shows thetypical locationsof thenormalizerrelative to
theNIDS andtheend-systemsbeingmonitored.Wewill
refer to traffic traveling from the “Internet” to the “In-
tranet”asinbound, andto traffic in theotherdirectionas
outbound.

The basic idea of traffic normalizationwas simulta-
neously inventedin the form of a protocol scrubber
[8, 13, 17]. Thediscussionof theTCP/IPscrubberin [8]
focuseson ambiguousTCP retransmissionattackslike
theonedescribedabove. Thekey distinctionsbetween
ourwork andTCP/IPscrubbersis thatweattemptto de-
velopa systematicapproachto identifying all potential

normalizations(wefind morethan70,perAppendixA),
andwe emphasizethe implicationsof variousnormal-
izationswith regardto maintainingor erodingtheend-
to-endtransportsemanticsdefinedby the TCP/IPpro-
tocol suite. In addition, we attemptto defendagainst
attackson the normalizeritself, both throughstateex-
haustion,andthroughstatelossif theattackercancause
thenormalizeror NIDS to restart(the“cold start” prob-
lem,per � 4.1).

In thenext sectionwediscussotherpossibleapproaches
for addressingtheNIDS ambiguityproblem. In � 3 we
look at a numberof tradeoffs in thedesignof a normal-
izer, andin � 4 two importantpracticalconsiderations.� 5 first presentsa systematicapproachto discovering
possibleambiguitiesin a protocolasseenby a network
analyzerand then applies this approachto analyzing
IP version4. In � 6 we presentexamplesof particularly
illuminatingnormalizationsfor TCP, includinganambi-
guity problemthatnormalizationcannotsolve. We then
discussin � 7 auser-levelnormalizercallednorm, which
our performancemeasurementsindicateshouldbeable
to processabout100,000pkts/secif implementedin the
kernel.

2 Other approaches

In this sectionwe briefly review otherpossiblewaysof
addressingtheproblemof NIDSevasion,toprovidegen-
eralcontext for thenormalizerapproach.

Usea host-basedIDS. We caneliminateambiguitiesin
thetraffic streamby runningtheintrusiondetectionsys-
tem(IDS) on all of theend-systemhostsratherthanby
(or in addition to) passively monitoringnetwork links.
As the host IDS hasaccessto the protocolstateabove
the IP and transportstacks,it hasunambiguousinfor-
mationasto how the hostprocessesthe packet stream.
However, this approachis tantamountto giving up on
network intrusiondetection,asit losesthegreatadvan-
tageof beingabletoprovidemonitoringfor anentiresite
cheaply, by deploying only a few monitorsto watchkey
network links. Host-basedsystemsalsopotentiallyface
majordeploymentandmanagementdifficulties. In this
work, we are concernedwith the questionof whether
purelynetwork-basedIDS’scanremainviable,sowedo
notconsiderthissolutionfurther.

Understand the details of the intranet. In principle,
a NIDS can eliminatemuchof the ambiguity if it has
accessto a sufficiently rich databasecatalogingthepar-
ticulars of all of the end-systemprotocol implementa-
tionsandthenetwork topology. A majorchallengewith
thisapproachis whetherwecanindeedconstructsucha



database,particularlyfor a largesite.Perhapsaddingan
active probingelementto a NIDS cando so, andthere
hasbeensomeinitial work in this regard[9]. However,
anotherdifficulty is that theNIDS would needto know
how to make useof the database—itwould requirea
modelof everyvariantof everyOSandapplicationrun-
ningwithin thesite,potentiallyanimmensetask.

Bifur cating analysis. Finally, in somecasestheNIDS
canemploy bifurcatinganalysis[12]: if theNIDS does
not know which of two possibleinterpretationstheend-
systemmay apply to incoming packets, then it splits
its analysiscontext for that connectioninto multiple
threads,one for eachpossibleinterpretation,and ana-
lyzeseachcontext separatelyfrom thenonwards.

Bifurcating analysisworks well whenthereareonly a
smallnumberof possibleinterpretationsno matterhow
many packetsaresent.An examplewould bein thein-
terpretationof the BACKSPACE vs. DELETE character
during the authenticationdialog at the beginning of a
Telnetconnection(beforetheuserhasanopportunityto
remapthemeaningof the characters):generally, either
one or the other will deletethe characterof text most
recentlytypedby theuser. TheNIDS canform two con-
texts,oneinterpretingDELETE asthedeletioncharacter,
and the other interpretingBACKSPACE as the deletion
character. Sincethe end-systemwill be in onestateor
theother, oneof theanalysiscontexts will becorrectat
theNIDS nomatterhow many packetsaresent.

However, bifurcatinganalysiswill notbesuitableif each
arriving ambiguouspacket requiresanadditionalbifur-
cation, as in this casean attacker (or an inadvertent
spateof “crud”) cansenda streamof packetssuchthat
thenumberof analysiscontextsexplodesexponentially,
rapidly overwhelmingthe resourcesof the NIDS. Con-
sider, for example,theattackshown in Figure1. If the
NIDS bifurcatesits analysison receiptof eachpoten-
tially ambiguouspacket, it will rapidly requirea great
dealof stateandmany analysisthreads.Onceit hasseen
theeightpacketsshown, it will needthreadsfor thepos-
sibletext root, nice, rice, noot, niot, roce, roct, etc. �����

3 Normalization Tradeoffs

Whendesigninga traffic normalizer, we arefacedwith
a setof tradeoffs, which canbe arrangedalongseveral
axes:	

extentof normalizationvs.protection	
impactonend-to-endsemantics(servicemodels)	
impactonend-to-endperformance	
amountof stateheld	
work offloadedfrom theNIDS

Generallyspeaking,as we increasethe degreeof nor-
malizationandprotection,we needto hold morestate;
performancedecreasesboth for the normalizerandfor
end-to-endflows; andwe impactend-to-endsemantics
more.Ourgoalis notto determineasingle“sweetspot,”
but to understandthecharacterof thetradeoffs,and,ide-
ally, designa systemthata sitecantuneto matchtheir
local requirements.

Normalization vs. protection. As a normalizeris a
“bump in the wire,” the samebox performingnormal-
ization canalsoperformfirewall functionality. For ex-
ample,a normalizercanpreventknown attacks,or shut
down accessto internalmachinesfrom anexternalhost
whentheNIDS detectsa probeor anattack.In this pa-
perwe concentratemainly on normalizationfunctional-
ity, but will occasionallydiscussprotectivefunctionality
for whicha normalizeris well suited.

End-to-endsemantics.As muchaspossible,wewould
likeanormalizerto preservetheend-to-endsemanticsof
well-behavednetworkprotocols,whilst cleaningupmis-
behaving traffic. Somepacketsarrivingatthenormalizer
simplycannotbecorrectaccordingto theprotocolspec-
ification, andfor thesethereoften is a clearnormaliza-
tion to apply. For example,if two copiesof anIP frag-
mentarrive with thesamefragmentoffset,but contain-
ing differentdata,thendroppingeitherof thefragments
or droppingthewholepacket won’t underminethecor-
rect operationof the particularconnection.Clearly the
operationwasalreadyincorrect.

However, thereare other packets that, while perfectly
legal accordingto the protocolspecifications,maystill
causeambiguitiesfor theNIDS. For example,it is per-
fectly legitimatefor a packet to arrive at thenormalizer
with a low TTL. However, per thediscussionin the In-
troduction,theNIDS cannotbesurewhetherthepacket
will reachthedestination.A possiblenormalizationfor
suchpacketsis to increaseits TTL to a largevalue.1 For
mosttraffic, this will have no adverseeffect, but it will
breakdiagnosticssuchastraceroute, which rely on
thesemanticsof theTTL field for theircorrectoperation.

Normalizationslike these,which erodebut do not bru-
tally violate the end-to-endprotocolsemantics,present
a basictradeoff thateachsitemustweighasanindivid-
ual policy decision,dependingon its usercommunity,
performanceneeds,andthreatmodel.In ouranalysisof
different normalizations,we placeparticularemphasis
on this tradeoff, becausewe believe the long-termutil-
ity of preservingend-to-endsemanticsis oftenunderap-
preciatedandat risk of beingsacrificedfor short-term

1Clearly, this is dangerousunlessthere is no possibility of the
packet loopingaroundto thenormalizeragain.



expediency.

