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Abstract

System call interposition is a powerful method for reg-
ulating and monitoring application behavior. In recent
years, a wide variety of security tools have been developed
that use this technique. This approach brings with it a host
of pitfalls for the unwary implementer that if overlooked
can allow his tool to be easily circumvented. To shed light
on these problems, we present the lessons we learned in
the course of several design and implementation cycles
with our own system call interposition-based sandboxing
tool. We first present some of the problems and pitfalls we
encountered, including incorrectly replicating OS seman-
tics, overlooking indirect paths to resources, race condi-
tions, incorrectly subsetting a complex interface, and side
effects of denying system calls. We then present some
practical solutions to these problems, and provide general
principles for avoiding the difficulties we encountered.

1 Introduction

The explosion of interest in OS-based intrusion detec-
tion and confinement in recent years has brought with it
a host of approaches to security that rely on system call
interposition1 for confinement [24, 2, 5, 3, 9, 11, 19, 14]
and intrusion detection [15, 30, 21, 27]. The system call
interface is a compelling boundary on which to interpose
, as it allows virtually all of an application’s interactions
with the network, file system, and other sensitive system
resources to be monitored and regulated. Unfortunately,
building tools that securely interpose on this interface can
be quite subtle. If the implementer is not careful, his tool
can easily be circumvented.

Over the course of several design and implementation
iterations to build the current incarnation of Janus, our

1System call interposition is sometimes referred to as system call in-
terception or system call tracing. The latter term typically refers to an
architecture where the system call interface is passively monitored.

own system call interposition-based application sandbox-
ing tool, we have encountered a host of mistakes and chal-
lenges related to building this class of systems. Given the
perspective of this experience, we believe that past work
in this area has often painted an incomplete or inaccurate
picture of the steps required to ensure the correctness of an
interposition-based tool. Often the details of the interposi-
tion mechanism, tool architecture, and underlying OS se-
mantics are only given cursory consideration. Most work
has instead focused on higher-level issues such as policy
specification [3, 8] and analysis of system call patterns
[21, 15] for intrusion detection. Work that has focused
on mechanism [13, 11, 16] has been more concerned with
general design issues and performance than with the pit-
falls of the mechanism’s use in practice, where interac-
tions between interposition mechanism, tool architecture,
and the system call API must be taken into account.

We have found that the problems that arise from these
interactions can be quite subtle. The Unix API is tremen-
dously complex, as are the specifics of process-tracing in-
terfaces. Because work on system call interposition often
fails to take these details into account, its results may be
based on assumptions that are incomplete, unjustified or
simply wrong. Overlooking a “minor detail” can often un-
dermine a tool’s security. The changes that must be made
to a tool’s architecture to deal with a “minor detail” can
be significant, and can have important implications for the
system’s performance and the range of security policies it
can enforce.

Presenting a detailed analysis of Unix for the purposes
of building interposition tools is far beyond the scope of a
single paper. In this work we will instead present the pit-
falls and problems we encountered in the course of build-
ing Janus, the solutions that we explored, and the prin-
ciples we distilled out of our experience for designing,
building, and auditing this class of systems. Although
these lessons are presented in the context of our work on a
sandboxing tool, most of the problems and solutions have
equal relevance to intrusion detection tools that rely on



system call interposition.
Our paper will proceed as follows. In Section 2 we pro-

vide background on the current version of Janus, discuss
related work on system call interposition-based security
tools and examine the relationship of interposition-based
sandboxing and intrusion detection tools. In Section 3 we
provide a basic model of how Janus works to provide con-
text for our discussion. Section 4 discusses the pitfalls
and problems that we encountered while building Janus;
these are divided into the following categories: incorrectly
replicating OS semantics, overlooking indirect paths to re-
sources, race conditions, incorrectly subsetting a complex
interface, and side effects of denying system calls. We
explain each category of error, then present concrete ex-
amples in the context of Janus. In Section 5 we present
solutions to some of the problems discussed in Section
4, consider the design choices and trade-offs we made in
Janus, and present some alternative designs. We also offer
design principles to help avoid the types of pitfalls that we
encountered. Section 6 presents a discussion of some re-
maining open questions and topics for future work in the
design of system call interposition-based security tools.
We conclude our discussion in Section 7.

