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Abstract own system call interposition-based application sandbox-
ing tool, we have encountered a host of mistakes and chal-
lenges related to building this class of systems. Given the

System call interposition is a powerful method for reg- perspective of this experience, we believe that past work
ulating and monitoring application behavior. In recent in this area has often painted an incomplete or inaccurate
years, a wide variety of security tools have been developedpicture of the steps required to ensure the correctness of an
that use this technique. This approach brings with it a host interposition-based tool. Often the details of the interposi-
of pitfalls for the unwary implementer that if overlooked tion mechanism, tool architecture, and underlying OS se-
can allow his tool to be easily circumvented. To shed light mantics are only given cursory consideration. Most work
on these problems, we present the lessons we learned ifhas instead focused on higher-level issues such as policy
the course of several design and implementation cyclesspecification [3, 8] and analysis of system call patterns
with our own system call interposition-based sandboxing [21, 15] for intrusion detection. Work that has focused
tool. We first present some of the problems and pitfalls we on mechanism [13, 11, 16] has been more concerned with
encountered, including incorrectly replicating OS seman- general design issues and performance than with the pit-
tics, overlooking indirect paths to resources, race condi- falls of the mechanism’s use in practice, where interac-
tions, incorrectly subsetting a complex interface, and side tions between interposition mechanism, tool architecture,
effects of denying system calls. We then present somand the system call APl must be taken into account.
practical solutions to these problems, and provide general We have found that the problems that arise from these
principles for avoiding the difficulties we encountered. interactions can be quite subtle. The Unix API is tremen-

dously complex, as are the specifics of process-tracing in-
terfaces. Because work on system call interposition often
1 Introduction fails to take these details into account, its results may be
based on assumptions that are incomplete, unjustified or

The explosion of interest in OS-based intrusion detec- simply wrong. Overlooking a “minor detail” can often un-
tion and confinement in recent years has brought with it germine a tool's security. The changes that must be made
a host of approaches to security that rely on system calltg a tool's architecture to deal with a “minor detail” can
interpositiort for confinement [24, 2, 5, 3, 9, 11, 19, 14] pe significant, and can have important implications for the
and intrusion detection [15, 30, 21, 27]. The system call system’s performance and the range of security policies it
interface is a compelling boundary on which to interpose ¢an enforce.

, as it allows virtually all of an application’s interactions  presenting a detailed analysis of Unix for the purposes
with the network, file system, and other sensitive system of hyjilding interposition tools is far beyond the scope of a
resources to be monitored and regulated. Unfortunately,single paper. In this work we will instead present the pit-
building tools that securely interpose on this interface can t5)|s and problems we encountered in the course of build-
be quite subtle. If the implementer is not careful, his tool ing Janus, the solutions that we explored, and the prin-
can easily be circumvented. ciples we distilled out of our experience for designing,

Over the course of several design and implementationpyilding, and auditing this class of systems. Although
iterations to build the current incarnation of Janus, our these lessons are presented in the context of our work on a

1system call interposition is sometimes referred to as system call in- sandboxing tool, most of the prObIemS and solutions have

terception or system call tracing. The latter term typically refers to an equal relevance to intrusion detection tools that rely on
architecture where the system call interface is passively monitored.




system call interposition. face, another prominent process tracing mechanism, also
Our paper will proceed as follows. In Section 2 we pro- does not provide an ideal mechanism for security applica-
vide background on the current version of Janus, discusstions [29].
related work on system call interposition-based security To address the problem of supporting secure system
tools and examine the relationship of interposition-based call interposition, the present version of Janus relies on
sandboxing and intrusion detection tools. In Section 3 we its own dedicated system call interposition mechanism,
provide a basic model of how Janus works to provide con- implemented in Linux as a loadable kernel module. A
text for our discussion. Section 4 discusses the pitfalls similar approach to addressing this problem taken by Sys-
and problems that we encountered while building Janus;trace [24], another system call interposition-based secu-
these are divided into the following categories: incorrectly rity tool whose design closely resembles the present ver-
replicating OS semantics, overlooking indirect paths to re- sion of Janus.
sources, race conditions, incorrectly subsetting a complex Several groups have looked at developing novel system
interface, and side effects of denying system calls. We call interposition mechanisms for a broader set of applica-
explain each category of error, then present concrete ex-ions than simply sandboxing. Work on SLIC [13] and In-
amples in the context of Janus. In Section 5 we presentterposition Agents [17] looked at providing an infrastruc-
solutions to some of the problems discussed in Sectionture for using interposition as a general mechanism for OS
4, consider the design choices and trade-offs we made inextensibility. Ufo [4] examined the potential for applying
Janus, and present some alternative designs. We also offethis technique as a means of implementing a user-level
design principles to help avoid the types of pitfalls that we filesystem.
encountered. Section 6 presents a discussion of some re- Completely in-kernel system call interposition based
maining open questions and topics for future work in the tools for application sandboxing have also been studied
design of system call interposition-based security tools. by several groups [11, 2]. Several commercial products

We conclude our discussion in Section 7. using this approach are currently available [8, 9].
Intrusion detection via analysis of system call traces has
2 Background and Related Work received a great deal of attention [10, 15, 21, 27]. Typ-

ically this work abstracts away many of the real details
of the system, choosing (explicitly or not) to work with
‘an idealized model of system call tracing. The problem

The current Janus implementation was built through a
process of successive improvements and re-writings, start
ing from the or|g|r'1a_l prototype described in Goldberg' of secure system call tracing is similar to that of secure
et. al. [14]. Th‘? qngmal Jan_us yvork_presenf[ed an archi- system call interposition. In the system call tracing case,
tecture for restnctl_ng an appllcatl_ons |nte_ract|0ns with the the “viewer” is only interested in what calls an applica-
underlying operating system by interposing on the system.;, makes, and not in modifying them or denying them.

