
Detecting Service Violations and DoS Attacks

Ahsan Habib, Mohamed M. Hefeeda, and Bharat K. Bhargava
CERIAS and Department of Computer Sciences

Purdue University, West Lafayette, IN 47907
{habib, mhefeeda, bb}@cs.purdue.edu

Abstract

Denial of Service (DoS) attacks are a serious threat for
the Internet. DoS attacks can consume memory, CPU, and
network resources and damage or shut down the opera-
tion of the resource under attack (victim). The quality of
service (QoS) enabled networks, which offer different lev-
els of service, are vulnerable to QoS attacks as well as
DoS attacks. The aim of a QoS attack is to steal network
resources, e.g., bandwidth, or to degrade the service per-
ceived by users. We present a classification and a brief
explanation of the approaches used to deal with the DoS
and QoS attacks. Furthermore, we propose network mon-
itoring techniques to detect service violations and to infer
DoS attacks. Finally, a quantitative comparison among
all schemes is conducted, in which, we highlight the merits
of each scheme and estimate the overhead (both process-
ing and communication) introduced by it. The comparison
provides guidelines for selecting the appropriate scheme,
or a combination of schemes, based on the requirements
and how much overhead can be tolerated.

1. Introduction

The San Diego Supercomputer Center reported 12,805
denial of service (DoS) attacks over a three-week period
in February 2001 [16]. This is just one of the numerous
incidents in which DoS attacks are causing serious secu-
rity threats to many systems connected to the Internet. The
DoS attacks can be severe if they last for a prolonged pe-
riod of time preventing legitimate users from accessing
some or all of computing resources. Imagine an executive
of a financial institution deprived of access to the stock
market updates for several hours or even several minutes.
In [16], the authors showed that whereas 50% of the at-
tacks lasted less than ten minutes, unfortunately, 2% of
them lasted greater than five hours and 1% lasted more
than ten hours. There were dozens of attacks that spanned
multiple days. Wide spectrum of motivation behind these

DoS attacks exists. They range from political conflicts
and economical benefits for competitors to just curiosity
of some computer geeks. Furthermore, cyber terrorism
may not be excluded in the future.

In addition to DoS attacks, the quality of service (QoS)
enabled networks are vulnerable to another type of at-
tacks, namely, the QoS attacks. A QoS-enabled network,
such as a differentiated services network [3], offers differ-
ent classes of service for different costs. Differences in the
charging rates may entice some users to steal bandwidth
or other network resources. We define an attacker in this
environment as a user who tries to get more resources, i.e.,
a better service class, than what he has signed (paid) for.
QoS attacks are classified into two kinds: attacking the
network provisioning process and attacking the data for-
warding process. Network provisioning involves config-
uration of routers in a QoS network. This process can be
attacked by injecting bogus configuration messages, mod-
ifying the content of real configuration messages, or de-
laying such messages. Networks can be secured against
such attacks by encrypting the configuration messages of
the signaling protocols. Attacks on the data forwarding
process are of a more serious nature. These attacks in-
ject traffic into the network with the intent to steal band-
width or to cause QoS degradation for other flows. Since
the differentiated services framework is based on aggre-
gation of flows into service classes, legitimate customer
traffic may experience degraded QoS as a result of the il-
legally injected traffic. Taken to an extreme, that excess
traffic may result in a denial of service attack. This cre-
ates a need for developing an effective defense mechanism
that automates the detection and reaction to attacks on the
QoS-enabled networks.

In this paper, we first elaborate on the denial of service
attacks and their potential threat on the system. We then
classify the solutions proposed in the literature into two
main categories: detection and prevention approaches. We
briefly describe several mechanisms in each approach, fo-
cusing mainly on the salient features and highlighting the
potential as well as the shortcomings of each mechanism.
In addition, we propose network monitoring techniques



to detect service violations and to infer DoS attacks. We
believe that network monitoring has the potential to de-
tect DoS attacks in early stages before they severely harm
the victim. Our conjecture is that a DoS attack injects a
huge amount of traffic into the network, which may alter
the internal characteristics (e.g., delay and loss ratio) of
the network. Monitoring watches for these changes and
identifies the congested links, which helps in locating the
attacker and alerting the victim. Finally, we conduct a
comparative evaluation study among the approaches pre-
sented. The aim of the study is to compare the behavior of
the approaches under different situations of the underlying
network. We draw insightful comments from the compar-
ison that guide the selection of one or more defending ap-
proaches suitable for a given environment.

The rest of the paper is organized as follows. Section 2
discuses the DoS attacks and presents the classification of
the approaches used to deal with them. In Section 3, we
show how network monitoring can be used to detect ser-
vice violations and to infer DoS attacks. The comparative
study is presented in Section 4 and Section 5 concludes
the paper.

2. DoS Attacks: Detection and Prevention

In the literature, there are several approaches to deal
with denial of service (DoS) attacks. In this section, we
provide an approximate taxonomy of these approaches. In
addition, we briefly describe the main features of each ap-
proach and highlight the strengths and weaknesses of it.

We divide the approaches for dealing with DoS attacks
into two main categories: detection and prevention ap-
proaches. The detection approaches capitalize on the fact
that appropriately punishing wrong doers (attackers) will
deter them from re-attacking again, and will scare others
to do similar acts. The detection process has two phases:
detecting the attack and identifying the attacker. To iden-
tify an attacker, several traceback methods can be used,
as explained later in this section. The obvious way to de-
tect an attack is just waiting till the system performance
decreases sharply or even the whole system collapses. We
propose a more effective method for detecting attacks be-
fore they severely harm the system. We propose to use
monitoring for early detection of DoS attacks. The details
are given in Section 3. The prevention approaches, on the
other hand, try to thwart attacks before they harm the sys-
tem. Filtering is the main strategy used in the prevention
approaches.

To clarify the presentation, we use the hypothetical
network topology shown in Figure 1 to demonstrate
several scenarios for DoS attacks and how the differ-
ent approaches react to them. The figure shows sev-

eral hosts (denoted by Hs) connected to four domains1

D1, D2, D3, and D4, which are interconnected through
the Internet cloud. In the figure, Ai represents an attacker
i while V represents a victim.