2 Background and Related Work

The current Janus implementation was built through a
process of successive improvements and re-writings, start-
ing from the original prototype described in Goldberg
et. al. [14]. The original Janus work presented an archi-
tecture for restricting an application’s interactions with the
underlying operating system by interposing on the system
calls made by the application via standard process tracing
mechanisms. Several other systems for restricted execu-
tion were subsequently developed based upon this archi-
tecture including MapBox [3] and Consh [5].

Unfortunately, as detailed by Wagner [29], theptrace
[22] interface, initially used by Janus for interposition in
Linux, has a variety of limitations that make it a poor
choice of mechanism for application sandboxing, and
other security-sensitive applications. Additional discus-
sion of the limitations ofptrace in the presence of hos-
tile applications is offered in Cesare [7].

There have been attempts to overcome the limitations
associated withptrace through the creative use of other
standard Unix mechanisms; their results have been lack-
luster. Subterfugue [1] provides a means of overcoming
the problem of argument races (see Section 4.3.3) with
standard Unix mechanisms; unfortunately, their approach
exacts a severe performance penalty. Jain and Sekar [16]
demonstrate a more efficient user-level approach to inter-
position usingptrace , but as the authors note, it relies
on a technique for avoiding system call argument races
that is not completely secure. The Solaris/proc inter-

face, another prominent process tracing mechanism, also
does not provide an ideal mechanism for security applica-
tions [29].

To address the problem of supporting secure system
call interposition, the present version of Janus relies on
its own dedicated system call interposition mechanism,
implemented in Linux as a loadable kernel module. A
similar approach to addressing this problem taken by Sys-
trace [24], another system call interposition-based secu-
rity tool whose design closely resembles the present ver-
sion of Janus.

Several groups have looked at developing novel system
call interposition mechanisms for a broader set of applica-
tions than simply sandboxing. Work on SLIC [13] and In-
terposition Agents [17] looked at providing an infrastruc-
ture for using interposition as a general mechanism for OS
extensibility. Ufo [4] examined the potential for applying
this technique as a means of implementing a user-level
filesystem.

Completely in-kernel system call interposition based
tools for application sandboxing have also been studied
by several groups [11, 2]. Several commercial products
using this approach are currently available [8, 9].

Intrusion detection via analysis of system call traces has
received a great deal of attention [10, 15, 21, 27]. Typ-
ically this work abstracts away many of the real details
of the system, choosing (explicitly or not) to work with
an idealized model of system call tracing. The problem
of secure system call tracing is similar to that of secure
system call interposition. In the system call tracing case,
the “viewer” is only interested in what calls an applica-
tion makes, and not in modifying them or denying them.
However, the same problems that can allow a system call
interposition-based sandbox to be circumvented can also
be used to evade a system call tracing-based IDS. The IDS
case is in some ways more difficult. A sandbox can deny
system calls that would make interpreting the effects of
other calls difficult, and can ignore issues like being over-
loaded by calls to analyze. An IDS is generally restricted
to passive observation, and thus must deal with these prob-
lems. Additionally, users are often willing to pay the over-
head associated with secure interposition for sandboxing
for some additional “guaranteed” degree of security; the
potential to simply detect an intruder may be less entic-
ing.

Our discussion of system call interposition requires
some basic knowledge of the Unix API. We recommend
readers looking for additional background on this topic re-
fer to Stevens [26] or McKusick et. al. [22].

3 The Janus Architecture

Intuitively, Janus can be thought of as a firewall that sits
between an application and the operating system, regulat-
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Figure 1. System Call Interposition in Janus

ing which system calls are allowed to pass. This is analo-
gous to the way that a firewall regulates what packets are
allowed to pass. Another way to think about Janus is as
an extension of the OS reference monitor that runs at user
level.

Concretely, Janus consists ofmod janus , a kernel
module that provides a mechanism for secure system call
interposition, andjanus , a user-level program that in-
terprets a user-specified policy in order to decide which
system calls to allow or deny.