calls made by the application via standard process traCingHowever, the same problems that can allow a system call

mechanisms. Several other systems for restricted exec“interposition-based sandbox to be circumvented can also

tion were sub.sequently developed based upon this arChi'be used to evade a system call tracing-based IDS. The IDS
tectu;e mcludllng Ma(tjpBo_>|< [§>]band Consh [5]. case is in some ways more difficult. A sandbox can deny
Un_ ortunately, as detaile y Wagner [2.9]’ ﬂrteac_e_ . system calls that would make interpreting the effects of
[2.2] interface, |n|t.|ally usgd _by .Janus for INtErposItion in - yiper calls difficult, and can ignore issues like being over-
LLnu.X’ he;s a Vﬁ”e,ty offllmltatl?ns _that mags |t.a poord loaded by calls to analyze. An IDS is generally restricted
choice of mechanism for application sandboxing, and v, h4ssjve observation, and thus must deal with these prob-
o_ther security-sensitive appllcat_|ons. Additional discus- 1o Additionally, users are often willing to pay the over-
sion of the limitations optrace in the presence of h0s-  poaq associated with secure interposition for sandboxing

tll?rﬁpphchatlonz Is offered in Cesare [7]. he limitations O SOMe additional “guaranteed” degree of security; the
ere have been attempts to overcome the Imltatlonspotential to simply detect an intruder may be less entic-

associated witiptrace through the creative use of other ing
standard Unix mechanisms; their results have been lack- Our discussion of system call interposition requires

luster. Subterfugue [1] provides a means of overcoming some basic knowledge of the Unix API. We recommend

the problem.of argumgnt races (see Section-4.3.3) with readers looking for additional background on this topic re-
standard Unix mechanisms; unfortunately, their approach]er to Stevens [26] or McKusick et. al. [22]

exacts a severe performance penalty. Jain and Sekar [16
demonstrate a more efficient user-level approach to inter-
position usingptrace , but as the authors note, it relies
on a technique for avoiding system call argument races Intuitively, Janus can be thought of as a firewall that sits
that is not completely secure. The Solapsoc inter- between an application and the operating system, regulat-

3 The Janus Architecture
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Figure 1. System Call Interposition in Janus
ing which system calls are allowed to pass. This is analo- application access to the descriptor for the resource.

gous to the way that a firewall regulates what packets are
allowed to pass. Another way to think about Janus is as 5. The program continues to run under Janus’s supervi-
an extension of the OS reference monitor that runs at user ~ sion until it voluntarily ends its execution or is ex-

level. plicitly killed by Janus for a policy violation. If a
Concretely, Janus consists ofodjanus , a kernel sandboxed proces$ark s, its new children will have
module that provides a mechanism for secure system call new descriptors attached to them, and will be sub-
interposition, andanus , a user-level program that in- jected to the security policy of their parents by the

terprets a user-specified policy in order to decide which janus process.

system calls to allow or deny. )
To gain a better understanding of Janus’s basic operat- To further examine how Janus screens system calls, let

ing model we will look at the lifetime of a program being  US consider the sequence of events that occurs when a
run under Janus: sandboxed process attempts the cglén("foo™) as

depicted in Figure 1.
1. Atstartupjanus reads in a policy file that specifies

which files and network resources it will allowaccess 1. A sandboxed process makes a system call
to. open(“foo") ; this traps into the kernel at

, . N th t Il ent int.
2. janus thenfork s, the child process relinquishes © system call entry poin

all of its resources (closes all of its descriptors, etc.), 5 A hook at the system call entry point redirects con-

and the parent attaches to the child with the trac- trol tomodjanus , sinceopen is a sensitive system
ing interface provided vianod janus . At the user call.

level, this consists of attaching a file descriptor to

the child procesganus  thenselect s on this de- 3. modjanus notifiesjanus that a system call has
scriptor and waits to be notified of any interesting been requested and puts the calling process to sleep.
events.

4. janus wakes up and requests all relevant details
about the call froomod janus , which it uses to de-

4. Allaccessesto newresourcesefen, bind etc. is cide whether to allow or deny the call. It then notifies
first screened by Janus to decide whether to allow the mod janus of its decision.

3. The childexec s the sandboxed application.



5. Ifthe call is allowed, control is returned to the kernel bind them. Our initial solution to this problem was to
proper and system call execution is resumed as nor-record a socket's protocol type when it was created, then
mal. If janus decides to deny the call, an error is later look up this information when the need arose. Unfor-
returned to the calling process and the system call is tunately, we had not taken into account all of the system
aborted. calls that could change our descriptor space. As a result,

_ . N a malicious process could fool Janus about the protocol
This is the basic model of a program running in a Janus type of a given socket, and violate certain security poli-
sandbox. Readers may also wish to refer to other Sourcegias Consider the following example:

[12, 23] on howjanus andmodjanus work , as well
as referring back to the description of the initial Janus pro-
totype [29].

Suppose we are enforcing the following security pol-
icy: our application, for example a web server, is only
allowed tobind TCP sockets on port 80, and is not al-
) lowed tobind UDP sockets, but is still allowed to create
4 Problems and Pitfalls andconnect them, perhaps to talk to a DNS server.

This section presents a selection of problems and pit- SUPPOSe we see the following sequence of calls:

falls encountergd in the course of building Janus: Th(_ase 1. 6 = socket(UDP,...)
can be broken into the following general categories: in-
correctly replicating OS semantics, overlooking indirect
paths to resources, race conditions, incorrectly subsetting 2. 7 = socket(TCP,...) . Janus logs 7 as a TCP
a complex interface, and side effects of denying system socket.

calls. We introduce each problem with a general descrip-

tion, then present concrete examples from our own work. 3. close(7)

. Janus logs 6 as a UDP
socket.