2.1. DoS Attacks

The aim of a DoS attack is to consume the resources
of a victim or the resources on the way to communicate
with a victim. By wasting the victim’s resources, the at-
tacker disallows it from serving legitimate customers. A
victim can be a host, server, router, or any computing en-
tity connected to the network. Inevitable human errors
during software development, configuration, and installa-
tion open several unseen doors for these type of attacks.

Several DoS attacks are known and documented in the
literature [14, 16, 21, 24]. Flooding a victim with an over-
whelming amount of traffic is the most common. This un-
usual traffic clogs the communication links and thwarts all
connections among the legitimate users, which may result
in shutting down an entire site or a branch of the network.
This happened in February of 2000 for the popular web
sites Yahoo, E*trade, Ebay, and CNN for several hours
[14].

TCP SYN flooding is an instance of the flooding attacks
[22]. Under this attack, the victim is a host and usually
runs a Web server. A regular client opens a connection
with the server by sending a TCP SYN segment. The
server allocates buffer for the expected connection and
replies with a TCP ACK segment. The connection re-
mains half-open (backlogged) till the client acknowledges
the ACK of the server and moves the connection to the
established state. If the client does not send the ACK, the
buffer will be deallocated after an expiration of a timer.
The server can only have a specific number of half-open
connections after which all requests will be refused. The
attacker sends a TCP SYN segment pretending a desire
to establish a connection and making the server reserves
buffer for it. The attacker does not complete the connec-
tion. Instead, it issues more TCP SYNs, which lead the
server to waste its memory and reach its limit for the back-
logged connections. Sending such SYN requests with a
high rate keeps the server unable to satisfy connection re-
quests from legitimate users. Schuba et al. [22] devel-
oped a tool to alleviate the SYN flooding attack. The tool
watches for SYN segments coming from spoofed IP ad-
dresses and sends TCP RST segments to the server. The
RST segments terminate the half-open connections and
free their associated buffers.

Other types of flooding attacks include TCP ACK and
RST flooding, ICMP and UDP echo-request flooding, and

1Throughout the paper, we use “domain” to refer to an Autonomous
Systems (AS) domain, which is a network administered by a single en-
tity.



������������������������������

������������������������������

�������������������������������������������������������
�������������������������������������������������������

������
������
������
������

��
��
��

��
��
�� 	�	�		�	�	
�
�

�
�


��
��
��

��
��
��

������������
�������������������� ��

�
��
�

������
������
������

��
��
�� �����
����������������
���

������������

��������������������������������������������������������

��������������������������������������������������������

������������������������������������������������������������������

������������������������������������������������������

A1

D4

R1

R6

H3

V

 H4

A5

Reflector

R5

D5
D1

D2

RouterHostDomain

D3

Internet CloudForged path

R4

Attack using reflector

R2

R3

H2

H1

A3

A2Attack path
H5

A4

Figure 1. Different scenarios for DoS attacks. Attacker A1 launches an attack on the victim V . A1 spoofs
IP address of host H5 from domain D5. Another attacker A3 uses host H3 as a reflector to attack V.

DNS request flooding [16, 24]. This list is by no means
exhaustive.

A DoS attack can be more severe when an attacker uses
multiple hosts over the Internet to storm a victim. To
achieve this, the attacker compromises many hosts and
deploys attacking agents on them. The attacker signals
all agents to simultaneously launch an attack on a victim.
Barros [1] shows that DDoS attack can reach a high level
of sophistication by using reflectors. A reflector is like a
mirror that reflects light. In the Internet, many hosts such
as Web servers, DNS servers, and routers can be used as
reflectors because they always reply to (or reflect) specific
type of packets. Web servers reply to SYN requests, DNS
servers reply to queries, and routers send ICMP packets
(time exceeded or host unreachable) in response to partic-
ular IP packets. The attackers can abuse these reflectors
to launch DDoS attacks. For example, an attacking agent
sends a SYN request to a reflector specifying the victim’s
IP address as the source address of the agent. The reflec-
tor will send a SYN ACK to the victim. There are mil-
lions of reflectors in the Internet and the attacker can use
these reflectors to flood the victim’s network by sending a
large amount of packets. Paxson [20] analyzes several In-
ternet protocols and applications and concludes that DNS
servers, Gnutella servers, and TCP-based servers are po-
tential reflectors.

2.2. Detection Approaches

The detection approaches rely on finding the malicious
party who launched a DoS attack and consequently hold

him liable for the damage he has caused. However, pin-
ning the real attacker down is not a straightforward task.
One reason is that the attacker spoofs the source IP ad-
dress of the attacking packets. Another reason is that
the Internet is stateless, which means, whenever a packet
passes through a router, the router does not store any in-
formation (or traces) about that packet. Therefore, mech-
anisms such as ICMP traceback and packet marking are
devised to figure out the real attacker. In this subsection,
we describe several techniques to identify the attacker af-
ter the attack took place. We defer the issue of early de-
tection of an attack till Section 3.

2.2.1. ICMP Traceback

Bellovin [2] proposes the idea of ICMP traceback mes-
sages, where every router samples the forwarded pack-
ets with a very low probability (e.g., 1 out of 20,000)
and sends an ICMP Traceback message to the destina-
tion. An ICMP Traceback message contains the previous
and next hop addresses of the router, timestamp, portion
of the traced packet, and authentication information. In
Figure 1, while packets are traversing the network path
from the attacker A1 to the victim V, the intermediate
routers (R1, R2, R3, R4, R5, and R6) sample some of
these packets and send ICMP Traceback messages to the
destination V. With enough messages, the victim can trace
the network path A1 → V. The pitfall of this approach
is that the attacker can send many false ICMP Traceback
messages to confuse the victim.