To gain a better understanding of Janus’s basic operat-
ing model we will look at the lifetime of a program being
run under Janus:

1. At startup,janus reads in a policy file that specifies
which files and network resources it will allow access
to.

2. janus then fork s, the child process relinquishes
all of its resources (closes all of its descriptors, etc.),
and the parent attaches to the child with the trac-
ing interface provided viamod janus . At the user
level, this consists of attaching a file descriptor to
the child process.janus thenselect s on this de-
scriptor and waits to be notified of any interesting
events.

3. The childexec s the sandboxed application.

4. All accesses to new resources viaopen , bind etc. is
first screened by Janus to decide whether to allow the

application access to the descriptor for the resource.

5. The program continues to run under Janus’s supervi-
sion until it voluntarily ends its execution or is ex-
plicitly killed by Janus for a policy violation. If a
sandboxed processfork s, its new children will have
new descriptors attached to them, and will be sub-
jected to the security policy of their parents by the
janus process.

To further examine how Janus screens system calls, let
us consider the sequence of events that occurs when a
sandboxed process attempts the callopen("foo") as
depicted in Figure 1.

1. A sandboxed process makes a system call
open("foo") ; this traps into the kernel at
the system call entry point.

2. A hook at the system call entry point redirects con-
trol to mod janus , sinceopen is a sensitive system
call.

3. mod janus notifies janus that a system call has
been requested and puts the calling process to sleep.

4. janus wakes up and requests all relevant details
about the call frommod janus , which it uses to de-
cide whether to allow or deny the call. It then notifies
mod janus of its decision.



5. If the call is allowed, control is returned to the kernel
proper and system call execution is resumed as nor-
mal. If janus decides to deny the call, an error is
returned to the calling process and the system call is
aborted.

This is the basic model of a program running in a Janus
sandbox. Readers may also wish to refer to other sources
[12, 23] on howjanus andmod janus work , as well
as referring back to the description of the initial Janus pro-
totype [29].

4 Problems and Pitfalls

This section presents a selection of problems and pit-
falls encountered in the course of building Janus. These
can be broken into the following general categories: in-
correctly replicating OS semantics, overlooking indirect
paths to resources, race conditions, incorrectly subsetting
a complex interface, and side effects of denying system
calls. We introduce each problem with a general descrip-
tion, then present concrete examples from our own work.

4.1 Incorrectly Replicating the OS

In order to make policy decisions, Janus must obtain
and interpret OS state associated with the application it
is monitoring. Achieving this can lead to replicating the
OS in two ways. First, we may try to replicate OS state.
Necessarily, we must keep around some state in order to
track what processes we are monitoring. This state over-
laps with state managed by the OS. In order to interpret
application behavior (e.g. the meaning of a system call)
we must replicate OS functionality. In both cases, repli-
cation introduces the possibility of inconsistency that can
lead to incorrect policy decisions.

4.1.1 Incorrectly Mirroring OS State

Janus often needs OS state in order to make a policy de-
cision. For example, if we observe that a process wants to
call ioctl on a descriptor, we might want to know more
about that descriptor. Is it open read-only, or read-write?
Is it associated with a file or a socket? Does it have the
O SYNCflag set? One solution to this problem is to infer
current OS state, by observing past application behavior.
This option is certainly attractive in some ways. Inferring
state means we don’t need to modify the OS if this in-
formation is not readily available. It also eliminates the
system call overhead of querying the OS. Unfortunately,
trying to infer even the most trivial information can be
error-prone, as we discovered in the course of building
Janus.

Janus needs to know the protocol type of IP sockets in
order to decided whether or not to let a monitored process

bind them. Our initial solution to this problem was to
record a socket’s protocol type when it was created, then
later look up this information when the need arose. Unfor-
tunately, we had not taken into account all of the system
calls that could change our descriptor space. As a result,
a malicious process could fool Janus about the protocol
type of a given socket, and violate certain security poli-
cies. Consider the following example:

Suppose we are enforcing the following security pol-
icy: our application, for example a web server, is only
allowed tobind TCP sockets on port 80, and is not al-
lowed tobind UDP sockets, but is still allowed to create
andconnect them, perhaps to talk to a DNS server.