4.1 Incorrectly Replicating the OS 4. dup2(6,7) . Janus’s state about the type of 7 is
now inconsistent as it still believes that 7 is a TCP
In order to make policy decisions, Janus must obtain socket.

and interpret OS state associated with the application it _
is monitoring. Achieving this can lead to replicating the 5. bind(7,...some address...port 80)

OS in two ways. First, we may try to replicate OS state. Janus allows this call to proceed as it believes that 7
Necessarily, we must keep around some state in order to  has type TCP, our security policy has thus been vio-
track what processes we are monitoring. This state over- lated.

laps with state managed by the OS. In order to interpret
application behavior (e.g. the meaning of a system call)
we must replicate OS functionality. In both cases, repli-
cation introduces the possibility of inconsistency that can
lead to incorrect policy decisions.

Because we failed to tak#up2 into account, the se-
guence of calls shown could leave Janus in a state where
its internal representation of the process’s descriptor space
indicates that 7 has protocol type TCP, a state inconsistent
with its actual protocol type of UDP. We could have modi-
fied Janus to account for all possible means of duplicating
descriptors; e.qdup, dup2, fentl, etc. but a more

Janus often needs OS state in order to make a policy defobust solution was simply to query the kernel directly.
cision. For examp|e, if we observe that a process wants toln this case the state was readily available from the kernel;
callioctl  on a descriptor, we might want to know more however the interface to access it was initially overlooked.
about that descriptor. Is it open read-only, or read-write? We took several lessons from this. _ _
Is it associated with a file or a socket? Does it have the First, avoid replicating state in the monitor. Any time
O.SYNCflag set? One solution to this problem is to infer One attempts to shadow OS state at user level, one runs the
current OS state, by observing past application behavior.isk that his copy will become inconsistent with the OS.
This option is certainly attractive in some ways. Inferring Second, policy decisions should minimize the amount of
state means we don’t need to modify the OS if this in- State they require, as this reduces the chance of relying on
formation is not readily available. It also eliminates the inconsistent state. Another important lesson this mistake
system call overhead of querying the OS. Unfortunate]y, illustrates is not to underestimate the Complexity of Unix
trying to infer even the most trivial information can be interface semantics. The initially incorrect approach taken
error-prone, as we discovered in the course of building to solving this problem was written by programmers with
Janus. . 2Directly accessing this information was achieved through the Janus
Janus nee_ds to know the protocol type Of_ IP sockets inkemel module, although using tHproc  interface would also have
order to decided whether or not to let a monitored processbeen a viable solution.

4.1.1 Incorrectly Mirroring OS State




significant experience in the Unix programming environ- duplication adds complexity to the tool in question, and
ment. Their mistake was not detected until a rewrite, sev- often the duplicated functionality overlooks corner cases.
eral years later, after a variety of other parties had looked

over the code and failed to detect the problem. 4.2 Overlooking Indirect Paths to Resources

Resources are often accessible through what welzall
rect pathsandindirect paths Direct paths are those that
. . . are obvious and clearly specified, and typically those that
Operating systems often perform non-trivial processing interposed upon. To access the Linux file system the

4.1.2 Incorrectly Mirroring OS Code

to interpret system call arguments. Duplicating this pro- direct paths are *

cessing runs the risk of incorrectly implementing the ker-
nel's functionality or having the duplicate implementa-
tion become inconsistent over time (real-world kernels do
change, after all). An ideal example of where this type of
problem can arise is the canonicalization of path names.

Janus needs canonical file names to allow files to
be uniquely specified in the context of its access con-
trol policies, for example, suppose Janus sees the call
open("../foo",0 _RDWR) It needs to be able to tell
that this is the same file dgnp/foo  in its security pol-
icy. Superficially, this appears to be a simple problem. If
we are given a relative path then we simply need to re-
solve its constituent parts. For example, if the path con-
tains".." or"." we need to resolve these to the correct
directories, however, there are some subtle issues here. If
the last component of our path is a symbolic link, should
we expand it? What should we consider as our file sys-
tem root when we resolve a path name? If the application
being monitored is allowed to usdroot , it may have
a different file system root than the Janus process watch-
ing it. Even individual processes of the same application
may have different roots. Basic path resolution regularly
confounds implementet®f applications that require this
functionality.

Other subtleties can arise due to the fact that file sys-
tem behavior may differ on a per-process basis. Consider
Linux, where/proc/self contains information reflect-
ing the state of the process accessing the directory. Thus,
if we resolve/proc/self/cwd (the current process’s
current working directory) in the context of the monitor
we may find a very different result than if we resolve this
path in the context of the untrusted process that the moni-
tor is watching.

Janus initially tried to canonicalize at user level, and got
it wrong by overlooking a few of these issues. The solu-
tion we adopted was to canonicalize in the kernel, in the
context of the monitored process, by calling the appropri-
ate kernel function after file names are copied into the ker-
nel. The complete description of our approach to dealing
with this problem is given in Section 5.4. Duplicating OS
functionality/code should be avoided at all costs. Such

3A cursory examination of recent reports on BUGTRAQ reveals sev-
eral serious bugs in network services that got canonicalization wrong the
first time.

normal” file system API calls that are

used to access descriptors suctopen or to modify the
file system, such agname or unlink
ing and interposition tools will carefully guard these in-
terfaces. However, these same tools will often ignore or
overlook indirect routes to access the file system. Con-
sider the following routes:

. Most monitor-

e Unix domain sockets: Unix domain sockets can be
bound to locations in the file system. While these
cannot be opened like normal files, they can still be
used to create things like lock files.

e Core dumps: Even if an application cannot open any
files directly, it can still create files by dumping core.

e Descriptor passing: Unix domain sockets allow de-
scriptors to be passed back and forth between pro-
cesses visendmsg andrecvmsg . If this path is
overlooked, applications can gain access to unautho-
rized files or network sockets without any checking
from a monitor. Consider two sandboxed processes
that have different network access policies, but ac-
cess to a common portion of the file system where
they can open and access Unix domain sockets (but
not files). If one process has access to sensitive data
but no access to an external network, and the other
process has external network access, but no access
sensitive data, the two processes can collaborate to
leak sensitive data, and thus violate the system se-
curity policy. Admittedly, this example could also
utilize the presence of shared memory or other in-
terfaces that processes can use to share data. In the
limit, this runs up against the issue of the confine-
ment problem [20].