To address Distributed DoS (DDoS) attacks by reflec-



tors, Barros [1] proposes a modification to the ICMP
Traceback messages. In his refinement, routers sometimes
send ICMP Traceback messages to the source. In Fig-
ure 1, A3 launches a DDoS attack by sending TCP SYN
segments to the reflector H3 specifying V as the source
address. H3, in turn, sends SYN ACK segments to the
victim V. According to the modification, routers on the
path A3 → H3 will send ICMP messages to the source,
i.e., to V. This reverse trace enables the victim to iden-
tify the attacking agent from these trace packets. The re-
verse trace mechanism depends only on the number of
attacking agents, and not on the number of reflectors [20].
This achieves scalability because the number of available
reflectors is much higher than the number of attacking
agents on the Internet.

Snoeren et al. [23] propose an attractive hashed-based
system that can trace the origin of a single IP packet deliv-
ered by a network in the recent past. The system is called
source path isolation engine (SPIE). The SPIE uses an ef-
ficient method to store information about packets travers-
ing through a particular router. The method uses n bits of
the hashed value of the packet to set an index of a 2n-bit
digest table. When a victim detects an attack, a query is
sent to SPIE, which queries routers for packet digests of
the relevant time periods. Topology information is then
used to construct the attack graph from which the source
of the attack is determined.

2.2.2. Packet Marking

Instead of having routers send separate messages for the
sampled packets, Burch and Cheswick [5] propose to in-
scribe some path information into the header of the pack-
ets themselves. This marking can be deterministic or
probabilistic. In the deterministic marking, every router
marks all packets. The obvious drawback of the determin-
istic packet marking is that the packet header grows as the
number of hops increases on the path. Moreover, signif-
icant overhead will be imposed on routers to mark every
packet.

The probabilistic packet marking (PPM) encodes the
path information into a small fraction of the packets. The
assumption is that during a flooding attack, a huge amount
of traffic travels towards the victim. Therefore, there is a
great chance that many of these packets will be marked
at routers throughout their journey from the source to
the victim. It is likely that the marked packets will give
enough information to trace the network path from the
victim to the source of the attack.

Savage et al. [21] describe efficient mechanisms to en-
code the path information into packets. This information
contains the XOR (exclusive OR) of two IP addresses and
a distance metric. The two IP addresses are for the start

and the end routers of the link. The distance metric rep-
resents the number of hops between the attacker and the
victim. To illustrate the idea, consider the attacker A1 and
the victim V in Figure 1. Assume there is only one hop
between routers R3 and R4. If Router R1 marks a packet,
it will encode the XOR of R1 and R2 addresses into the
packet and sets the distance metric to zero, that is, it will
encode the tuple < R1 ⊕ R2, 0 >. Other routers on the
path just increase the distance metric of this packet, if they
don’t decide to mark it again. When this packet reaches
the victim, it provides the tuple <R1⊕R2, 5>. Similarly,
some packets may get marked at routers R2, R3, R4, R5,
and R6 and they will provide the tuples <R2 ⊕ R3, 4>,

< R3 ⊕ R4, 3 >, < R4 ⊕ R5, 2 >, < R5 ⊕ R6, 1 >,

<R6, 0>, respectively, when they reach the victim. The
victim can retrieve all routers on the path by XORing
the collected messages sorted by distance. (Recall that
Rx ⊕ Ry ⊕ Rx = Ry.) This approach can reconstruct
most network paths with 95% certainty if there are about
2,000 marked packets available and even the longest path
can be resolved with 4,000 packets [21]. For DoS attacks,
this amount of packets is clearly obtainable because the
attacker needs to flood the network to cause a DoS attack.
(Moore et al. [16] report that some severe DoS attacks had
a rate of thousands of packets per second.) The authors
describe ways to reduce the required space and suggest
to use the identification field (currently used for IP frag-
mentation) of IP header to store the encoding of the path
information. They also propose solutions to handle the
co-existence of marking and fragmentation of IP packets
[21].

The main limitation of the PPM approaches stems from
the fact that, nothing prevents the attacker from marking
packets. If a packet marked by the attacker does not get
re-marked by any intermediate router, it will confuse the
victim and make it harder to trace the real attacker. Park
and Lee [17] show that for single-source DoS attacks,
PPM can identify a small set of sources as potential can-
didates for a DoS attack. For DDoS attacks, however, the
attacker can increase the uncertainty in localizing the at-
tacker. Therefore, PPM is vulnerable to distributed DoS
attacks [17].

2.3. Prevention Approaches

Preventive approaches try to stop a DoS attack by iden-
tifying the attack packets and discarding them before
reaching the victim. We summarize several packet filter-
ing techniques that achieve this goal.

2.3.1. Ingress Filtering

Incoming packets to a network domain can be filtered by
ingress routers. These filters verify the identity of pack-



ets entering into the domain, like an immigration security
system at the airport. Ingress filtering, proposed by Fargu-
son and Senie [10], is a restrictive mechanism that drops
traffic with IP address that does not match a domain prefix
connected to the ingress router. As an example, in Figure
1, the attacker A1 resides in domain D1 with the network
prefix a.b.c.0/24. The attacker wants to launch a DoS at-
tack to the victim V that is connected to domain D4. If the
attacker spoofs the IP address of host H5 in domain D5,
which has the network prefix x.y.z.0/24, an input traffic
filter on the ingress link of R1 will thwart this spoofing.
R1 only allows traffic originating from source addresses
within the a.b.c.0/24 prefix. Thus, the filter prohibits an
attacker from using spoofed source addresses from outside
of the prefix range. Similarly, filtering foils DDoS attacks
that employ reflectors. In Figure 1, ingress filter of D2
will discard packets destined to the reflector H3 and spec-
ifying V ′s address in the source address field. Thus, these
packets will not be able to reach the reflector.

Ingress filtering can drastically reduce the DoS attack
by IP spoofing if all domains use it. It is hard, though,
to deploy ingress filters in all Internet domains. If there
are some unchecked points, it is possible to launch DoS
attacks from that points. Unlike ingress filters, egress fil-
ters [13] reside at the exit points of a network domain and
checks whether the source address of exiting packets be-
long to this domain. Aside from the placement issue, both
ingress and egress filters have similar behavior.