Suppose we see the following sequence of calls:

1. 6 = socket(UDP,...) . Janus logs 6 as a UDP
socket.

2. 7 = socket(TCP,...) . Janus logs 7 as a TCP
socket.

3. close(7) .

4. dup2(6,7) . Janus’s state about the type of 7 is
now inconsistent as it still believes that 7 is a TCP
socket.

5. bind(7,...some address...port 80) .
Janus allows this call to proceed as it believes that 7
has type TCP, our security policy has thus been vio-
lated.

Because we failed to takedup2 into account, the se-
quence of calls shown could leave Janus in a state where
its internal representation of the process’s descriptor space
indicates that 7 has protocol type TCP, a state inconsistent
with its actual protocol type of UDP. We could have modi-
fied Janus to account for all possible means of duplicating
descriptors; e.g.dup, dup2, fcntl, etc. but a more
robust solution was simply to query the kernel directly.2

In this case the state was readily available from the kernel;
however the interface to access it was initially overlooked.
We took several lessons from this.

First, avoid replicating state in the monitor. Any time
one attempts to shadow OS state at user level, one runs the
risk that his copy will become inconsistent with the OS.
Second, policy decisions should minimize the amount of
state they require, as this reduces the chance of relying on
inconsistent state. Another important lesson this mistake
illustrates is not to underestimate the complexity of Unix
interface semantics. The initially incorrect approach taken
to solving this problem was written by programmers with

2Directly accessing this information was achieved through the Janus
kernel module, although using the/proc interface would also have
been a viable solution.



significant experience in the Unix programming environ-
ment. Their mistake was not detected until a rewrite, sev-
eral years later, after a variety of other parties had looked
over the code and failed to detect the problem.

4.1.2 Incorrectly Mirroring OS Code

Operating systems often perform non-trivial processing
to interpret system call arguments. Duplicating this pro-
cessing runs the risk of incorrectly implementing the ker-
nel’s functionality or having the duplicate implementa-
tion become inconsistent over time (real-world kernels do
change, after all). An ideal example of where this type of
problem can arise is the canonicalization of path names.

Janus needs canonical file names to allow files to
be uniquely specified in the context of its access con-
trol policies, for example, suppose Janus sees the call
open("../foo",O RDWR). It needs to be able to tell
that this is the same file as/tmp/foo in its security pol-
icy. Superficially, this appears to be a simple problem. If
we are given a relative path then we simply need to re-
solve its constituent parts. For example, if the path con-
tains".." or "." we need to resolve these to the correct
directories, however, there are some subtle issues here. If
the last component of our path is a symbolic link, should
we expand it? What should we consider as our file sys-
tem root when we resolve a path name? If the application
being monitored is allowed to usechroot , it may have
a different file system root than the Janus process watch-
ing it. Even individual processes of the same application
may have different roots. Basic path resolution regularly
confounds implementers3 of applications that require this
functionality.

Other subtleties can arise due to the fact that file sys-
tem behavior may differ on a per-process basis. Consider
Linux, where/proc/self contains information reflect-
ing the state of the process accessing the directory. Thus,
if we resolve/proc/self/cwd (the current process’s
current working directory) in the context of the monitor
we may find a very different result than if we resolve this
path in the context of the untrusted process that the moni-
tor is watching.

Janus initially tried to canonicalize at user level, and got
it wrong by overlooking a few of these issues. The solu-
tion we adopted was to canonicalize in the kernel, in the
context of the monitored process, by calling the appropri-
ate kernel function after file names are copied into the ker-
nel. The complete description of our approach to dealing
with this problem is given in Section 5.4. Duplicating OS
functionality/code should be avoided at all costs. Such

3A cursory examination of recent reports on BUGTRAQ reveals sev-
eral serious bugs in network services that got canonicalization wrong the
first time.

duplication adds complexity to the tool in question, and
often the duplicated functionality overlooks corner cases.