Impact on end-to-end performance. Somenormal-
izationsareperformedby modifying packets in a way
that removesambiguities,but alsoadverselyaffectsthe
performanceof theprotocolbeingnormalized.Thereis
noclearanswerasto how muchimpactonperformance
might beacceptable,asthis clearlydependson thepro-
tocol, localnetwork environment,andthreatmodel.

Stateholding. A NIDS systemmust hold statein or-
der to understandthe context of incominginformation.
Oneform of attackon a NIDS is a stateholdingattack,
wherebythe attacker createstraffic that will causethe
NIDS to instantiatestate(see � 4.2 below). If this state
exceedstheNIDS’sability tocope,theattackermaywell
beableto launchanattackthatpassesundetected.This
is possiblein part becausea NIDS generallyoperates
passively, andso“f ailsopen.”

A normalizeralsoneedsto holdstateto correctambigu-
ities in the dataflows. Suchstatemight involve keep-
ing trackof unacknowledgedTCPsegments,or holding
IP fragmentsfor reassemblyin the normalizer. How-
ever, unlike theNIDS, thenormalizeris in theforward-
ing path,andsohasthecapabilityto “f ail closed”in the
presenceof stateholdingattacks.Similarly, thenormal-
izer can perform “triage” amongstincoming flows: if
thenormalizeris nearstateexhaustion,it canshutdown
anddiscardstatefor flows thatdonotappearto bemak-
ing progress,whilst passingandnormalizingthosethat
do make progress.Theassumptionhereis thatwithout
complicity from internalhosts(seebelow), it is difficult
for anattacker to fake a largenumberof activeconnec-
tionsandstressthenormalizer’sstateholding.

But evengiventheability to performtriage,if anormal-
izeroperatesfail-closedthenwemusttakecareto assess
the degreeto which an attacker can exploit statehold-
ing to launchadenial-of-serviceattackagainstasite,by
forcingthenormalizerto terminatesomeof thesite’s le-
gitimateconnections.

Inbound vs. outbound traffic. The designof the Bro
network intrusion detectionsystemassumesthat it is
monitoringa bi-directionalstreamof traffic, andthatei-
ther the sourceor the destinationof the traffic can be
trusted[12]. However it is equallyeffectiveat detecting
inboundor outboundattacks.

Theadditionof a normalizerto thescenariopotentially
introducesan asymmetrydue to its location—thenor-
malizerprotectsthe NIDS againstambiguitiesby pro-
cessingthetraffic beforeit reachestheNIDS (Figure2).
Thus,an internalhostattemptingto attackan external

hostmight beableto exploit suchambiguitiesto evade
the local NIDS. If thesite’s threatmodelincludessuch
attacks,eithertwo normalizersmaybeused,oneon ei-
thersideof theNIDS, or aNIDS integratedinto asingle
normalizer. Finally, wenotethatif bothinternalandex-
ternalhostsin a connectionarecompromised,thereis
little any NIDS or normalizercando to preventtheuse
of encryptedor otherwisecovert channelsbetweenthe
two hosts.

Whilst anormalizerwill typically makemostof its mod-
ificationsto incomingpackets,theremayalsobeanum-
ber of normalizationsit applies to outgoing packets.
Thesenormalizationsareto ensurethat theinternaland
externalhosts’protocolstatemachinesstayin stepde-
spitethenormalizationof theincomingtraffic. It is also
possibleto normalizeoutgoingtraffic to prevent unin-
tendedinformationabouttheinternalhostsfrom escap-
ing ([17], andsee� 5.1below).

Protection vs. offloading work. Althoughtheprimary
purposeof a normalizeris to preventambiguoustraffic
from reachingtheNIDS whereit wouldeithercontribute
to a stateexplosionor allow evasion,a normalizercan
alsoserve to offloadwork from theNIDS. For example,
if thenormalizerdiscardspacketswith badchecksums,
then the NIDS needn’t spendcycles verifying check-
sums.

4 Real-world Considerations

Dueto theadversarialnatureof attacks,for securitysys-
temsit is particularlyimportantto considernot only the
principlesby which the systemoperates,but as much
aspossiblealsothe“real world” detailsof operatingthe
system.In this section,we discusstwo suchissues,the
“cold start”problem,andattackerstargetingthenormal-
izer’soperation.

4.1 Cold start

It is naturalwhendesigninga network traffic analyzer
to structureits analysisin termsof trackingtheprogres-
sionof eachconnectionfrom thenegotiationto begin it,
throughthe connection’s establishmentanddatatrans-
fer operations,to its termination.Unlesscarefullydone,
however, sucha designcan prove vulnerableto incor-
rectanalysisduringa cold start. That is, whentheana-
lyzerfirst beginsto run,it is confrontedwith traffic from
already-establishedconnectionsfor which the analyzer
lacksknowledgeof theconnectioncharacteristicsnego-
tiatedwhentheconnectionswereestablished.

For example,the TCP scrubber[8] requiresa connec-



tion to go throughthenormalstart-uphandshake. How-
ever, if a valid connectionis in progress,andthescrub-
berrestartsor otherwiselosesstate,thenit will terminate
any connectionsin progressat thetimeof thecoldstart,
sinceto its analysistheir traffic exchangesappearto vio-
latetheprotocolsemanticsthatrequireeachnewly seen
connectionto begin with astart-uphandshake.

The cold-startproblemalsoaffects the NIDS itself. If
theNIDS restarts,the lossof statecanmeanthatprevi-
ouslymonitoredconnectionsareno longermonitorable
becausethestatenegotiatedat connectionsetuptime is
no longer available. As we will show, techniquesre-
quiredto allow cleannormalizerrestartscanalsohelpa
NIDS with coldstart ( � 6.2).

Finally, wenotethatcoldstartis notanunlikely “corner
case”to dealwith, but insteadanon-goingissuefor nor-
malizersandNIDSalike. First,anattackermightbeable
to forcea cold startby exploiting bugsin eithersystem.
Second,from operationalexperiencewe know thatone
cannotavoid occasionallyrestartinga monitor system,
for exampleto reclaimleakedmemoryor updateconfig-
urationfiles. Accordingly, a patientattacker who keeps
aconnectionopenfor a longperiodof timecanensurea
highprobabilitythatit will spanacoldstart.

4.2 Attacking the Normalizer

Inevitably wemustexpectthenormalizeritself to bethe
target of attacks. Besidescompletesubversion,which
canbe preventedonly thoughgooddesignandcoding
practice,two otherwaysa normalizercanbe attacked
arestateholdingattacksandCPUoverloadattacks.

Stateholding attacks. Somenormalizationsarestate-
less.For example,theTCPMSSoption(MaximumSeg-
mentSize) is only allowed in TCP SYN packets. If a
normalizerseesa TCPpacket with anMSSOptionbut
no SYN flag, then this is illegal; but even so, it may
beunclearto the NIDS what the receiving hostwill do
with theoption,sinceits TCPimplementationmight in-
correctlystill honorit. Becausetheuseof theoption is
illegal, the normalizercansafelyremove it (andadjust
the TCP checksum)without needingto instantiateany
statefor thispurpose.

Other normalizationsrequire the normalizer to hold
state.For example,anattacker cancreateambiguityby
sendingmultiple copiesof an IP fragmentwith differ-
entpayloads.While a normalizercanremovefragment-
basedambiguitiesby reassemblingall fragmentedIP
packets itself before forwarding them (and if neces-
saryre-fragmentingcorrectly),to dothis,thenormalizer
musthold fragmentsuntil they canbereassembledinto

a completepacket. An attacker canthuscausethenor-
malizerto useup memoryby sendingmany fragments
of packetswithout ever sendingenoughto completea
packet.

This particularattackis easilydefendedagainstby sim-
ply boundingthe amountof memorythat can be used
for fragments,andculling theoldestfragmentsfrom the
cacheif thefragmentcachefills up. Becausefragments
tendto arrive together, thissimplestrategy meansanat-
tacker hasto flood with a very high rateof fragments
to causea problem. Also, asIP packetsareunreliable,
there’snoguaranteethey arriveanyway, sodroppingthe
occasionalpacket doesn’t breakany end-to-endseman-
tics.