2.3.2. Route-based Filtering

Park and Lee [18] propose route-based distributed packet
filtering, which rely on route information to filter out
spoofed IP packets. For instance, suppose that A1 be-
longs to domain D1 and is attempting a DoS attack on
V that belongs to domain D4. If A1 uses the spoofed ad-
dress H5 that belongs to domain D5, the filter at domain
D1 would recognize that a packet originated from domain
D5 and destined to V should not travel through domain
D1. Then, the filter at D1 will discard the packet. Route-
based filters do not use/store individual host addresses for
filtering, rather, they use the topology information of Au-
tonomous Systems (ASes). The authors of [18] show that
with partial deployment of route-based filters, about 20%
in the Internet AS topologies, it is possible to achieve a
good filtering effect that prevents spoofed IP flows reach-
ing other ASes. These filters need to build route informa-
tion by consulting BGP routers of different ASes. Since
routes on the Internet change with time [19], it is a chal-
lenge for route-based filters to be updated in real time.

Finally, all filters proposed in the literature so far fall
short to detect IP address spoofing from the domain in
which the attacker resides. For example, in Figure 1, if A1

uses some unused IP addresses of domain D1, the filters
will not be able to stop such forged packets to reach the
victim V .

3. Monitoring to Detect Service Violations
and DoS Attacks

In this section, we show how network monitoring tech-
niques can be used to detect service violations and to infer
DoS attacks. We believe that network monitoring has the
potential to detect DoS attacks in early stages before they
severely harm the victim. Our conjecture is that a DoS
attack injects a huge amount of traffic into the network,
which may alter the internal characteristics (e.g., delay
and loss ratio) of the network. Monitoring watches for
these changes and our proposed techniques can identify
the congested links and the points that are feeding them.
We describe the monitoring schemes in the context of a
QoS-enabled network, which provides different classes of
service for different costs. The schemes are also applica-
ble to best effort (BE) networks to infer DoS attacks, but
not to detect service violations because there is no notion
of service differentiation in BE networks.

To monitor a domain, we measure three parameters:
delay, packet loss ratio, and throughput. We refer to
these parameters collectively as the service level agree-
ment (SLA) parameters, since they indicate whether a user
is achieving the QoS requirements contracted with the net-
work provider. In our discussion, delay is the end-to-end
latency; packet loss ratio is defined as the ratio of num-
ber of dropped packets from a flow2 to the total number of
packets of the same flow entered the domain; and through-
put is the total bandwidth consumed by a flow inside the
domain. Delay and loss ratio are good indicators for the
current status of the domain. This is because, if the do-
main is properly provisioned and no user is misbehaving,
the flows traversing through the domain should not expe-
rience high delay or loss ratio inside that domain. It is
worth mentioning that delay jitter, i.e., delay variation, is
another important SLA parameter. However, it is flow-
specific and therefore, is not suitable to use in network
monitoring.

The SLA parameters can be estimated with the involve-
ment of internal (core) routers in a network domain or can
be inferred without their help. We describe both core-
assisted monitoring and edge-based (without involvement
of core routers) monitoring in the following subsections.

2A flow can be a micro flow with five tuples (addresses, ports, and
protocol) or an aggregate one that is a combination of several micro
flows.



0

k

R R21

Figure 2. Inferring loss ratio from the source 0
to receivers R1 and R2.

3.1. Core-based Monitoring

A core-based monitoring scheme for QoS-enabled net-
work is studied in [11]. In this scheme, the delay is mea-
sured by having the ingress routers randomly copy the
header of some of the incoming packets. The copying
depends on a pre-configured probability parameter. The
ingress router forms a probe packet with the same header
as the data traffic, which means that the probe packet will
likely follow the same path as the data packet. The egress
router recognizes these probe packets and computes the
delay.

This monitoring scheme measures the loss ratio by col-
lecting packet drop counts from core routers. It then con-
tacts the ingress routers to get the total number of packets
for each flow. The loss ratio is computed from these two
numbers. To measure the throughput, the scheme polls the
egress routers. The egress routers can provide this infor-
mation because they already maintain this information for
each flow. This scheme imposes excessive overhead on
the core routers, therefore, it is not scalable. Other moni-
toring schemes that involve both core and edge routers are
proposed in the literature, see for example [4, 7, 8].

3.2. Edge-based Monitoring

We describe two edge-based monitoring schemes:
stripe-based and distributed. Both schemes measure delay
and throughput using the same techniques as the previous
core-based scheme. They differ, however, in measuring
the packet loss ratio.
Stripe-based Monitoring. The stripe-based scheme in-

fers loss ratio inside a domain without relying on core
routers. We show how to infer loss ratios for unicast traf-
fic as explained in [9] and refer the reader to [6] for the
multicast traffic case. The scheme sends a series of probe
packets, called a stripe, with no delay between them. Usu-
ally, a stripe consists of three packets. To simplify the dis-
cussion, consider a two-leaf binary tree spanning nodes 0,
k, R1, R2, as shown in Figure 2. The loss ratio of the link

k → R1, for instance, can be estimated by sending stripes
from the root 0 to the leaves R1 and R2. The first packet
of a 3-packet stripe is sent to R1, while the last two are
sent to R2. If a packet reaches to any receiver, we can in-
fer that the packet must have reached the branching point
k. Further, if R2 gets the last two packets of a stripe, it is
likely that R1 receives the first packet of that stripe. The
packet loss probability is calculated based on whether all
packets sent to R1 and R2 reach their destination. Simi-
larly, the loss ratio of the link k → R2 is inferred using
a complementary stripe, in which the first packet is sent
to R2 and the last two are sent to R1. The loss ratio of
the common path from 0 → k can be estimated by com-
bining the results of the previous two steps. For general
trees, this inference technique sends stripes from the root
to all ordered pairs of the leaves of the tree. Finally, this
technique is extended in [11] for routers with active queue
management in a QoS domain.
Distributed Monitoring. The distributed monitoring ap-
proach is proposed in [12] to further reduce the monitoring
overhead. In this mechanism, the edge routers of a domain
form an overlay network on top of the physical network.
Figure 3(a) shows the spanning tree of the domain’s topol-
ogy. The edge routers form an overlay network among
themselves, as shown in Figure 3(b). This overlay is used
to build tunnel for probe packets on specified paths. The
internal links for each end-to-end path in the overlay net-
work are shown in Figure 3(c). In the distributed moni-
toring approach, an SLA monitor sits at any edge router.
The monitor probes the network regularly for unusual de-
lay patterns. The delay and throughput measurements are
the same as described in stripe-based scheme. The two
schemes differ in measuring loss. Since service violation
can be detected without exact loss values, we need only to
determine whether a link has higher loss than the specified
threshold or not. The link with high loss is referred to as a
congested link. The goal of the distributed monitoring is
to detect all congested links.