4.2 Overlooking Indirect Paths to Resources

Resources are often accessible through what we calldi-
rect pathsand indirect paths. Direct paths are those that
are obvious and clearly specified, and typically those that
are interposed upon. To access the Linux file system the
direct paths are “normal” file system API calls that are
used to access descriptors such asopen or to modify the
file system, such asrename or unlink . Most monitor-
ing and interposition tools will carefully guard these in-
terfaces. However, these same tools will often ignore or
overlook indirect routes to access the file system. Con-
sider the following routes:

• Unix domain sockets: Unix domain sockets can be
bound to locations in the file system. While these
cannot be opened like normal files, they can still be
used to create things like lock files.

• Core dumps: Even if an application cannot open any
files directly, it can still create files by dumping core.

• Descriptor passing: Unix domain sockets allow de-
scriptors to be passed back and forth between pro-
cesses viasendmsg andrecvmsg . If this path is
overlooked, applications can gain access to unautho-
rized files or network sockets without any checking
from a monitor. Consider two sandboxed processes
that have different network access policies, but ac-
cess to a common portion of the file system where
they can open and access Unix domain sockets (but
not files). If one process has access to sensitive data
but no access to an external network, and the other
process has external network access, but no access
sensitive data, the two processes can collaborate to
leak sensitive data, and thus violate the system se-
curity policy. Admittedly, this example could also
utilize the presence of shared memory or other in-
terfaces that processes can use to share data. In the
limit, this runs up against the issue of the confine-
ment problem [20].

• Unhelpful processes: Another common way that an
application can gain access to parts of the file system
not specified in its security policy is through other
processes that unwittingly help it. An ideal exam-
ple of this is the Name Service Cache Daemon (or
nscd ). nscd can be used by glibc to retrieve entries
from /etc/passwd and/etc/groups via inter-
process communication over a Unix domain socket.
If the unwary user grants read access to the standard
nscd socket in/var they may inadvertently grant



access to potentially sensitive parts of their system.
If a malicious process is able to create sockets in this
part of the file system, it can impersonate nscd, and
thus trick other processes into using its own version
of thepasswd andgroups files.

One of the key difficulties of interposing on an inter-
face as complex as the Unix API is simply knowing all of
the side effects and non-obvious ways that one can affect
system resources. It is important to identify every possi-
ble way for a process to access or modify resources, both
alone and working in concert with other processes.

4.3 Race Conditions

Race conditions in system call interposition-based secu-
rity tools most commonly occur due to the non-atomicity
of permission checking at user level in Janus and access
granting in the kernel [25]. These are sometimes referred
to as time-of-check/time-of-use bugs [6]. The following
is a basic outline of what such a race condition looks like:

1. Janus grants permission to perform an operationA,
that relies on some mutable shared state.

2. That state changes, making the result of performing
operationA illegal (i.e. the meaning ofA in context
has changed).

3. The operationA is performed by the operating sys-
tem (i.e. access is granted, but not the access that
Janus approved).

This type of race condition is a significant problem for
sandboxing tools and can be used to mislead intrusion de-
tection systems. Often, operations that system calls per-
form rely on mutable shared state that if altered will fun-
damentally change the impact of the system call. We will
see many examples of this type of race in the following
sections.

4.3.1 Symbolic Link Races

Symbolic link races [6] are a familiar problem to the secu-
rity conscious Unix programmer. A symbolic link race oc-
curs when a symbolic link is modified to point to a differ-
ent file between the time that the file it refers to is checked
for a given property, and when an access that relies on that
check occurs. Consider the following example:

Suppose Janus is enforcing a security policy that allows
write access to/tmp/foo and/tmp/bar and read ac-
cess to/tmp/baz . Also suppose that/tmp/foo is ini-
tially a symbolic link pointing to/tmp/bar .

Now consider the following sequence of events:

1. ProcessA callsopen("/tmp/foo", O RDWR).

2. Janus checks that access to both/tmp/foo and
/tmp/bar is allowed and, noting that it is, it will
allow the call to proceed.

3. ProcessB removes /tmp/foo , and creates a
new symbolic link /tmp/foo , that points to
/tmp/baz .

4. The OS executesopen("/tmp/foo",O RDWR)
for processA, thereby granting write access to
/tmp/baz .

ProcessA has just violated our security policy since it
now holds a descriptor to/tmp/baz with both read and
write access. In this example and in later examples, Pro-
cessB does not necessarily need to make the call to mod-
ify /tmp/foo after Janus makes its check, the modifica-
tions just need to happen after Janus’s check i.e. the order
that calls are made does not strictly dictate the order that
they complete in.