e Unhelpful processes: Another common way that an
application can gain access to parts of the file system
not specified in its security policy is through other
processes that unwittingly help it. An ideal exam-
ple of this is the Name Service Cache Daemon (or
nscd ). nscd can be used by glibc to retrieve entries
from/etc/passwd  and/etc/groups via inter-
process communication over a Unix domain socket.
If the unwary user grants read access to the standard
nscd socket infvar they may inadvertently grant



access to potentially sensitive parts of their system. 2. Janus checks that access to btithp/foo  and
If a malicious process is able to create sockets in this /tmp/bar  is allowed and, noting that it is, it will
part of the file system, it can impersonate nscd, and allow the call to proceed.

thus trick other processes into using its own version

, 3. ProcessB removes /tmp/foo , and creates a

of thepasswd andgroups  files. new symbolic link /tmp/foo , that points to
One of the key difficulties of interposing on an inter- Itmp/baz

face as complex as the Unix APl is simply knowing all o~ , 14 og executespen("/tmp/foa”,0 _RDWR)

the side effects and non-obvious ways that one can affect

. 4 i . for processA, thereby granting write access to
system resources. It is important to identify every possi-

i /tmp/baz
ble way for a process to access or modify resources, both
alone and working in concert with other processes. ProcessA has just violated our security policy since it
now holds a descriptor thmp/baz  with both read and
4.3 Race Conditions write access. In this example and in later examples, Pro-

o . N cessB does not necessarily need to make the call to mod-

Race conditions in system call interposition-based Secu-ify /tmp/foo  after Janus makes its check, the modifica-
rity tools most commonly occur due to the non-atomicity tions just need to happen after Janus’s check i.e. the order
of permission checking at user level in Janus and accesshat calls are made does not strictly dictate the order that
granting in the kernel [25]. These are sometimes referredth(_jy complete in.
call interposition based sandboxing tools. Frequently
tools attempt to solve the problem of symbolic link races
by first canonicalizing pathnames and then checking the

2. That state changes, making the result of performing canonical name against their policy, or in some cases,
operationA illegal (i.e. the meaning aft in context forcing the application to use a canonicalized name for file
has changed). system access by altering the arguments to the call in ques-

tion. This also does not solve the problem of symbolic link
3. The operatior is performed by the operating sys- races because it fails to address the root of the problem,
tem (i.e. access is granted, but not the access thatwhich is concurrency. Even after resolvifimp/foo  to
Janus approved). /tmp/bar , another process can still changmp/bar

This t f dition i ianificant oroblem f to be a symlink totmp/baz , before theopen call ex-
IS type of race condition IS a signiticant probiem for ecutes, they can even chanfjep to be a symlink to

sandboxing tools and can be used to mislead intrusion de-/, . they have the appropriate permissions. We dis-

tection systems. Often, operations that system calls Pe"cuss the difficulty of formulating a correct solution to this

form rely on mutable sh_ared state that if altered will fun_- problem and some of the missteps that we made in Section
damentally change the impact of the system call. We will

see many examples of this type of race in the following
sections.

1. Janus grants permission to perform an operatipn
that relies on some mutable shared state.

4.3.2 Relative Path Races

4.3.1 Symbolic Link Races Relative path races exploit the fact that the location of
a given inode can change between the time that Janus

Symbolic link races [6] are a familiar problem to the secu- (egglves a path relative to that inode to check an access,

rity conscious Unix programmer. A symboliclinkrace oc- gng the time that the kernel resolves a path relative to

curs when a symbolic link is modified to point to a differ-  that inode to perform the access. To illustrate a potential
ent file between the time that the file it refers to is checked exploit of this race, consider the following sequence of

for a given property, and when an access that relies on that, ents:
check occurs. Consider the following example:

Suppose Janus is enforcing a security policy that allows  aAssume the current working directory of Processs

write access témp/foo  and/tmp/bar  and read ac-  jimp/foo/bar  and that Janus allows the monitored ap-

cess totmp/baz . Also suppose thatmp/foo is ini- plication read and write access only to the contents of the
tially a symbolic link pointing tatmp/bar . ftmp directory.

Now consider the following sequence of events:
1. ProcessA callsopen("../../etc/shadow",

1. Processi callsopen("/tmp/foo”, O _RDWR). O.RDWR)



2. Janus resolves this path tmp/etc/shadow not immediately copied from user memory into the ker-
notes that this is irtmp , and allows the call. nel. Instead, they are copied by individual system calls
immediately before use. This potentially leaves a window

3. Process B, also in the sandbox, renames of gpportunity for an attacker to strike, after the time that

/tmp/foo/bar  to/tmp/bar . a system call has been initiated and arguments have been
examined by Janus, but before the arguments have been
copied into the kernel.

This type of race can only occur in the presence of
shared memory. Examples of mechanisms supporting
this in Linux include: the SYSV shared memory facili-
ties,mmap and memory shared among multi-threads cre-

Relative path races have a similar flavor to symbolic ated via theclone call. Debugging interfaces such as
link races, as both rely on malicious processes collaborat-Ptrace  that allow processes to modify the memory of
ing to modify shared file system meta-data, and fool the Other processes must also be taken into account.
monitor. Interestingly, relative path races are not a well
studied problem like symbolic link races, in spite of the 4.3.4 File System Information Races
fact that they do not appear to be unique to the problem of
system call interposition-based sandboxing.