More difficult to defendagainstis an attacker causing
thenormalizerto hold TCPstateby floodingin, for ex-
ample,thefollowing ways:

1. Simple SYN flooding with SYNs for multiple
connectionsto thesameor to many hosts.

2. ACK flooding. A normalizerreceiving a packet
for which it has no statemight be designedto
theninstantiatestate(in orderto addressthe“cold
start”problem).

3. Initial window flooding. The attacker sendsa
SYN to aserver thatexists,receivesaSYN-ACK,
and then floods data without waiting for a re-
sponse.A normalizerwouldnormallytemporarily
storeunacknowledgedtext to preventinconsistent
retransmissions.

Our strategy for defendingagainst theseis twofold.
First, thenormalizerknowswhetheror not it’sunderat-
tackby monitoringtheamountof memoryit is consum-
ing. If it’s not underattack,it caninstantiatewhatever
stateit needsto normalizecorrectly. If it believesit’s
underattack,it takesamoreconservativestrategy thatis
designedto allow it to survive,althoughsomelegitimate
traffic will seedegradedperformance.

In generalouraimwhenunderattackis to only instanti-
ateTCPconnectionstatewhenweseetraffic from anin-
ternal(andhencetrusted)host,asthisrestrictsstatehold-
ing attackson thenormalizerto thoseactuallyinvolving
realconnectionsto internalhosts.Noteherethatthenor-
malizeris explicitly not attemptingto protectthe inter-
nal hostsfrom denial-of-serviceattacks;only to protect
itself andtheNIDS.

CPU overload attacks. An attacker may alsoattempt
to overloadthe CPU on the normalizer. However, un-
likestateholdingattacks,suchanattackcannotcausethe



normalizerto allow anambiguityto pass.Instead,CPU
overloadattackscanmerelycausethenormalizerto for-
wardpacketsata slower ratethanit otherwisewould.

In practice,we find thatmostnormalizationsarerather
cheapto perform( � 7.2),sosuchattacksneedto concen-
trateon the normalizationswherethe attacker canuti-
lize computationalcomplexity to their advantage.Thus,
CPU utilization attackswill normally needto be com-
bined with stateholdingattacksso that the normalizer
performsanexpensivesearchin a largestate-space.Ac-
cordingly, we needto pay greatattentionto the imple-
mentationof suchsearchalgorithms,with extensiveuse
of constant-complexity hashalgorithmsto locatematch-
ing state.An additionaldifficulty thatarisesis theneed
to beopportunisticaboutgarbagecollection,andto ap-
ply algorithmsthatarelow costat thepossibleexpense
of not beingcompletelyoptimal in the choiceof state
thatis reclaimed.

5 A SystematicApproach

ForanormalizertocompletelyprotecttheNIDS,in prin-
ciple we mustbe able to normalizeevery possiblese-
quenceof packetsthat theNIDS might treatdifferently
from theend-system.Given that theNIDS cannotpos-
sibly know all the applicationstateat the end-system
for all applications,we focusin this work on the more
tractableproblemof normalizingthe internetwork (IP,
ICMP) andtransport(TCP, UDP) layers.

Evenwith this somewhatmorerestrictedscope,we find
therearestill a very large numberof possibleprotocol
ambiguitiesto address. Consequently, it behoovesus
to developa systematicmethodologyfor attemptingto
identify andanalyzeall of the possiblenormalizations.
Themethodologyweadoptis to walk throughthepacket
headersof eachprotocolwe consider. This ensuresthat
we haveanopportunityto considereachfacetof these-
manticsassociatedwith theprotocol.

For eachheaderelement,we considerits possiblerange
of values,their semantics,andwaysan attacker could
exploit the differentvalues;possibleactionsa normal-
izer might take to thwart the attacks;and the effects
theseactionsmighthaveontheprotocol’send-to-endse-
mantics.Whilst our primary intentionis to explore the
possibleactionsa normalizercantake, theexercisealso
raisesinterestingquestionsaboutthe incompletenessof
thespecificationsof errorhandlingbehavior in Internet
protocols,andaboutthenatureof theintentionalandun-
intentionalend-to-endsemanticsof Internetprotocols.

For reasonsof space,we confineour analysishereto a

singleprotocol;wepick IP (version4) becauseit is sim-
ple enoughto cover fairly thoroughlyin this paper, yet
hasrich enoughsemantics(especiallyfragmentation)to
convey the flavor of morecomplicatednormalizations.
In � 6 we thenpresentsomeparticularly illuminating
examplesof TCPnormalizations.We deferourmethod-
ical analysisof TCP(andUDPandICMP) to [4].

Notethatmany of thenormalizationswe discussbelow
appearto addressveryunlikely evasionscenarios.How-
ever, we believe theright designapproachis to normal-
ize everythingthatwe canseehow to correctlynormal-
ize,becausepacketmanipulationandsemanticambigu-
ity is sufficiently subtlethatwe maymissanattack,but
still thwart it becausewe normalizedaway the degrees
of freedomto expresstheattack.

Figure3 shows the fields of the IP packet header. For
eachfield we identify possibleissuesthatneednormal-
izationanddiscusstheeffectsof oursolutionsonend-to-
endsemantics.Thereaderpreferringto delve into only
more interestingnormalizationsmay chooseto jump
aheadto � 5.1.

Version. A normalizershouldonly passpacketswith IP
versionfieldswhich theNIDS understands.

Header length. It maybepossibleto sendapacket with
an incorrect headerlength field that arrives at an end-
systemsandisaccepted.However, otheroperatingsystems
or internalroutersmaydiscardthepacket. ThustheNIDS
doesnotknow if thepacket will beprocessedor not.
Solution: If the headerlengthfield is lessthan20 bytes,
the headeris incomplete,and the packet shouldbe dis-
carded.If theheaderlengthfieldexceedsthepacket length,
thepacketshouldbediscarded.(SeeTotal lengthbelow for
adiscussionof exactlywhatconstitutesthepacket length.)
Effect on semantics:Packet is ill-formed—noadverseef-
fect.
Note: If the headerlength is greaterthan 20 bytes, this
indicatesoptionsarepresent.SeeIP optionprocessingbe-
low.

TypeOf Service/Diffserv/ECN. These bits have re-
cently beenreassignedto differentiatedservices[11] and
explicit congestionnotification[15].

Issue: The Diffserv bits might potentially be used to
deterministicallydrop a subsetof packets at an internal
Diffserv-enabledrouter, for exampleby sendingburstsof
packetsthatviolatetheconditioningrequiredby theirDiff-
servclass.
Solution: If thesitedoesnotactuallyuseDiffservmecha-
nismsfor incomingtraffic, clearthebits.
Effect on semantics: If Diffserv is not beingusedinter-
nally, the bits shouldbe zeroanyway, so zeroingthemis
safe.Otherwise,clearingthembreaksuseof Diffserv.
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Figure3: IP v4 Header

Issue: Somenetwork elements(such as firewalls) may
drop packetswith the ECN bits set,becausethey arenot
yetcognizantof thenew interpretationof theseheaderbits.
Solution: Clearthebits for all connectionsunlessthecon-
nectionpreviously negotiateduseof ECN. Optionally, re-
moveattemptsto negotiateuseof ECN.
Effect on semantics: For connectionsthat have not ne-
gotiateduseof ECN, no end-to-endeffect. Removing at-
temptednegotiationof ECNwill preventconnectionsfrom
benefitingfrom avoiding packet drops in somecircum-
stances.

Total length. If thetotal lengthfield doesnot matchthe
actualtotal lengthof the packet as indicatedby the link
layer, thensomeend-systemsmaytreatthepacketasbeing
onelength,somemaytreatit asbeingtheother, andsome
maydiscardthepacket.
Solution: Discardpacketswhoselengthfieldexceedstheir
link-layer length. Trim packets with longer link-layer
lengthsdown to just thosebytesindicatedby the length
field.
Effect on semantics: None,only ill-formed packets are
dropped.

IP Identifier. See
 5.1.

Must BeZero. TheIP specificationrequiresthat thebit
between“IP Identifier” and“DF” mustbezero.
Issue: If the bit is set, thenintermediaryor end-systems
processingthepacket mayor maynotdiscardit.
Solution: Clearthebit to zero.
Effect on semantics: None, sincethe bit is alreadyre-
quiredto bezero.
Note: We might think that we could just aswell discard
thepacket, sinceit violatestheIP specification.Theben-
efit of merelyclearingthebit is that if in thefuturea new
usefor thebit is deployed,thenclearingthebit will permit
connectionsto continue,ratherthanabruptlyterminating
them,in keepingwith the philosophythat Internetproto-
cols shoulddegradegraduallyin the presenceof difficul-
ties.