Symbolic link races are one of the most commonly
known and frequently confounding problems in system
call interposition based sandboxing tools. Frequently
tools attempt to solve the problem of symbolic link races
by first canonicalizing pathnames and then checking the
canonical name against their policy, or in some cases,
forcing the application to use a canonicalized name for file
system access by altering the arguments to the call in ques-
tion. This also does not solve the problem of symbolic link
races because it fails to address the root of the problem,
which is concurrency. Even after resolving/tmp/foo to
/tmp/bar , another process can still change/tmp/bar
to be a symlink to/tmp/baz , before theopen call ex-
ecutes, they can even change/tmp to be a symlink to
/etc if they have the appropriate permissions. We dis-
cuss the difficulty of formulating a correct solution to this
problem and some of the missteps that we made in Section
4.4.

4.3.2 Relative Path Races

Relative path races exploit the fact that the location of
a given inode can change between the time that Janus
resolves a path relative to that inode to check an access,
and the time that the kernel resolves a path relative to
that inode to perform the access. To illustrate a potential
exploit of this race, consider the following sequence of
events:

Assume the current working directory of ProcessA is
/tmp/foo/bar and that Janus allows the monitored ap-
plication read and write access only to the contents of the
/tmp directory.

1. ProcessA callsopen("../../etc/shadow",
O RDWR).



2. Janus resolves this path to/tmp/etc/shadow ,
notes that this is in/tmp , and allows the call.

3. Process B, also in the sandbox, renames
/tmp/foo/bar to /tmp/bar .

4. The OS executes
open("../../etc/shadow",O RDWR)in the
context of ProcessA. Since the current working di-
rectory of A is now /tmp/bar , ProcessA gains
read and write access to/etc/shadow .

Relative path races have a similar flavor to symbolic
link races, as both rely on malicious processes collaborat-
ing to modify shared file system meta-data, and fool the
monitor. Interestingly, relative path races are not a well
studied problem like symbolic link races, in spite of the
fact that they do not appear to be unique to the problem of
system call interposition-based sandboxing.

4.3.3 Argument Races

An argument race occurs when arguments to a system
call are modified between the time that they are checked
by Janus, and when they are used by the operating system
to perform the system call. Argument races can occur
if system call arguments reside in a portion of memory
that is accessible by more than one process. Consider the
following scenario:

Suppose Janus’s policy is to allow read access to
/tmp/foo and deny all other file system access.

1. ProcessA calls open(path,O_RDONLY) , where
path is "/tmp/foo" .

2. Janus traps processA.

3. Janus readspath from the memory ofA, notes that
/tmp/foo can be opened according to its policy,
and allows the call to proceed.

4. ProcessB modifiespath to point/etc/shadow .

5. The OS executes theopen call, returning a descrip-
tor for /etc/shadow .

Generally, argument races are only a concern for non-
scalar system call arguments. Scalar system call argu-
ments are passed to the OS in registers that are immedi-
ately copied into the kernel by the system call trap handler.
Scalar arguments in the kernel can only be tampered with
by user space processes viaptrace and other tracing in-
terfaces.

Non-scalar arguments, such as path names and socket
addresses (e.g those used byconnect , bind , etc.) are

not immediately copied from user memory into the ker-
nel. Instead, they are copied by individual system calls
immediately before use. This potentially leaves a window
of opportunity for an attacker to strike, after the time that
a system call has been initiated and arguments have been
examined by Janus, but before the arguments have been
copied into the kernel.

This type of race can only occur in the presence of
shared memory. Examples of mechanisms supporting
this in Linux include: the SYSV shared memory facili-
ties,mmap, and memory shared among multi-threads cre-
ated via theclone call. Debugging interfaces such as
ptrace that allow processes to modify the memory of
other processes must also be taken into account.