When delay goes high, the SLA monitor triggers agents
at different edge routers to probe for loss. Each edge
router probes its neighbors. Let Xρ be a boolean random
variable that represents the output of probe ρ. Xρ takes on
value 1 if the measured loss exceeds the threshold in any
link throughout the probe path, and takes on 0 otherwise.
For example, if the outcome of E1 → E3 probing path
is 1, it means either E1 → C1, C1 → C3, C3 → E3,
or a combination of them is congested. If the outcome is
0, then definitely all internal links are not congested. In
this way, we write equations to express all internal links
in terms of the probe outcomes. Solving these equations
and identifying the congested links are detailed in [12].

The distributed monitoring scheme requires less num-
ber of total probes, O(n), compared to the stripe-based



E1

C1

E5

C4

E6

Core RouterEdge Router

E2

E7E4

E3 C5

C2C3

(a) The spanning tree of the domain’s
topology.

E3

E4 E5

E2

Peers (Edge Router)

E7E6

E1

(b) An overlay constructed over all edge
routers.

C1

E1

C4

Edge Router Core Router

C3 C2

E3

E6

C5

E2

E5E7E4

(c) Direction of probing the internal
links.

Figure 3. Network monitoring using the distributed mechanism.

scheme, which requires O(n2), where n is the number of
edge routers in the domain. The distributed scheme is able
to detect violation in both directions of any link in the
domain, whereas the stripe-based can detect a violation
only if the flow direction of the misbehaving traffic is the
same as the probing direction from the root. To achieve
same ability like distributed one, the stripe-based needs to
probe the whole tree from several points, which increases
the monitoring overhead substantially.

3.3. Violation and DoS Detection

In both the stripe-based and distributed-based monitor-
ing schemes, when delay, loss, and bandwidth consump-
tion exceed the pre-defined thresholds, the monitor de-
cides on possible SLA violation. The monitor knows the
existing traffic classes and the acceptable SLA parameters
per class. High delay is an indication of abnormal behav-
ior inside the domain. If there is any loss for the guar-
anteed traffic class and if the loss ratios of other traffic
classes exceed certain levels, an SLA violation is flagged.
This loss can be caused by some flows consuming band-
width beyond their SLA. Bandwidth theft is checked by
comparing the total bandwidth achieved by a user against
the user’s SLA for bandwidth. The misbehaving flows are
controlled at the ingress routers.

To detect DoS attacks, set of links L with high loss are
identified. For each congested link, l(vi, vj) ∈ L, the
tree is divided into two subtrees: one formed by leaves

descendant from vi and the other from the leaves descen-
dant from vj . The first subtree has egress routers as leaves
through which high aggregate bandwidth flows are leav-
ing. If many exiting flows have the same destination IP
prefix, we can infer that either this is a DoS attack or the
traffic is a going to a popular site [15]. Decision can be
taken with consulting the destination entity. If it is an
attack, we can stop it by triggering filters at the ingress
routers that are leaves of the other subtree.

We illustrate a scenario of detecting and controlling
DoS attack using Figure 3. Suppose, the victim’s do-
main D is connected to the edge router E6. The mon-
itor observes that links C3 → C4 and link C4 → E6
are congested for a time duration ∆t sec. From both
congested links, we obtain the egress router E6 through
which most of these flows are leaving. The destination
IP prefix matching at E6 reveals that an excess amount
of traffic is heading towards the domain D connected to
E6. To control the attack, the monitor needs to figure out
through which ingress routers the suspected flows are en-
tering into the domain. The algorithm to identify these
ingress routers is discussed in [12]. The monitor activates
filters at these ingress routers to regulate the flows that are
destined to D.

The advantage of the monitoring-based attack detection
is that the neighbor domains of the victim can detect the
attack early by observing the violation of SLA parameters.
By consulting with the potential victim, these domains can



Symbol Description Values used in comparison
Psch Processing overhead for scheme sch –
Csch Communication overhead for scheme sch –
M Number of edge routers [10 – 20]
N Number of core routers 12
F Number of flows entering through each edge router 100,000
P Number of packets per flow 10
p Probability to mark a packet [0 – 0.20]
θ Percentage of misbehaving flows [0 – 20%]
h Path length inside a domain or hop count 4, 6
s Length of a stripe 3
fs Frequency of stripe per unit time in stripe-based monitoring 20
fd Frequency of probes per unit time in distributed monitoring 30
α1 Processing overhead for filtering –
α2 Processing overhead for marking –
α3 Processing overhead for monitoring –

Table 1. Symbols used in the comparison and their values.

regulate the intensity of the attack and even an early detec-
tion can thwart the attack. For each violation, the monitor
takes actions such as throttling a particular user’s traffic
using a flow control mechanism.

4. Comparative Evaluation

In this section, we conduct a quantitative analysis of
the overhead imposed by different schemes to detect and
prevent DoS attacks. The objective of this compari-
son is to show the characteristics of each scheme and
how they behave when different configuration parame-
ters of a domain are changed. We do not emphasize on
numeric overhead value of any specific scheme, rather,
we draw a relative comparison among them. The com-
parison provides guidelines for selecting the appropriate
scheme, or a combination of schemes, based on the re-
quirements and how much overhead can be tolerated. The
schemes we compare here are: Ingress Filtering (Ingf),
route-based packet filtering (Route), traceback with prob-
abilistic packet marking (PPM), core-based network mon-
itoring (Core), stripe-based monitoring (Stripe), and dis-
tributed monitoring (Distributed).