4. The OS executes
open("../../etc/shadow",0 _RDWRY)in the
context of Processl. Since the current working di-
rectory of A is now /tmp/bar , ProcessA gains
read and write access tetc/shadow

In Linux, when two threads share file system information
it means that those threads share their root directories and
current working directories. Sharing current working di-
4.3.3 Argument Races rectories is highly problematic as it easily facilitates a race
rnfor any file system operation that uses a relative path. For
dexample, consider the following sequence of calls, assum-
is forbidden by Janus:

An argument race occurs when arguments to a syste
call are modified between the time that they are checked;
by Janus, and when they are used by the operating systen'{qg access téetc/shadow
to perform the system call. Argument races can occur 1. ThreadA calls open("shadow",...) with the
if system call arguments reside in a portion of memory current working directorytmp .

that is accessible by more than one process. Consider the

following scenario: 2. Janus traps and approves the call.

3. Thread B calls chdir("/etc") and Janus ap-
Suppose Janus’s policy is to allow read access to proves the call.

Itmp/foo  and deny all other file system access.

4. Thread A’s open("shadow",...) executes
1. ProcessA calls open(path,O_RDONLY) , where with the current working directorjetc , returning
path is"/tmp/foo” . a descriptor tdetc/shadow . Thus, our security

policy has been violated.
2. Janus traps process . ) - o
While this class of race conditions seems similar to the

3. Janus readsath from the memory of4, notes that  previous two, it is really in a class of its own. The problem
/tmp/foo  can be opened according to its policy, is not that file system meta-data is shared, but rather that

and allows the call to proceed. process meta-data is shared between two or more threads.
N ] The sharing of root directories is also problematic as a
4. Proces®B modifiespath to point/etc/shadow . similar race condition can be induced usiigoot

5. The OS executes tlopen call, returning a descrip-

tor for /etc/shadow 4.3.5 Shared Descriptor Space Races

In the case where two threads share descriptor spaces we

Generally, argument races are only a concern for non- oo .
y, arg y encounter the possibility for a race in checks that rely on

scalar system call arguments. Scalar system call argu- . )
Y 9 y g .the type of descriptors for their correctness.

ments are passed to the OS in registers that are immedi- . .
T For example, suppose that Janus has the policy that it
ately copied into the kernel by the system call trap handler.
. - only allows TCP sockets to be bound to port 80. By ex-
Scalar arguments in the kernel can only be tampered with . . .
ecuting the following sequence of calls a multi-threaded

:Jeyrfl;sézrsspace processes pteace  and other tracing in- application with threadsl and B can violate this policy.

Non-scalar arguments, such as path names and socket 1. ThreadA callssocket to create a TCP socket
addresses (e.g those useddoyinect , bind , etc.) are asfd7.



2. ThreadA callssocket to create a UDP socket
as fd 6.

3. Janus traps a call tind from threadA to attach fd
7 to port 80, and allows the call to proceed as fd 7 is
a TCP socket.

4. ThreadB closes fd 7.

5. ThreadB callsdup2(6,7)

6. Thread A’s bind call proceeds, binding a UDP

socket to port 80, and violating the security policy.

Races of this type, along with argument races, make
dealing with multi-threaded application highly problem-

atic. Due to these difficulties Janus currently does not sup-

port multi-threaded applications. We discuss this problem
further in Section 6.

4.4 Incorrectly Subsetting a Complex Interface

Application sandboxes generally enforce p(_)hcy by only are symlinks, deny the call.
allow the use of a subset of the system call interface, we
refer to this practice as subsetting. The system call inter-
face can be subsetted at the granularity of whole system

calls, (e.g. disallowchroot calls) or on a more granular
by disallowing certain arguments to calls (e.g. only allow
open(path) if path =foo ).

In spite of its seeming simplicity, subsetting can often
be tricky. Unanticipated interactions between different
system calls can make it difficult to check that a subsetting
solution is correct. In order to better illustrate the limita-
tion of this approach, and the type of difficulties that can
arise, we will consider a series of incorrect subsetting so-
lutions to the problem of symlink races motivated by our
own experience.

Attempt 1: Deny the creation of symlinks to files to
that we do not allow unrestricted access.

The argument for the correctness of this solution goes:
if an untrusted application is only allowed to create sym-
links to files it could access without restriction then even
if a symlink race occurs there is no harm done.

Problems: Pre-existing symlinks, other sources of
symlinks.

This solution is a good start, but it is incomplete. Some
notable oversights include the implicit assumption that we
are only worried about symlinks that the untrusted appli-
cation creates. This ignores the possibility of pre-existing

unsafe symlinks and unsafe symlinks created by other pro-

The argument for the correctness of this solution is that
if we remove the untrusted applications ability to create
symlinks with a given name, we have removed its ability
to create a race.

Problems: Directory renaming and relative sym-
links.

Preventing symlinks from being renamed prevents the
attack that broke our previous solution, but there are still
problems. Suppose for example that our untrusted process
can renamétmp to /quux and replace it with another
directory, that also contains a file namfmb , that is a
symlink to ../quux/baz . Again, we can violate the
security policy. So completely disallowing direct manipu-
lation of symlinks does not prevent this attack. This attack
is even possible if we check that all reachable symlinks are
safe when we start Janus.

Attempt 3: Deny access through symlinks.

Suppose that we give up on allowing access through
symlinks in general. To implement this, we have Janus
stat files before it allows access to them, and if they
Clearly our renaming attack
above still works, and we are aware that a race might still
occur, so we try so to ensure that our open will fail if
someone does try to slip us a symlink. We modify the
open call slightly by adding th@_.NOFOLLOWag before
we let it execute. This flag will cause the open to fail if
it finds that/tmp/foo  is a symlink. It seems like now
we are safe, but as it turns out, we can still get burned,
for any component of the pattmp/foo  may be a sym-
link, includingtmp. Thus, we are only protected by this
approach if our path consists onlyfoio .

Problem: Symlinks in intermediate components in
our path.