Don’t Fragment (DF) flag. If DF is set,andthe Maxi-
mum TransmissionUnit (MTU) anywherein the internal
network is smaller than the MTU on the accesslink to
thesite,thenanattacker candeterministicallycausesome
packets to fail to reachend-systemsbehind the smaller
MTU link. This is doneby settingDF on packets with
a largerMTU thanthelink.
Note: The NIDS might be able to infer this attackfrom
ICMP responsessentby therouterthatdropsthepackets,
but theNIDS needsto holdstateto do so,leadingto state-
holding attackson the NIDS. Also, it is not certainthat
theNIDS will alwaysseetheICMP responses,dueto rate-
limiting andmulti-pathing.
Solution: ClearDF on incomingpackets.
Effect on semantics: Breaks“Path MTU Discovery.” If
anincomingpacket is too largefor aninternallink, it will
now befragmented,whichcouldhaveanadverseeffecton
performance—intherouterperformingthefragmentation,
in theendhostperformingreassembly, or dueto increased
effective packet lossrateson thenetwork links after frag-
mentationoccurs[6]. That said, for many network envi-
ronments,theseareunlikely to beseriousproblems.

Issue: Packetsarriving with DF setanda non-zerofrag-
mentationoffset are illegal. However, it is not clear
whethertheend-systemwill discardthesepackets.
Solution: Discardsuchpackets.
Effect on semantics:None,ill-formed packet.



Mor eFragments(MF) flag , Fragment Offset.
We treatthesetwo fields togetherbecausethey areinter-
pretedtogether. An ambiguityarisesif theNIDS seestwo
fragmentsthat overlapeachotheranddiffer in their con-
tents.As notedin [14], differentoperatingsystemsresolve
theambiguitydifferently.
Solution: Reassembleincomingfragmentsin thenormal-
izer ratherthanforwardingthem. If required,re-fragment
the packet for transmissionto the internalnetwork if it is
largerthantheMTU.
Effect on semantics:Reassemblyis a valid operationfor
a routerto perform,althoughit is notnormallydone.Thus
thisdoesnotaffectend-to-endsemantics.
Note: A normalizerthat reassemblesfragmentsis vulner-
able to stateholdingattacks,and requiresan appropriate
triagestrategy to discardpartially reassembledpackets if
thenormalizerstartsto runoutof memory.

Issue:Packetswherethelengthplusthefragmentationoff-
setexceeds65535areillegal. They mayor maynotbeac-
ceptedby theendhost.They mayalsocausesomehoststo
crash.
Solution: Drop thepackets.
Effect on semantics:Packet is ill-formed, sono effect.

TTL (Time-to-live). As with DF, an attacker can use
TTL to manipulatewhichof thepacketsseenby theNIDS
reachestheend-system,perthediscussionfor Figure1.
Solution #1: In principle,aNIDS couldmeasurethenum-
berof hopsto every endhost,andignorepacketsthatlack
sufficient TTL. In practice,though,at many sitesthis re-
quiresholding a large amountof state,and it is possible
thattheinternalroutingmaychange(possiblytriggeredby
theattacker in someway) leaving awindow of timewhere
theNIDS’smeasurementis incorrect.
Solution #2: The NIDS may also be able to seeICMP
time-exceeded-in-transitpackets elicited by the attack.
However, ICMP responsesareusuallyratelimited, so the
NIDS may still not be able to tell exactly which packets
werediscarded.
Solution #3: Configurethe normalizerwith a TTL that
is larger thanthe longestpathacrossthe internalsite. If
packetsarrive that have a TTL lower thanthe configured
minimum,thenthenormalizerrestorestheTTL to themin-
imum.
Effect on semantics: First, if a routing loop passes
throughthenormalizer, thenit maybe possiblefor pack-
etsto loop forever, rapidly consumingtheavailableband-
width. Second,restoringTTL will breaktraceroute
dueto its useof limited-TTL packetsto discover forward-
ing hops. Third, restoringTTL on multicastpacketsmay
impair theperformanceof applicationsthatuseexpanding
ring searches.The effect will be that all internalhostsin
thegroupappearto be immediatelyinsidethenormalizer
from thepointof view of thesearchalgorithm.

Protocol. Theprotocolfield indicatesthenext-layerpro-
tocol, suchasTCPor UDP. Blocking traffic basedon it is
a firewall function andnot a normalizerfunction. How-
ever, an administratormaystill configurea normalizerto
discardpacketsthatdo not containwell-known protocols,
suchasthosetheNIDS understands.

IP headerchecksum. Packetswith incorrectIP header
checksumsmight possiblybe acceptedby end-hostswith
dodgyIP implementations.
Solution: In practicethis is not a likely scenario,but the
normalizercandiscardthesepacketsanyway, whichavoids
theNIDS needingto verify checksumsitself.
Effect on semantics: Normally, no effect. However, it
mightbepossibleto usecorruptedpacketsto gatherinfor-
mationon link errorsor to signalto TCP not to backoff
becausethe lossis dueto corruptionandnot congestion.
But sincerouterswill normallydiscardpacketswith incor-
rectIP checksumsanyway, theissueis likely moot.

Sourceaddress. If thesourceaddressof anIP packet is
invalid in someway, thentheend-hostmayor maynotdis-
card the packet. Examplesare127.0.0.1 (localhost),
0.0.0.0 and255.255.255.255 (broadcast),multi-
cast(classD) andclassE addresses.
Solution: Drop thepacket.
Effect on semantics:None,packet is ill-formed.
Note: If theincomingpacket hasa sourceaddressbelong-
ing to a known internalnetwork, thenormalizermight be
configuredto drop the packet. This is morefirewall-type
functionalitythannormalization,but will generallybede-
sirable. However it would breakapplicationsthat rely on
“sourcerouting” packetsvia anexternalhostandbackinto
thesite,suchasusingtraceroute to tracearoutefrom
anexternalsitebackinto the tracingsite. Also, if anout-
goingpacket hasa sourceaddressthatdoesnot belongto
aknown internalnetwork, thenormalizermightbeconfig-
uredto dropthepacket.

Destinationaddress. Likesourceaddresses,invalid des-
tination addressesmight causeunexpectedbehavior at
internal hosts. Examplesare local broadcastaddresses
(“smurf” attacks),the localhostand broadcastaddresses
mentionedabove, and classE addresses(which are cur-
rentlyunused).
Solution: Drop the packet. In addition, the normalizer
shouldbecapableof droppingincomingpacketswith des-
tinationaddressesthatwouldnotnormallyberoutedto the
site; thesemight appearasa resultof source-routing,and
it is unclearwhateffect they might have on internalhosts
or routers.
Effect on semantics:None,destinationis illegal.



IP options. IP packetsmaycontainIP optionsthatmod-
ify the behavior of internalhosts,or causepackets to be
interpreteddifferently.
Solution: Remove IP optionsfrom incomingpackets.
Effect on semantics: For end-to-endconnections,pre-
sumablynone,as IP optionsshouldnot have effectsvis-
ible at higherlayers;excepttheabsenceof anoptionmay
impair end-to-endconnectivity, for examplebecausethe
connectivity requiressourcerouting.For diagnosticstools,
potentiallyserious.
That said, the reality today is that optionsgenerallysuf-
fer from poorperformancebecauseroutersdefertheirpro-
cessingto the“slow path,” andmany sitesdisabletheiruse
to countercertainsecurityrisks. Soin practice,removing
IP optionsshouldhavelittle ill effect,otherthanthelossof
sourceroutingfor diagnosingconnectivity problems.This
lastcanbeaddressed(ascanall semantictradeoffs associ-
atedwith normalization)throughsite-specificpoliciescon-
trolling thenormalizer’s operation.

Padding. Thepaddingfield at theendof a list of IP op-
tions is explicitly ignoredby the receiver, so it is difficult
to seethatit canbemanipulatedin any usefulway. While
it doesprovideapossiblecovertchannel,sodomany other
headerfields,andthwartingtheseis notanormalizertask.
Solution: Zerothepaddingbytes,on theprinciplethatwe
performnormalizationseven whenwe do not know of a
correspondingattack.
Effect on semantics:None,field is explicitly ignored.