4.1. Setup

For each scheme, we calculate two different overheads:
processing and communication. The processing overhead
is due to extra processing required at all routers of a do-
main per unit time. The communication overhead is due
to extra packets injected into a domain. The communica-
tion overhead is computed as the number of extra bytes
(not packets) injected per unit time. For processing over-
head, the extra processing at routers may contain: more
address lookups, changing some header fields, checksum

re-computation, and any CPU processing needed by the
scheme. For example, filters need to check the source
IP address to verify whether a packet is coming from a
valid source. This requires one extra address lookup (to
check the source IP address) for each packet. The mon-
itoring schemes inject probe packets into the network.
Each router inside a domain requires processing such as
address lookup, TTL field decrement, checksum compu-
tation for each probe packet. For simplicity, we charge the
filtering scheme α1 processing units, the marking scheme
α2 processing units, and the monitoring schemes α3 pro-
cessing units for each packet processed. We express the
processing overhead in terms of α1, α2, and α3 (process-
ing units), and the communication overhead in terms of
the total kilobytes (KB) injected in the domain.

We consider a domain D with M edge routers and N

core routers. We assume there are F flows traversing
through each edge router and each flow has P packets
on average. We define θ as the percentage of misbehav-
ing flows that may cause DoS attacks. We denote Csch as
the communication overhead and Psch as the processing
overhead respectively for scheme sch. Table 1 lists the
variables used in the comparison and their values.

4.2. Overhead Calculation

Filtering and marking techniques do not incur any
communication overhead. The monitoring schemes have
both processing and communication overhead.

Ingress filtering. The processing overhead of ingress
filtering depends on the number of packets entering a
domain. It requires one processing unit to check the
source IP address of every packet. For our domain D,
the total entering packets is M × F × P . Thus, the total



processing overhead of ingress filtering is given by:

PIngf = M × F × P × α1. (1)

Route-based filtering. We need to deploy ingress filters
in every domain in the Internet to effectively stop all possi-
ble attacks. The route-based filtering scheme, on the other
hand, does not require every single domain to have a filter.
Park et al. show that placing this filter at approximately
20% of all autonomous systems can prevent DoS to a great
extent [18]. For a domain that deploys a router-based fil-
ter, the overhead is the same as the ingress filter. Globally
speaking, the overhead of route-based filtering is one fifth
of the overhead of ingress filtering on the average. In our
comparison, we use

PRoute = 0.2 × PIngf . (2)

Probabilistic packet marking (PPM). PPM does not in-
cur any communication overhead but adds extra α2 pro-
cessing units for every packet that gets marked at an inter-
mediary router. PPM might need sophisticated operation
such as taking hash of certain IP fields. The traceback with
PPM marks packets with a probability p at each router on
the path to the victim. If a packet passes through h hops,
on the average, in the network domain D, the processing
overhead is computed as:

PPPM = M × F × P × p × h × α2 (3)

Core-based monitoring. The monitoring schemes inject
probe traffic into the network and add processing over-
heads as well. The total number of injected probes and the
size of each probe packet are used to calculate the commu-
nication overheads in terms of bytes. The Core scheme
depends on the number of packets that core routers send
to the monitor to report drop history. The drop history
at each core router depends on the flows traversing the
network domain and the percentage of these flows that
are violating their SLAs at a particular time. For the do-
main D, if d bytes are required to record the drop in-
formation of each flow, then each core needs to send
C = max(1, F×θ×d

packet size
) control packets to the monitor.

The packet size is the size of a control packet, which de-
pends on the MTU of the network. To obtain loss ratio,
the monitor queries all edges for packet count informa-
tion of the misbehaving flows. Every edge replies to this
query. The total number of packets exchanged among all
edge routers and the monitor is (2M + N) × C packets.
Therefore, the communication overhead is given by:

CCore = (2M+N)×max(1,
F × θ × d

packet size
)×packet size,

(4)

and the processing overhead is given by:

PCore = (2M + N) × max(1,
F × θ × d

packet size
) × h × α3,

(5)
where packet size is a configurable parameter.

Stripe-based monitoring. In the stripe-based moni-
toring scheme, a stripe of s packets is sent from the
monitor to every egress router pairs. For the network
domain D, the total number of probing packets is
s × (M − 1) × (M − 2) × fs, where fs is the frequency
by which we need to send stripes per unit time. The
communication overhead and the processing overhead are
shown in equation (6) and equation (7) respectively.

CStripe = s×(M−1)×(M−2)×fs×packet size, (6)

PStripe = s × (M − 1) × (M − 2) × fs × h × α3. (7)

Distributed monitoring. For the distributed monitoring,
each edge router probes its left and right neighbors. If it
requires fd probes per unit time, the communication over-
head is:

CDistributed = 2 × M × fd × packet size. (8)

On the average, each probe packet traverses h hops and
thus the processing overhead can be calculated as:

PDistributed = 2 × M × fd × h × α2 (9)

4.3. Results and Analysis

To visualize the differences among all schemes, we plot
the processing and communication overhead for one of the
domain shown in Figure 1. Usually, DoS attacks are di-
rected towards a particular host or a set of hosts connected
to a relatively small size domain. In the example, Figure
1, the DoS attack is directed towards domain D4 and the
attack traffic is coming from various other domains. For
our comparison, we use the parameters’ values shown in
Table 1 for domain D. We use sec as unit time in all com-
parisons.