Providing a general solution to this problem that yields
a tool that is not fragile in the presence of symlinks does
not seem possible using just subsetting, however, there are
other mechanisms that can be called upon. We will present
some potential alternative approaches to addressing this
problem in section 5.2.

We believe that this example clearly illustrates the po-
tential for mistakes when subsetting a complex and state-
ful interface such as the Unix file system. It also serves as
a clear illustration of the limitations of a purely subsetting
approach to user level application sandboxing.

4.5 Side Effects of Denying System Calls

System call interposition-based sandboxes restrict an

cesses. If either of these conditions exists, then the aboveapplication’s behavior by preventing the execution of any
policy is not sufficient to prevent symlink races. For ex- system call that would violate a predetermined security
ample, the untrusted application can rename a pre-existingpolicy. Preventing the execution of a system call, or caus-

symlink to facilitate a race in the former case is true.
Attempt 2: Deny the creation and renaming of sym-
links.

ing a system call to return in @ manner inconsistent with
its normal semantics, can have a detrimental impact on
the operation of the application, potentially undermining



its reliability and even its security. "letc/shadow" in the memory of another process that
Denying calls that an application uses to drop privilege has just used the string as an argument t@pen call.
frequently introduces serious security flaws. This type of Here we consider two approaches to preventing this class
problem is most often found in applications that run as of race condition:
root and drop privilege usingetuid . Many applications ) .
that rely onsetuid fail to check its return value, and if » Copy arguments into a “safe” place in memory,
setuid fails, will continue to function in a compromised e.g. private memor{, kernel address space, or the
state. Upon casual examination we were able to discover ~ address space of a trusted process. This guarantees
this condition in several common FreeBSD daemons, and ~ that sensitive arguments cannot be modified between
it appears that this problem is quite widespread. We also ~ When they are read by the monitor and when they are
found that applications fail to check the return values from used by the kernel.
other privilege-reducing calls, or simply fail-open. We
frequently saw failures being ignored for other privilege
reducing calls includingsetrlimit to reduce resource

limits, andfcntl  to drop privilege from descriptors. Using these strategies we have sought to make argu-
Given that aborting privilege-dropping calls will often  ments accessible only to the kernel and trusted process

undermine the security model of a sandboxed application, (e.g. Janus) and when safe, the thread of control request-
it seems generally advisable to allow all such calls. For jng the system call.

setuid and related calls, it seems most prudent to abort
the application entirely if we wish to deny a call.

Forcing system calls to return with a value that is
not part of its specified interface, or that the application OS kernel’s prevent argument races by copying arguments
designer simply did not anticipate, is another potential into kernel memory before use. This approach makes
source of problems. For example, the Sol&imc pro- sense; the cost of this copy is usually minimal, and it is
cess tracing interface will only allow aborted system calls easy to verify the safety of this approachmod.janus
to returnEINTR. This sometimes leads applications to protects system call arguments using a variation on this
hang, repeatedly retrying the aborted system call with the theme by copying volatile system call arguments into ker-

e Leave arguments in place and ensure that the mem-
ory they reside in is private (i.e. “safe”).

5.1.1 Copying Sensitive Arguments into the Kernel

expectation that it will eventually complete [14, 13]. nel memory before they are used.
Whenmodjanus traps a system call it immediately
5 Solutions and Helpful Hacks looks in a table to see if this call has any arguments

that reside in user memory. If arguments are present,

In this section we present techniques for solving or modjanus will copy these arguments into a thread-
avoiding some of the problems that we presented in thespecific buffer in the kernel and twiddle the argument
Problems and Pitfalls Section. We consider several differ- pointers in the trapped thread’s registers to point to this
ent approaches for: avoiding argument races, avoiding filenew location in memory. It will then set a flag indicating
system races, and denying system calls without adverselyto the kernel that it is OK for the current system call to
effecting applications. For each set of solutions, we first gbtain its arguments from kernel memory. When Janus
provide a brief review of the problem being addressed, subsequently examines the arguments of the untrusted ap-
we then give a high level summary of the solutions. We plication, it will fetch a copy of them directly from the
then present the details of implementing these solutionsthread-specific buffer, not from the memory of the un-
and that trade-offs associated with each approach. Wetrusted process.
give special attention to the solutions we chose for Janus, The primary advantage of this approach is the simplicity
and the rationale behind our choices. We conclude with of verifying its correctness. We can say with a high degree
some more general principles for recognizing and avoid- of certainty that arguments in a kernel buffer cannot be

ing problems in this class of system. modified by untrusted processes, even in the presence of
o multi-threading.
5.1 Avoiding Argument Races The disadvantage of this approach is that it adds some

. L . complexity to the kernel resident portion of Janus; about
To recap our discussion in section 4.3.3, argument races P y P

occur when system call arguments are modified between 4For memory to be private in the sense we mean here, the mem-
the time that a monitor reads the arguments for a per-ory must be modifiable only by the monitor processes and the process

mission check, and when the operating system uses thdha owns the memory. This means not only that the memory is not
explicitly shared between processes (e.g. created mimapwith the

arguments. Th_e canonical example of this problem is ayappRrIvATE flag), but also that it is not shared between multiple
process changing the argument strilignp/foo" to threads, modifiable via. a process tracing interface, etc.




25% ofmodjanus is dedicated to performing this task space was sufficiently restricted and efficiency lead us to
(modjanus is well under 2K lines of C total, so this abandon this approach in Janus.

is not a major penalty). Individual system calls require

special treatment in order to copy their arguments into the

kernel. Fortunately, the arguments of interest are typically 5.1.3 Checking that Arguments Do Not Reside in

of two standard types, socket addresses and path names. Shared Memory

Most of the work of specifying per-call copying behavior
is reduced to filling in a per-call entry in a table which
specifies its argument types.