5.1 The IP Identifier and StealthPort Scans

TheIP identifier(ID) of outgoingpacketsmaygiveaway
information about servicesrunning on internal hosts.
This issueis not strictly a normalizerproblem,but the
normalizeris in a locationwell suitedto dealwith the
issue.

One particular problem is the exceedingly devious
stealthport-scanningtechniquedescribedin [16, 18],
which enablesanattacker to probetheservicesrunning
on a remotehostwithout giving away the IP addressof
the host being usedto conductthe scan. Figure 4 il-
lustratesthetechnique,whichwereview hereto develop
how anormalizercanthwart it. Host � is theattacker, �
is thevictim, and 
 is thepatsy. Thepatsymustrun an
operatingsystemthat incrementsthe IP ID by one2 for
everypacket sent,no matterto whatdestination—many
commonoperatingsystemsusesucha“global” IP ID.

Host � continuallyexchangespacketswith host 
 , ei-
ther through a TCP transferor simply by pinging it.
While doing this, the IP IDs of the responsesfrom 

to � normally incrementby onefrom onepacket to the

2Moregenerally, advancestheID field in apredictablefashion.

next. Now � fakesa TCP SYN to the port on � they
wish to probe,andthey fake the sourceaddressof the
packetasbeingfrom 
 .

If thereis no servicelisteningon the port, � sendsa
RSTto 
 . As 
 hasno associatedconnectionstate,

ignorestheRST, andthereis no effect on the IP IDs of
thestreamof packetsfrom 
 to � .
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Figure4: StealthPortScan

However, if thereis a servicelisteningon the port, �
sendsa SYN-ACK to 
 to completethe connection,
ratherthanaRST. 
 hasnostatefor thisconnection,and
promptlysendsaRSTbackto � . In sodoing,theglobal
ID sequenceon 
 increasesby one;consequently, in the
streamof packetsfrom 
 to � , the attacker observesa
stepof two (ratherthanone)in the ID sequence,since
it missedoneof thepacketssentby 
 , namelytheRST
from 
 to � .

Thus 
 andnot � appearsto bethehostconductingthe
port-scan,whereasin fact it is completelyinnocent. �
never seesa packet with a sourceof � . If � choosesa
differentpatsyfor everyport it wishesto check,thenthis
port scanis veryhardto detect.

Thesolutionfor patsiesis for the normalizerto scram-
ble (in a cryptographicallysecure,but reversiblefash-
ion) theIP IDs of incomingandoutgoingpackets.This
preventsinternal hostsfrom being usedas patsiesfor
suchscans.Theeffectonsemanticsis thatany diagnos-
tic protocolthat reportsthe IP IDs of incomingpackets
backto thesendermaybreak.ICMP messagescanstill
function if the normalizerappliesthe unscramblingto
theembeddedID fieldsthey carry.



The solution for victims is to use the “reliable RST”
technique(see� 6.1below). Thenormalizertransmitsa
“keep-alive” acknowledgment(ACK) packetbehindev-
ery RST packet it forwardsout of the site. When the
ACK arrivesatthepatsy, thepatsywill replywith aRST,
just asit doesin theSYN-ACK case.Consequently, the
IP ID sequenceasseenby theattackerwill jumpby two
in both cases,whetherthe victim is running the given
serviceor not.

Sendingkeep-alives for reliable RSTsgeneratesextra
traffic, but hasno effect on end-to-endsemantics,since
thekeep-alive ACK following theRSTis guaranteedto
be either rejectedby the victim (if it first received the
RST)or ignored(if theRSTwaslostandtheconnection
remainsopen).

6 Examplesof TCP Normalizations

We appliedthesame“walk theheader”methodologyas
in the previoussectionto TCP, UDP, andICMP. How-
ever, dueto spacelimitationswedeferthedetailedanal-
ysis to [4], andin this sectionfocuson threeexamples
for TCP that illuminate differentnormalizationissues:
reliableRSTs,cold start for TCP, andan exampleof a
TCPambiguitythatanormalizercannotremove.

6.1 ReliableRSTs

With TCP, the control signalsfor connectionestablish-
mentandcompletion(SYN andFIN, respectively) are
deliveredreliably, but the “abrupt termination” (RST)
signal is not. This leadsto a significantproblem: in
general,both a normalizerand a NIDS needsto tear
down statefor anexisting connectiononcethatconnec-
tion completes,in orderto recover theassociatedmem-
ory. But it is not safeto do so uponseeinga RST, be-
causethe RST packet might be lost prior to arriving at
thereceiver, or mightberejectedby thereceiver.

Thus,a monitor cannottell whethera given RST does
in fact terminateits correspondingconnection. If the
monitorerrsandassumesit doeswhenin factit did not,
thenanattackercanlatercontinuesendingtraffic on the
connection,andthemonitorwill lackthenecessarystate
(namely, thattheconnectionis still established,andwith
whatsequencenumbers,windows,etc.) to correctlyin-
terpretthattraffic. On theotherhand,if themonitoras-
sumestheRSTdoesnot terminatetheconnection,thenit
is left holdingthecorrespondingstatepotentiallyindef-
initely. (Unfortunately, RST-terminationis not uncom-
monin practice,soevenfor benigntraffic, thisstatewill
grow significantlyover time.)

TheRST might fail to arrive at the receiver becauseof
normal lossprocessessuchasbuffer overflows at con-
gestedrouters,or becauseof manipulationby an at-
tacker, suchastheTTL gamesdiscussedin thecontext
of Figure1. In addition,therulesappliedby receiversto
determinewhethera particularRSTis valid vary across
differentoperatingsystems,which theNIDS likely can-
not track.

A generalsolution to this problemwould be to ensure
that RSTsare indeeddeliveredand accepted,i.e., we
want“reliableRSTs.” We cando so,asfollows. When-
ever the normalizerseesa RST packet sentfrom � to�

, afternormalizingit andsendingit on, it synthesizes
asecondpacketandsendsthatto

�
, too. Thisadditional

packet takestheform of a TCP“keep-alive,” which is a
dataless3 ACK packet with a sequencenumberjust be-
low the point cumulatively acknowledgedby

�
. The

TCPspecificationrequiresthat
�

mustin turn reply to
thekeep-alivewith anACK packetof its own, onewith
thecorrectsequencenumberto beacceptedby � , to en-
surethatthetwo TCPpeersaresynchronized.However,�

only doesthis if the connectionis still open;if it is
closed,it sendsaRSTin responseto thekeep-alive.

Thus,usingthis approach,thereare four possibleout-
comeswhenever thenormalizerforwardsa RSTpacket
(andtheaccompanying keep-alive):

(i) TheRSTwasacceptedby
�

, andso
�

will gen-
erateanotherRST backto � uponreceiptof the
keep-alive;

(ii) theRSTeitherdid notmake it to
�

, or
�

ignored
it, in which case

�
will generatean ACK in re-

sponseto thekeep-alive;

(iii) thekeep-alivedid not make it to
�

, or
�

ignored
it (thoughthis lattershouldn’t happen);

(iv) or, the response
�

sentin reply to thekeep-alive
waslostbeforethenormalizercouldseeit.

Thenormalizerthenusesthefollowing rule for manag-
ing its stateuponseeingaRST: uponseeinga RSTfrom� to

�
, retain the connectionstate; but subsequently,

uponseeinga RSTfrom
�

to � , tear downthe state.4

Thus,thenormalizeronly discardstheconnectionstate
uponseeingproof that

�
hasindeedterminatedthecon-

nection. Note that if either � or
�

misbehaves, the
schemestill works, becauseoneof the RSTswill still

3In practice,onesendsthe lastacknowledgedbyte if possible,for
interoperabilitywith olderTCPimplementations.

4Of coursewe do not senda keep-alive to make the secondRST
reliableor we’d initiateaRSTwar.



have beenlegitimate;only if � and
�

colludewill the
schemefail, and,asnotedearlier, in that casethereis
little a normalizeror a NIDS cando to thwartevasion.