Figure 4 (a) shows the processing overhead in terms of
α1 for ingress filtering, route-based filtering, and PPM
when packet marking probability is varied along the X-
axis. The route-based filtering requires less processing
than marking scheme for p ≥ 0.07 because this filtering
scheme does not need to be deployed at all routers of all
domains. Savage et al. use marking probability p = 0.04



0 0.05 0.1 0.15 0.2
10

4

10
5

10
6

10
7

10
8

Packet Marking Probability

P
ro

ce
ss

in
g 

O
ve

rh
ea

d

Route
Ingf
PPM, h=4
PPM, h=6

(a) Effect of varying the marking probability on the processing
overhead.

10 12 14 16 18 20
10

5

10
6

10
7

10
8

Number of Edge Routers

P
ro

ce
ss

in
g 

O
ve

rh
ea

d

Route
Ingf
PPM, h=4
PPM, h=6

(b) Effect of varying the number of edge routers on the process-
ing overhead.

Figure 4. The processing overhead per unit time for filters and probabilistic packet marking (PPM)
schemes. Marking scheme has less processing overhead than filtering scheme if the marking proba-
bility is not too high (e.g., p ≤ 0.07).

0 5 10 15 20
10

2

10
3

10
4

10
5

Percentage of Misbehaving Flow

P
ro

ce
ss

in
g 

O
ve

rh
ea

d

Core
Stripe
Distributed

(a) Processing overhead.

0 5 10 15 20
10

1

10
2

10
3

10
4

10
5

Percentage of Misbehaving Flow

C
om

m
un

ic
at

io
n 

O
ve

rh
ea

d 
in

 K
B

yt
es

Core
Stripe
Distributed

(b) Communication overhead.

Figure 5. The processing and communication overhead for the monitoring schemes when the percentage
of misbehaving flows is increased. The Core scheme has less communication overhead than Stripe
scheme for θ < 20%. Both Stripe and Distributed schemes have less communication overhead than Core
unless θ is very low.



10 11 12 13 14 15 16 17 18 19 20
10

3

10
4

10
5

10
6

Number of Edge Routers

P
ro

ce
ss

in
g 

O
ve

rh
ea

d
Core
Stripe
Distributed

(a) Processing overhead.

10 12 14 16 18 20
10

1

10
2

10
3

10
4

Number of edge routers

C
om

m
un

ic
at

io
n 

O
ve

rh
ea

d 
in

 K
B

yt
es

Core
Stripe
Distributed

(b) Communication overhead.

Figure 6. The processing and communication overhead for the monitoring schemes when the number of
edge routers in a domain is increased. The Core scheme has less processing overhead than both edge-
based schemes when the number of edge routers in the domain is increased. Edge-based schemes
always impose less communication overhead than the Core scheme. The Core might perform better than
Stripe for a large domain (e.g., M > 20) depending on the value of θ.

in their traceback analysis [21]. Using this probability, the
marking mechanism has less overhead than others. We
use two different path lengths in the plot; one is h = 4
and another is h = 6. The path length does not increase
the overhead substantially because the path length does
not go up very high for a small-size domain. Figure 4(b)
shows that when number of edge routers are increased in
a domain the processing over is increased for all schemes.

Figure 5 shows both processing and communication
overhead for different monitoring schemes. The pro-
cessing overhead is low for Core scheme than the Stripe
scheme for θ ≤ 20%. This is because the control packet
size of Core can be set equal to the maximum transmis-
sion unit of the network to minimize total number of pack-
ets sent, whereas the probe packet size of the Stripe is 20
bytes with 20 bytes of IP header. However, if the attack in-
tensity is high, i.e., the value of θ is high, the overhead of
Core exceeds the overhead of both edge-based schemes.
In this example, probes injected by Stripe scheme con-
sumes 600K bytes of bandwidth per sec, which is dis-
tributed over all links of the domain. If all links are OC3
type, on average each link experiences probe traffic less
than 0.015% of the link capacity. The Distributed scheme
consumes ten times less than the Stripe one in this setup.
In Figure 6, we vary the domain size changing the number
of edge routers while keeping the number of core routers
fixed to N = 12. The percentage of misbehaving traffic
θ is fixed and equals 1%. Figure 6 (a) shows that Core
can result in less computation overhead than edge-based

schemes when the number of edge routers increases. Even
though the overhead of Core scheme depends on both core
and edge routers, this scheme reduces processing over-
head by aggregating flows when it reports to the monitor.
When number of edge routers increases, overhead for both
Core and Distributed schemes increase linearly. The over-
head for Stripe increases substantially with the increase of
edge routers. Depending on θ, Figure 6 (b) shows that the
communication overhead for Stripe may exceed the com-
munication overhead of Core when M > 20.

4.4. Summary

We summarize the important features of all schemes
in Table 2. Ingress filtering and core-assisted monitoring
schemes have high implementation overhead because the
former needs to deploy filters at all ingress routers in the
Internet and the latter needs support from all edge and core
routers in a domain. But filtering and monitoring can pro-
vide better safety compared to the traceback which only
can identify an attacker after the attack has occurred. All
monitoring schemes need clock synchronization to mea-
sure SLA parameters, which is an extra overhead. But,
they can detect service violations and DoS attacks as well.
Filters are proactive in nature and all other schemes are
reactive. Filters can detect attacks by spoofed packets
whereas the rest of the schemes can detect an attack even if
the attacker does not use spoofed IP addresses from other
domains.



Property PPM Ingress Filtering Route-based Core-assisted Stripe-based Distributed
Filtering Monitoring Monitoring Monitoring

Overhead attack number of number of number of routers, routers,
depends on volume incoming incoming flows violating topology, topology,

packets packets SLAs attack traffic attack traffic
Implementation all routers all ingress all routers of all edge and all edge all edge
overhead edge routers selective domains core routers routers routers
Clock — — — at edge and at edge at edge
synchronization core routers routers routers
Response reactive proactive proactive reactive reactive reactive
SLA violation no no no yes yes yes
detection
Detect attacks any IP spoofed IP from spoofed IP from any IP any IP any IP
initiated using other domains other domains

Table 2. Comparison among different schemes to detect/prevent service violations and DoS attacks.