Another worrisome property of this approach is that
system calls are permitted to fetch their arguments from
kernel memory instead of user memory.mbd janus for creating shared memory areas
failed to twiddle a threads argument pointers (or pointers F 9 licati tr{' AR bl luti Rel-
in the arguments themselves, when there are arguments . or many appfications this 15 a viable solution. ke
with nested pointers), the untrusted application might be at|vely. few Linux applications use mulg-threadmg. Thg
able to gain unauthorized access to kernel memory. The32Me 1S true of the ESD-based Qperatmg systems, which
difficulty of verifying this is somewhat ameliorated by our until recently [31] did not provide kernel support for

table-driven approach. This minimizes code duplication _multl_-threadlng. The use of other shared memory facil-
and simplifies auditing, ities is also not terribly widespread.

e considre e ossty ofmovng some of s 12 7 C1ECk 3t Armument ot et i e
complexity into Janus by giving it finer grained control y y 9 P

over moving arguments to and from this per-thread scratch\/'rtnugII memc:;y I?rﬁa;r:ﬁ: arglrjlments leJi:rentli/ rris'?fj' Ih's
space at user level, but we ultimately decided against this®a" P accomplisne ough tipeoc _ filesystem unde

approach as we believe it provided too much power to the h:?tuc;(ﬁl F?g;?;i:gﬁ:ﬁ:fg;%zer Cg:;c:hvgteamntfrt B;eezfl:ée
tracing process, and greatly increased the possibility of y y g

creating an exploitable hole imod janus , which is in- sides in is not shared, but also that the untrusted process
tended to be accessible by unprivileged processes. ha}s Its own copy. For pr|va.tmmarazd memory reg,|ons
this can be enforced by reading our of the process’s mem-
ory and writing them back to the same location to ensure
that the process has a private copy. This is necessary as a
privately mmagd files may reflect changes in the under-
Another solution to the problem of preventing argument lying file, a process is not guaranteed to get its own copy
races is copying arguments into a read-only section of of an area of an mmaped file until it writes to that area.
memory in the address space of the untrusted process. Set- While this approach enforces some limitation on the
ting up this section can be accomplished either by dedi- generality of a tool, it requires no kernel modifications and
cated kernel code or by forcing the processnmapand minimal effort on the part of the implementer.
mprotect a region of memory. Before system call ar-
guments are checked, they can be copied into this region5.2  Avoiding File System Race Conditions
by Janus. This approach was taken by earlier versions
of Janus that would create a read-only memory region by In order to verify that Janus sees exactly what filesys-
callingmmapin the context of the untrusted process when tem accesses a process makes, file system access must
that process was “attached”, then keep track of the loca-take place in a manner that ensures that no race condition
tion of this scratch space in the untrusted application’s ad- can take place. In section 4.4 we demonstrated that trying
dress space. The correctness of this approach relies oo achieve this by simply subsetting away problematic be-
Janus judiciously guarding theaprotect , mmapand haviors left us with a policy for file system access that was
mremap interfaces to ensure that this read-only section quite cumbersome and difficult to use safely. In this sub-
of memory is not tampered with. section, we present some potential approaches to solving
This approach is attractive, as much less work must bethis problem. Our approaches work by coercing applica-
done in the kernel in order to implement it. The Sub- tions into always accessing the file system using an access
terfugue [1] system actually does this using gptisace pattern that we can easily verify is safe (e.g. via shared li-
although the inefficiency of usingtrace to copy argu-  brary replacement), and then simply disallowing all access
ments makes this prohibitively expensive, given a more ef- that does not conform to this access pattern i.e. we even
ficient mechanism this seems like an attractive approach.disallow potentially safe operations which would simply
Concerns about assuring that access to the user scratche hard to verify.

Argument races can only occur if arguments reside in
unprotected shared memory. On approach to prevent-
ing this is restricting the interfaces that allow the cre-

ation of shared memory, suatone for creating multi-

ple threads, certain usesmwimapand the SYSV facilities

5.1.2 Protecting Arguments in User Memory



5.2.1 Whatis Good Behavior? /tmp/foo  would make the safe sequence of calls
given above. When using this approach we still rely
only on Janus for the security of our system, the li-
braries are not trusted, but merely serve to facilitate
easy checking.

Unix applications can obtain access to files without en-
countering symlink races. This is important for normal
application programmers who, for example, might want
to write an ftp server that securely checks file system ac-
cesses against a security policy. The programmer can ac-
complish this by leveraging the fact that the current work- 3. Force access through a proxy: Instead of letting an

ing directory of a process is private sta@nd will not application access the file system directly we can
change between the time that it performs a check on afile ~ require it to go through a proxy process which ac-
relative to this directory, and the time that the call com- cesses the file system on the application’s behalf.
pletes. The programmer can leverage this to perform a  This proxy can in turn use safe operations when it
race free open by recursive|y expanding (“ﬂad“nk ) accesses f”es, preventing it from falllng victim to file

and following a path one component at a time until they system races. We have had promising results with

have reached a file, or until they have found that the path ~ Preliminary experiments in facilitating proxy-based
violates policy. A similar sequence of calls can be used to file system access with shared library replacement. It
perform other file system operations without races. If we is interesting to note that this approach also solves
are monitoring an application performing such a sequence the problem of argument races.

of calls, we can also check each call in the sequence with-

out the risk of a race condition. This follows from the fact 5.3 Denying System Calls without Breaking Ap-
that we perform our check after the application makes the plications

call, if there cannot be a race that can fool the application,

there cannot be a race that will fool the monitor. Clearly  Often the reason that we wish to deny a system call is
this is a very specific behavior pattern that we would not that it allows a process to modify some sensitive global
normally expect applications to conform to. However, we state, such as a sensitive file, its own resource limits, or
can play some tricks to coerce applications into always its uid. However, it is often the case that the process can

conforming to good behavior patterns. be given its own local copy of this state without affecting
its functionality. This approach of giving an application
5.2.2 Enforcing Good Behavior its own copy of some global state is what we call virtu-

alization. Virtualization is a powerful technique because
There are several mechanisms we can use to “force” anit allows us to isolate an untrusted application from sensi-
application to conform to our definition of good behavior, tive resources, while preserving normal system semantics,
i.e. to access the filesystem in a manner that we can easiljthus obviating the risk of breaking an application. There
verify is safe. are several ways that we can virtualize the sensitive re-
sources.