Therule aboveaddressescase(i). For case(ii) , thenor-
malizerneedn’t do anything special(it still retainsthe
connectionstate,in accordancewith therule). For cases
(iii) and (iv), it will likewise retain the state,perhaps
needlessly;but thesecasesshouldbe rare,andarenot
subjectto manipulationby � . They couldbecreatedby�

if
�

is malicious;but not to mucheffect, as in that
casetheconnectionis alreadyterminatedasfar as � is
concerned.

6.2 Cold start for TCP

Recallthatthe“cold start”problemconcernshow anor-
malizershouldbehavewhenit seestraffic for a connec-
tion that apparentlyexisted before the normalizerbe-
gan its currentexecution( � 4.1). One particulargoal
is that thenormalizer(andNIDS) refrain frominstanti-
atingstatefor apparently-activeconnectionsunlessthey
candeterminethattheconnectionis indeedactive;other-
wise,afloodof bogustraffic for avarietyof non-existent
connectionswould result in the normalizercreatinga
greatdealof state,resultingin a state-holdingattack.

Accordingly, we needsomeway for the normalizerto
distinguishbetweengenuine,pre-existing connections,
andbogus,non-existentconnections,andto do so in a
statelessfashion!

As with theneedin theprevioussectionto make RSTs
trustworthy, we canagainusethetrick of encapsulating
theuncertaintyin aprobepacketandusingthestateheld
(or not held) at the receiver to inform the normalizer’s
decisionprocess.

Our approachis basedon the assumptionthat the nor-
malizerlies betweena trustednetwork andanuntrusted
network, andworks as follows. Upon seeinga packet
from � to

�
for which the normalizerdoesnot have

knowledgeof anassociatedconnection,if � is from the
trustednetwork, then the normalizerinstantiatesstate
for a correspondingconnectionandcontinuesasusual.
However, if � is from the untrustednetwork, the nor-
malizer transformsthe packet into a “keep-alive” by
strippingoff thepayloadanddecrementingthesequence
numberin the header. It then forwards the modified
packet to

�
and forgetsaboutit. If thereis indeeda

connectionbetween� and
�

, then
�

will respondto
the keep-alive with an ACK, which will suffice to then
instantiatestatefor theconnection,since

�
is from the

trustednetwork. If noconnectiondoesin factexist, then�
will eitherrespondwith aRST, or notatall (if

�
itself

doesnot exist, for example).In bothof thesecases,the
normalizerdoesnotwind up instantiatingany state.

The schemeworks in part becauseTCP is reliable: re-
moving thedatafrom a packet doesnot breakthecon-
nection,because� will work diligently to eventuallyde-
liver thedataandcontinuetheconnection.

(Note that a similar schemecan also be appliedwhen
thenormalizerseesaninitial SYN for anew connection:
by only instantiatingstatefor theconnectionuponsee-
ing aSYN-ACK from thetrustednetwork, theloadona
normalizerin thefaceof aSYN floodingattackis dimin-
ishedto reflecttherateatwhichthetargetcanabsorbthe
flood,ratherthanthefull incomingfloodingrate.)

Evenwith thisapproach,though,coldstartfor TCPstill
includessomesubtle,thorny issues. One in particular
concernsthewindowscalingoption thatcanbenegoti-
atedin TCP SYN packetswhenestablishinga connec-
tion. It specifiesa left-shift to be appliedto the 16 bit
window field in the TCP header, in orderto permit re-
ceiver windows of greaterthan 64 KB. In general,a
normalizermust be able to tell whethera packet will
be acceptedat the receiver. Becausereceiverscandis-
card packets with datathat lies beyond the boundsof
the receiver window, the normalizerneedsto know the
window scalingfactorin orderto mirror thisdetermina-
tion. However, uponcold start, the normalizercannot
determinethe window scalingvalue,becausethe TCP
endpointsno longerexchangeit, they just usethevalue
they agreeduponat connectionestablishment.

We know of no fully reliableway by which thenormal-
izer might infer the window scalingfactorin this case.
Consequently, if thenormalizerwishesto avoid thisam-
biguity, it musteitherensurethatwindow scalingis sim-
ply notused,i.e., it mustremovethewindowscaleoption
fromall TCPSYNpacketsto prevent its negotiation(or
it musthave accessto persistentstateso it canrecover
thecontext for eachactiveconnectionunambiguously).

Doing so is not without a potentially significantcost:
window scaling is requiredfor good performancefor
connectionsoperatingover long-haul,high-speedpaths
[1], andsiteswith suchtraffic might in particularwant
to disablethisnormalization.

More generally, this aspectof thecold startproblemil-
lustrateshow normalizationscansometimescomequite
expensively. The next sectionillustrateshow they are
sometimessimplynotpossible.



6.3 Incompletenessof Normalization

In theabsenceof detailedknowledgeaboutthevarious
applications,normalizationswill tendto berestrictedto
theinternetwork andtransportlayers.However, evenat
thetransportlevel anormalizercannotremoveall possi-
ble ambiguities.For example,thesemanticsof theTCP
urgent pointer cannotbe understoodwithout knowing
thesemanticsof theapplicationusingTCP:

r o b o t
URGENT
pointer

0 1 2 3 4

If thesendersendsthe text “robot” with theTCPur-
gentpointerset to point to the letter “b”, thenthe ap-
plication may receive either “robot” or “root,” de-
pendingon thesocket optionsenabledby the receiving
application. Without knowledgeof the socket options
enabled,thenormalizercannotcorrectlynormalizesuch
apacketbecauseeitherinterpretationof it couldbevalid.

In thiscase,theproblemis likely notsignificantin prac-
tice, becauseall protocolsof which we are aware ei-
ther enableor disablethe relevant option for the entire
connection—sotheNIDS canusea bifurcatinganalysis
without theattacker beingableto createanexponential
increasein analysisstate. However, the examplehigh-
lights that normalizers,while arguablyvery useful for
reducingtheevasionopportunitiesprovidedby ambigu-
ities,arenotanall-encompassingsolution.

7 Implementation

We have implementednorm, a fairly complete,user-
level normalizerfor IP, TCP, UDP andICMP. Thecode
comprisesabout4,800 lines of C and useslibpcap
[10] to capturepackets and a raw socket to forward
them. We have currently testednorm underFreeBSD
andLinux, andwill releaseit (andNetDuDE,seebelow)
publicly in Summer2001via www.sourceforge.net.

Naturally, for highperformanceaproductionnormalizer
wouldneedto run in thekernelratherthanat userlevel,
but our current implementationmakes testing,debug-
gingandevaluationmuchsimpler.

AppendixA summarizesthecompletelist of normaliza-
tionsnormperforms,andthesearediscussedin detailin
[4]. Herewe describeour processfor testingandevalu-
atingnorm, andfind that theperformanceon commod-
ity PChardwareis adequatefor deploymentatasitelike
ourswith a bidirectional100Mb/saccesslink to theIn-
ternet.

7.1 Evaluation methodology

In evaluatinga normalizer, wecareaboutcompleteness,
correctness,andperformance.The evaluationpresents
achallengingproblembecauseby definitionmostof the
functionalityof a normalizerappliesonly to unusualor
“impossible” traffic, and the resultsof a normalizerin
generalare invisible to connectionendpoints(depend-
ing on thedegreeto which the normalizationspreserve
end-to-endsemantics).We primarily usea trace-driven
approach,in whichwepresentthenormalizerwith anin-
put traceof packetsto processasthoughit hadreceived
them from a network interface,and inspectan output
traceof the transformedpackets it in turn would have
forwardedto theotherinterface.

Eachindividualnormalizationneedsto betestedin iso-
lation to ensurethat it behavesaswe intend. The first
problemhereis to obtaintesttraffic thatexhibits thebe-
havior wewish to normalize;oncethis is done,weneed
to ensurethatnormcorrectlynormalizesit.

With someanomalousbehavior, we cancapturepacket
tracesof traffic that our NIDS identifiesas being am-
biguous.Primarilythis is “crud” andnotrealattacktraf-
fic [12]. We can also usetools suchas nmap[3] and
fragrouter [2] to generatetraffic similar to that an at-
tackermightgenerate.However, for mostof thenormal-
izationswe identified,no real tracetraffic is available,
andsowemustgenerateourown.