5. Conclusions

We investigated several methods to detect service level
agreement violations and DoS attacks. We showed that
there is no single method that fits all possible scenarios.
Specifically, in ICMP traceback and probabilistic packet
marking mechanisms, the attacker may be able to confuse
the victim by sending false ICMP traceback packets and
by randomly marking attacking packets. Ingress filters
need global deployment to be effective, whereas route-
based filters strive against the dynamic change of the rout-
ing information.

We showed that network monitoring techniques can be
used to detect service violations by measuring the SLA pa-
rameters and comparing them against the contracted val-
ues between the user and the network provider. We also
argued that monitoring techniques have the potential to
detect DoS attacks in early stages before they severely
harm the victim. Our argument is based on the fact that
a DoS attack injects a huge amount of traffic into the net-
work, which may alter the internal characteristics (e.g.,
delay and loss ratio) of the network. The monitoring tech-
niques watch for these changes and identify the congested
links, which helps in locating the attacker and alerting the
victim.

The presented comparative study showed several issues.
First, it showed that while marking imposes less overhead
than filtering, it is only a forensic method. Filtering, on
the other hand, is a preventive method, which tries to stop
attacks before they harm the system. Second, the core-
based monitoring scheme has a high deployment cost be-
cause it needs to update all edge as well as core routers.
However, the core-based scheme has less processing over-
head than the stripe-based scheme because it aggregates
flow information when it reports to the monitor. Third,

The stripe-based monitoring scheme has lower communi-
cation overhead than the core-based scheme for relatively
small size domains. For large domains, however, core-
based may impose less communication overhead depend-
ing on the attack intensity. Fourth, The distributed scheme
outperforms the other monitoring schemes in terms of de-
ployment cost and overhead in many of the cases.

Acknowledgments

This research is supported in part by the National Sci-
ence Foundation grants CCR-991712 and CCR-001788,
CERIAS, and IBM.

References

[1] C. Barros. A proposal for ICMP traceback messages.
Internet Draft http://www.research.att.com/lists/ietf-
itrace/2000/09/msg00044.html, Sept. 18, 2000.

[2] S. M. Bellovin. ICMP traceback messages. Internet draft:
draft-bellovin-itrace-00.txt, Mar. 2000.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An architecture for Differentiated Services.
RFC 2475, Dec. 1998.

[4] Y. Breitbart, C. Y. Chan, M. Garofalakis, R. Rastogi, and
A. Silberschatz. Efficiently monitoring bandwidth and la-
tency in IP networks. In Proc. IEEE INFOCOM, Anchor-
age, AK, Apr. 2001.

[5] H. Burch and H. Cheswick. Tracing anonymous packets
to their approximate source. In Proc. USENIX LISA, pages
319–327, New Orleans, LA, Dec. 2000.

[6] R. Cáceres, N. G. Duffield, J. Horowitz, and D. Towsley.
Multicast-based inference of network-internal loss charac-
teristics. IEEE Transactions on Information Theory, Nov.
1999.

[7] M. C. Chan, Y.-J. Lin, and X. Wang. A scalable monitoring
approach for service level agreements validation. In Proc.



International Conference on Network Protocols (ICNP),
pages 37–48, Osaka, Japan, Nov. 2000.

[8] M. Dilman and D. Raz. Efficient reactive monitoring. In
Proc. IEEE INFOCOM, Anchorage, AK, Apr. 2001.

[9] N. G. Duffield, F. L. Presti, V. Paxson, and D. Towsley.
Inferring link loss using striped unicast probes. In Proc.
IEEE INFOCOM, Anchorage, AK, Apr. 2001.

[10] P. Ferguson and D. Senie. Network ingress filtering:
Defeating denial of service attacks which employ IP
source address spoofing agreements performance monitor-
ing. RFC 2827, May 2000.

[11] A. Habib, S. Fahmy, S. R. Avasarala, V. Prabhakar, and
B. Bhargava. On detecting service violations and band-
width theft in QoS network domains. Journal of Computer
Communicatons (to appear), 2003.

[12] A. Habib, M. Khan, and B. Bhargava. Edge-to-
edge measurement-based distributed network monitoring.
Technical report, CSD-TR-02-019, Purdue University,
Sept. 2002.

[13] S. Institute. Egress filtering v 0.2.
http://www.sans.org/y2k/egress.htm, Feb. 2000.

[14] L. Garber. Denial of Service attacks rip the Internet. IEEE
Computer , 33,4:12–17, Apr. 2000.

[15] M. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Pax-
son, and S. Shenker. Controlling high bandwidth aggre-
gates in the network. ACM Computer Communication Re-
view, 32(3):62–73, July 2002.

[16] D. Moore, G. M. Voelker, and S. Savage. Inferring Inter-
net denial-of-service activity. In Proc. USENIX Security
Symposium, Washington D.C, Aug. 2001.

[17] K. Park and H. Lee. On the effectiveness of probabilistic
packet marking for IP traceback under Denial of Service
attack. In Proc. IEEE INFOCOM, Anchorage, AK, Apr.
2001.

[18] K. Park and H. Lee. A proactive approach to distributed
DoS attack prevention using route-based packet filtering.
In Proc. ACM SIGCOMM, San Diego, CA, Aug. 2001.

[19] V. Paxson. End-to-end internet packet dynamics. In Proc.
SIGCOMM ’97, Cannes, France, 1997.

[20] V. Paxson. An analysis of using reflectors for distributed
denial-of-service attacks. ACM Computer Communication
Review, 31 (3), July 2001.

[21] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Net-
work support for IP traceback. IEEE/ACM Transaction on
Networking, 9:(3):226–237, June 2001.

[22] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford,
A. Sundaram, and D. Zamboni. Analysis of a denial of
service attack on tcp. In Proc. IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, May 1997.

[23] A. Snoeren, C. Partridge, L. Sanchez, W. Strayer, C. Jones,
and F. Tchakountio. Hashed-based IP traceback. In Proc.
ACM SIGCOMM, San Diego, CA, Aug. 2001.

[24] G. Spafford and S. Garfinkel. Practical Unix and Inter-
net Security. O’Reilly & Associates, Inc, second edition,
1996.