We canemulate the normal semantics of an unau-

thorized portion of the operating system interface using
; ‘ shared library replacement e.g. this technique can be used
For example, if a monitored process makes the call y, gimyate the semantics of running as root for processes

open(*/tmp/fo0”,...) , we could force the hning without privilege. This technique is used by tools
operating system to make the appropriate safe se-j;. takeroot [18], to simplify packaging software.

quence of system calls specified above in the context We carredirect calls to sensitive resources to a copy of

of the traced process. those resources. For example, through modifying the ar-
guments to system calls, either directly through the tracing
h mechanism as done in MapBox [3] or indirectly through
ishared library replacement.
We canreplicate resources using the normal operating
system facilities for this task; for example, usictyroot
we can give an untrusted application its own copy of the
5As mentioned above under Linux this invariant can be violated ifwe file system.
allow threads to clone themselves with shared file system state. If possible it is always preferable to virtualize the re-

8This approach also requires that we also use a modified loader. This P :
“trick” does not work with the loader, because the loader must first ac- sources than deny access as this gives us the highest level

cess the file system directly in order to load the shared libraries before it Of (?ertainty that we have not broken our sandboxed appli-
can use them. cation.

1. Induce safe call sequences: The monitored pro-
cess can be forced to directly execute a safe se-
guence of calls using a process tracing mechanism.

2. Static or dynamic library replacemerft:Using this
approach we replace problematic library calls wit
code that converts these calls to their easy-to-chec
counterparts. Again, we could have a shared li-
brary replacement foopen, which if called with
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If the kernel does some complex operation, don't try to
replicate that code yourself, just call the code in the ker-

nel.

Let the Kernel Do the Work e Be aware of all direct and indirect paths to resources.
Know all the ways that a process can maodify the
file system, network, and other sensitive system re-

X ; sources.
In section 4.1 we discussed the problem of canon-

icalizing file names. Sometimes the OS will provide a o The file system is a huge chunk of mutable shared
system call for just this purpose Janus addresses this state. It is fraught with race conditions of the obvi-
problem by havingnod janus canonicalize path names ous and non-obvious variety. Dealing with the file
at the same time that they are fetched from the untrusted  System interface is the most difficult part of confin-
process upon system call entry. This is advantageous for ~ ing/monitoring an application.

two reasons. First, the file system namespace varies on a
per process basis, canonicalizing path names in the execu-
tion context of the monitored processes ensures that these
differences are taken into account. Second, because the
Janus kernel module simply calls the kernel's canonical-

ization code, we can be sure that we are getting the correct
canonicalization. A final advantage of letting the kernel

e Any time you change the behavior of your operating
system, for example by aborting system calls, you
risk breaking your applications and potentially intro-
ducing new security holes. Avoid making changes
that conflict with normally specified OS semantics,
or diverge from application designer’s expectations.

do the work of canonicalization for us is that it simplifies
our policy engine by several hundred lines. 6 Future Work

There are still a variety of problems to be solved in order
5.5 Lessons for the Implementer to demonstrate a system call interposition-based sandbox

To summarize the lessons from our experience:

that can support the full range of potential applications in
a secure fashion. The most notable omission in our list

Avoid replicating OS state and functionality. Reuse of solutions was an answer to the question of how to sup-

OS functionality and query the OS directly for state PO multi-threaded applications. We are not aware of any
whenever possible. Beware of inconsistency. user-level system call interposition-based sandboxing tool

that has addressed this problem. One potential solution is
Be conservative in your design. Don’t underestimate to offer functionality in a kernel module to allow locking
the complexity of the system call API. Don't overes- of per thread meta-data. Since this is per-process state,
timate your understanding of its nuances. and not globally shared state like file system meta-data, it

seems quite possible that a user level process could safely
Be aware of race conditions that can occur betweenpe aliowed to lock it. The performance implications of
the OS and monitor. Consider all the state that a sys-gych a solution are unclear and require further study.
tem call relies upon to perform its function. Think  An important trend from first generation sandboxes
about what parts of the system can modify that state. gch as the Janus prototype, MapBox, Consh, etc., to sec-
Think about what can happen between the time you ond generation sandboxes as exemplified by Janus and
make a policy decision about a system call and when gystrace, has been to abandon a purely user-level ap-
the system call finishes. proach to application sandboxing and instead embrace
a hybrid [24] solution where a dedicated kernel mod-
ule/patch is used for tasks such as system call interposi-
tion, canonicalizing pathnames, fetching system call argu-

Be explicit. Document and justify the decisions you Ments, etc. Significant performance and security benefits
have made in your design and the assumptions thathave already been realized through the reliance on a small
rect. These assumptions may be violated as the OSC formodjanus , and a comparable number in the Sys-

evolves, when your tool is ported to another platform, {race kernel patch). Itis not clear that the correct balance
etc. The security of system call interposition-based Petween user and kernel space functionality has yet been

rarely make it beyond the mind of the implementer. into the kernel to deal with file system access policy could
potentially eliminate the race checking file system access

Be aware of the multi-threading semantics of your
particular operating system.

"Solaris provides theesolvepath  system call to canonicalize file  control that we examined in Sections 4.3.1 and 4.3.2. Sub-
names. However, theesolvepath  interface is not fool proof. The domain [8] has demonstrated that such a solution is feasi-

issue of differences in per process views of the file system still remains
a problem. Also, having to calesolvepath  could add several addi-

ble with the addition of a modest amount of additional

tional system calls to your policy engines critical path. kernel code.
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