Figure5: UsingNetDuDEto createtesttraffic

To this end, we developedNetDuDE (Figure 5), the
Network Dump DisplayerandEditor. NetDuDEtakes
libpcap packet tracefile,displaysthepacketsgraphi-
cally, andallowsusto examineIP, TCP, UDP, andICMP



headerfields.5 In addition,it allowsusto edit thetrace-
file, settingthe valuesof fields, addingand removing
options,recalculatingchecksums,changingthe packet
ordering,andduplicating,fragmenting,reassemblingor
deletingpackets.

To test a particularnormalization,we edit an existing
traceto createtheappropriateanomalies.We thenfeed
the tracefilethroughnorm to createa new normalized
trace. We thenboth reexaminethis tracein NetDuDE
to manuallycheckthat the normalizationwe intended
actuallyoccurred,andfeedthetracebackinto norm, to
ensurethatonasecondpassit doesnotmodify thetrace
further. Finally, we storetheinput andoutputtracefiles
in ourlibraryof anomaloustracessothatwecanperform
automatedvalidationtestswhenever we make a change
to norm, to ensurethatchangingonenormalizationdoes
notadverselyaffectany others.

7.2 Performance

As mentionedabove, our current implementationof
norm runsat userlevel, but we areprimarily interested
in assessinghow well it might run asa streamlinedker-
nel implementation,sinceit is reasonableto expectthat
a productionnormalizerwill merit a highly optimized
implementation.

To addressthis,norm incorporatesa testmodewhereby
it readsanentirelibpcap tracefile into memoryand
in additionallocatessufficient memoryto storeall the
resultingnormalizedpackets. It thentimeshow long it
takesto run, readingpacketsfrom onepool of memory,
normalizingthem,andstoringthe resultsin thesecond
memorypool. After measuringthe performance,norm
writesthesecondmemorypoolout to alibpcap trace
file, sowecanensurethatthetestdid in factmeasurethe
normalizationswe intended.

Thesemeasurementsthusfactorout the costof getting
packetsto thenormalizerandsendingthemoutoncethe
normalizeris donewith them. For a user-level imple-
mentation,this cost is high, as it involvescopying the
entirepacket streamup from kernelspaceto userspace
andthenbackdown again;for a kernelimplementation,
it shouldbelow (andwegiveevidencebelow thatit is).

For baselinetesting,weusethreetracefiles:

Trace T1: a 100,000packet tracecapturedfrom the
Internetaccesslink at theLawrenceBerkeley Na-
tional Laboratory, containingmostly TCP traf-
fic (88%) with someUDP (10%), ICMP (1.5%),

5At thetimeof writing, ICMP supportis still incomplete.

andmiscellaneous(IGMP, ESP, tunneledIP, PIM;
0.2%).Themeanpacketsizeis 491bytes.

Trace U1: a tracederived from T1, whereeachTCP
headerhasbeenreplacedwith aUDPheader. The
IP partsof thepacketsareunchangedfrom T1.

TraceU2: a100,000packettraceconsistingentirelyof
92byteUDPpackets,generatedusingnetcat.

T1 givesus resultsfor a realisticmix of traffic; there’s
nothingparticularlyunusualaboutthis tracecompared
to the othercapturednetwork traceswe’ve tested. U1
is totally unrealistic,but asUDP normalizationis com-
pletelystatelesswith veryfew checks,it givesusabase-
line numberfor how expensive the more streamlined
IP normalizationis, asopposedto TCP normalization,
which includesmany morechecksand involvesmain-
taining a control block for eachflow. TraceU2 is for
comparisonwith U1, allowing usto testwhatfractionof
theprocessingcostis per-packetasopposedto per-byte.

We performedall of our measurementson an x86 PC
running FreeBSD4.2, with a 1.1GHz AMD Athlon
Thunderbirdprocessorand133MHzSDRAM.In abare-
bonesconfigurationsuitablefor a normalizerbox, such
a machinecostsunderUS$1,000.

For aninitial baselinecomparison,weexaminehow fast
normcantake packetsfrom onememorypool andcopy
themto theother, withoutexaminingthepacketsatall:

Memory-to-memorycopyonly
Trace pkts/sec bit rate
T1,U1 727,270 2856Mb/s
U2 1,015,600 747Mb/s

Enablingall thechecksthatnormcanperformfor both
inboundandoutboundtraffic6 examinesthecostof per-
forming the testsfor the checks,even thoughmost of
thementailno actualpacket transformation,since(asin
normaloperation)mostfieldsdo not requirenormaliza-
tion:

All checksenabled
Trace pkts/sec bit rate
T1 101,000 397Mb/s
U1 378,000 1484Mb/s
U2 626,400 461Mb/s

Numberof Normalizations
Trace IP TCP UDP ICMP Total
T1 111,551 757 0 0 112,308

6Normally fewer checkswouldbeenabledfor outboundtraffic.



Comparingagainstthe baselinetests, we seethat IP
normalizationis abouthalf the speedof simply copy-
ing thepackets. Thelargenumberof IP normalizations
consistmostly of simple actionssuchas TTL restora-
tion, andclearingthe DF andDiffserv fields. We also
seethatTCPnormalization,despiteholdingstate,is not
vastlymoreexpensive, suchthat TCP/IPnormalization
is roughlyonequarterof the speedof UDP/IPnormal-
ization.

Theseresultsdo not, of course,meanthat a kernelim-
plementationforwardingbetweeninterfaceswill achieve
thesespeeds. However, the Linux implementationof
theclick modularrouter[7] canforward333,000small
packets/secona700MHzPentium-III.Theresultsabove
indicatethat normalizationis cheapenoughthat a nor-
malizerimplementedas(say)a click moduleshouldbe
able to forward normal traffic at line-speedon a bi-
directional100Mb/slink.

Furthermore,if the normalizer’s incoming link is at-
tacked by flooding with small packets,we shouldstill
have enoughperformanceto sustainthe outgoinglink
at full capacity. Thuswe concludethat deploymentof
the normalizerwould not worsenany denial-of-service
attackbasedon link flooding.

A morestressfulattackwouldbeto floodthenormalizer
with smallfragmentedpackets,especiallyif theattacker
generatesout-of-orderfragmentsandinterspersesmany
fragmentedpackets. Whilst a normalizerunderattack
canperformtriage,preferentiallydroppingfragmented
packets,wepreferto only do thisasa lastresort.

To testthis attack,we took theT1 traceandfragmented
every packet with an IP payloadlarger than 16 bytes:
traceT1-frag comprisessome3 million IP fragments
with a meansizeof 35.7bytes.Randomizingtheorder
of thefragmentstreamover increasingintervalsdemon-
stratestheadditionalwork thenormalizermustperform.
For example,with minimal re-orderingthe normalizer
can reassemblefragmentsat a rate of about 90Mb/s.
However, if we randomizetheorderof fragmentsby up
to 2,000packets,thenthenumberof packetssimultane-
ously in the fragmentationcachegrows to 335 andthe
dataratewecanhandlehalves.

rnd input frag’ed output output pktsin
intv’ l frags/s bit rate pkts/sec bit rate cache

100 299,67086Mb/s 9,989 39Mb/s 70
500 245,64070Mb/s 8,188 32Mb/s 133

1,000 202,20058Mb/s 6,740 26Mb/s 211
2,000 144,87041Mb/s 4,829 19Mb/s 335

It is clearthat in theworstcase,normdoesneedto per-

form triage,but that it candelaydoing so until a large
fractionof thepacketsareverybadlyfragmented,which
is unlikely exceptwhenunderattack.

Theotherattackthatslows thenormalizernoticeablyis
whennorm hasto copewith inconsistentTCP retrans-
missions.If we duplicateevery TCPpacket in T1, then
thisstressestheconsistency mechanism:

All checksenabled
Trace pkts/sec bit rate
T1 101,000 397Mb/s
T1-dup 60,220 236Mb/s

Although the throughputdecreasessomewhat, the re-
ductionin performanceis notgrave.

To conclude,a softwareimplementationof a traffic nor-
malizerappearsto becapableof applyinga largenum-
ber of normalizationsat line speedin a bi-directional
100Mb/senvironmentusing commodityPC hardware.
Sucha normalizeris robustto denial-of-serviceattacks,
althoughin the specific caseof fragmentreassembly,
very severeattacksmay requirethe normalizerto per-
form triageon theattacktraffic.

Acknowledgments

We’d like to thankBill Fenner, BradKarp, Orion Hod-
son,Yin Zhang,Kevin Fall, SteveBellovin andtheEnd-
to-endResearchGroupfor their commentsandsugges-
tions. Thanksalsogo to Jupiter’s in Berkeley and the
fineGuinnessandLostCoastbrewing companiesfor lu-
bricatingmany hoursof discussionon this topic.

References

[1] M. Allman, D. Glover andL. Sanchez,“Enhanc-
ing TCP Over SatelliteChannelsusing Standard
Mechanisms,” RFC2488,Jan.1999.

[2] AnzenComputing,fragrouter, 1999.
http://www.anzen.com/research/nidsbench/

[3] Fyodor, nmap, 2001.
http://www.insecure.org/nmap/

[4] M. Handley, C.Kreibich,andV. Paxson,drafttech-
nicalreport,to appearathttp://www.aciri.org/vern/
papers/norm-TR-2001.ps.gz,2001.

[5] horizon <jmcdonal@unf.edu>, “Defeating
SniffersandIntrusionDetectionSystems”,Phrack
MagazineVolume8, Issue54,Dec.25th,1998.



[6] C. KentandJ.Mogul, “FragmentationConsidered
Harmful,” Proc.ACM SIGCOMM, 1987.

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti and
M.F. Kaashoek, “The Click modular router,”
ACM Transactionson ComputerSystems, 18(3),
pp.263–297,Aug. 2000.

[8] G.R.Malan,D. Watson,F. JahanianandP. Howell,
“Transportand Application ProtocolScrubbing”,
Proceedingsof theIEEEINFOCOM2000Confer-
ence,Tel Aviv, Israel,Mar. 2000.

[9] L. Deri and S. Suin, “Improving Network Secu-
rity UsingNtop,” Proc. Third InternationalWork-
shopon the RecentAdvancesin Intrusion Detec-
tion (RAID2000),Toulouse,France,Oct.2000.

[10] S.McCanne,C.LeresandV. Jacobson,libpcap,
1994.ftp://ftp.ee.lbl.gov/libpcap.tar.Z

[11] K. Nichols,S.Blake,F. BakerandD. Black,“Def-
inition of the DifferentiatedServicesField (DS
Field) in the IPv4 andIPv6 Headers”,RFC 2474,
Dec.1998.

[12] V. Paxson, “Bro: A Systemfor DetectingNet-
work Intruders in Real-Time”, Computer Net-
works,31(23-24),pp.2435-2463,14Dec1999.

[13] V. Paxsonand M. Handley, “Defending Against
NIDS Evasion using Traffic Normalizers,” pre-
sented at Second International Workshop on
the Recent Advances in Intrusion Detection,
Sept.1999.

[14] T. H. Ptacek and T. N. Newsham, “Insertion,
Evasion and Denial of Service: Eluding Net-
work Intrusion Detection”, Secure Networks,
Inc., Jan.1998.http://www.aciri.org/vern/Ptacek-
Newsham-Evasion-98.ps

[15] K. Ramakrishnanand S. Floyd, “A Proposalto
addExplicit CongestionNotification(ECN)to IP”,
RFC2481,Jan.1999.

[16] S. Sanfilippo, “new tcp scanmethod,” Bugtraq,
Dec.18,1998.

[17] M. Smart,G.R. Malan and F. Jahanian,“Defeat-
ing TCP/IPStackFingerprinting,” Proc. USENIX
SecuritySymposium, Aug. 2000.

[18] M. deVivo, E. Carrasco,G. IsernandG. deVivo,
“A Review of Port ScanningTechniques,” Com-
puterCommunicationReview, 29(2),April 1999.

A Normalizations performed by norm

Our normalizer implementationnorm currently per-
forms 54 of the following 73 normalizationswe iden-
tified:

IP Normalizations

# IP Field NormalizationPerformed

1 Version Non-IPv4packetsdropped.
2 HeaderLen Drop if hdr len toosmall.
3 HeaderLen Drop if hdr len too large.
4 Diffserv Clearfield.
5 ECT Clearfield.
6 Total Len Drop if tot len � link layerlen.
7 Total Len Trim if tot len � link layerlen.
8 IP Identifier EncryptID. �
9 Protocol Enforcespecificprotocols.�
– Protocol Passpacket to TCP,UDP,ICMP

handlers.
10 Fragoffset Reassemblefragmentedpackets.
11 Fragoffset Drop if offset+ len � 64KB.
12 DF ClearDF.
13 DF Drop if DF setandoffset � 0.
14 Zeroflag Clear.
15 Srcaddr Drop if classD or E.
16 Srcaddr Drop if MSByte=127or 0.
17 Srcaddr Drop if 255.255.255.255.
18 Dst addr Drop if classE.
19 Dst addr Drop if MSByte=127or 0.
20 Dst addr Drop if 255.255.255.255.
21 TTL RaiseTTL to configuredvalue.
22 Checksum Verify, dropif incorrect.
23 IP options RemoveIP options.�
24 IP options Zeropaddingbytes.�� Indicatesnormalizationsplanned,but either not yet

implementedor notyet testedat thetimeof writing.

Notethatmostnormalizationsareoptional,accordingto
localsitepolicy.

UDP Normalizations

# UDPField NormalizationPerformed

1 Length Drop if doesn’t matchlengthas
indicatedby IP total length.

2 Checksum Verify, dropif incorrect.



TCP Normalizations

# TCPField NormalizationPerformed

1 SeqNum Enforcedataconsistency in re-
transmittedsegments.

2 SeqNum Trim datato window.
3 SeqNum Cold-start:trim to keep-alive.
4 Ack Num DropACK abovesequencehole.
5 SYN Removedataif SYN=1.
6 SYN If SYN=1& RST=1,drop.
7 SYN If SYN=1& FIN=1,clearFIN.
8 SYN If SYN=0 & ACK=0 & RST=0,

drop.
9 RST Removedataif RST=1.

10 RST MakeRSTreliable.
11 RST Drop if not in window. �
12 FIN If FIN=1 & ACK=0,drop.
13 PUSH If PUSH=1& ACK=0,drop.
14 HeaderLen Drop if lessthan5.
15 HeaderLen Drop if beyondendof packet.
16 Reserved Clear.
17 ECE,CWR Optionallyclear.
18 ECE,CWR Clearif notnegotiated.�
19 Window Removewindow withdrawals.
20 Checksum Verify, dropif incorrect.
21 URG,urgent Zerourgentif URGnotset.
22 URG,urgent Zeroif urgent � endof packet.
23 URG If URG=1& ACK=0,drop.
24 MSSoption If SYN=0,removeoption.
25 MSSoption Cacheoption,trim datato MSS.
26 WS option If SYN=0,removeoption.
27 SACK pmt’d If SYN=0,removeoption.
28 SACK opt Remove option if length

invalid.�
29 SACK opt Remove if left edge of SACK

block � right edge.�
30 SACK opt Removeif any blockabovehigh-

estseq.seen.�
31 SACK opt Trim any block(s) overlapping

or continguousto cumulativeac-
knowledgementpoint.�

32 T/TCPopts Remove if NIDS doesn’t sup-
port.

33 T/TCPopts Removeif underattack.�
34 TSoption Remove from non-SYN if not

negotiatedin SYN.�
35 TSoption If packet failsPAWStest,drop.�
36 TSoption If echoedtimestampwasn’t pre-

viouslysent,drop.�
37 MD5 option If MD5 usedin SYN, dropnon-

SYN packetswithout it. �
38 otheropts Removeoptions.

ICMP Normalizations

# ICMP Type NormalizationPerformed

1 Echorequest Dropif destinationis amulticast
or broadcastaddress.

2 Echorequest Optionally drop if ping check-
sumincorrect.

3 Echorequest Zero“code” field.
4 Echoreply Optionally drop if ping check-

sumincorrect.
5 Echoreply Drop if nomatchingrequest.�
6 Echoreply Zero“code” field.
7 Source

quench
Optionally drop to prevent
DoS.�

8 Destination
Unreachable

Unscramble embeddedscram-
bledIP identifier. �

9 other Drop.�
Thefollowing “transport”protocolsarerecognized,but
currentlypassedthroughunnormalized:IGMP, IP-in-IP,
RSVP, IGRP, PGM.