4.3.4 File System Information Races

In Linux, when two threads share file system information
it means that those threads share their root directories and
current working directories. Sharing current working di-
rectories is highly problematic as it easily facilitates a race
for any file system operation that uses a relative path. For
example, consider the following sequence of calls, assum-
ing access to/etc/shadow is forbidden by Janus:

1. ThreadA calls open("shadow",...) with the
current working directory/tmp .

2. Janus traps and approves the call.

3. ThreadB calls chdir("/etc") and Janus ap-
proves the call.

4. Thread A’s open("shadow",...) executes
with the current working directory/etc , returning
a descriptor to/etc/shadow . Thus, our security
policy has been violated.

While this class of race conditions seems similar to the
previous two, it is really in a class of its own. The problem
is not that file system meta-data is shared, but rather that
process meta-data is shared between two or more threads.
The sharing of root directories is also problematic as a
similar race condition can be induced usingchroot .

4.3.5 Shared Descriptor Space Races

In the case where two threads share descriptor spaces we
encounter the possibility for a race in checks that rely on
the type of descriptors for their correctness.

For example, suppose that Janus has the policy that it
only allows TCP sockets to be bound to port 80. By ex-
ecuting the following sequence of calls a multi-threaded
application with threadsA andB can violate this policy.

1. ThreadA callssocket to create a TCP socket
as fd 7.



2. ThreadA callssocket to create a UDP socket
as fd 6.

3. Janus traps a call tobind from threadA to attach fd
7 to port 80, and allows the call to proceed as fd 7 is
a TCP socket.

4. ThreadB closes fd 7.

5. ThreadB callsdup2(6,7) .

6. ThreadA’s bind call proceeds, binding a UDP
socket to port 80, and violating the security policy.

Races of this type, along with argument races, make
dealing with multi-threaded application highly problem-
atic. Due to these difficulties Janus currently does not sup-
port multi-threaded applications. We discuss this problem
further in Section 6.

4.4 Incorrectly Subsetting a Complex Interface

Application sandboxes generally enforce policy by only
allow the use of a subset of the system call interface, we
refer to this practice as subsetting. The system call inter-
face can be subsetted at the granularity of whole system
calls, (e.g. disallowchroot calls) or on a more granular
by disallowing certain arguments to calls (e.g. only allow
open(path) if path = foo ).

In spite of its seeming simplicity, subsetting can often
be tricky. Unanticipated interactions between different
system calls can make it difficult to check that a subsetting
solution is correct. In order to better illustrate the limita-
tion of this approach, and the type of difficulties that can
arise, we will consider a series of incorrect subsetting so-
lutions to the problem of symlink races motivated by our
own experience.

Attempt 1: Deny the creation of symlinks to files to
that we do not allow unrestricted access.

The argument for the correctness of this solution goes:
if an untrusted application is only allowed to create sym-
links to files it could access without restriction then even
if a symlink race occurs there is no harm done.

Problems: Pre-existing symlinks, other sources of
symlinks.

This solution is a good start, but it is incomplete. Some
notable oversights include the implicit assumption that we
are only worried about symlinks that the untrusted appli-
cation creates. This ignores the possibility of pre-existing
unsafe symlinks and unsafe symlinks created by other pro-
cesses. If either of these conditions exists, then the above
policy is not sufficient to prevent symlink races. For ex-
ample, the untrusted application can rename a pre-existing
symlink to facilitate a race in the former case is true.

Attempt 2: Deny the creation and renaming of sym-
links.

The argument for the correctness of this solution is that
if we remove the untrusted applications ability to create
symlinks with a given name, we have removed its ability
to create a race.

Problems: Directory renaming and relative sym-
links.

Preventing symlinks from being renamed prevents the
attack that broke our previous solution, but there are still
problems. Suppose for example that our untrusted process
can rename/tmp to /quux and replace it with another
directory, that also contains a file namedfoo , that is a
symlink to ../quux/baz . Again, we can violate the
security policy. So completely disallowing direct manipu-
lation of symlinks does not prevent this attack. This attack
is even possible if we check that all reachable symlinks are
safe when we start Janus.

Attempt 3: Deny access through symlinks.
Suppose that we give up on allowing access through

symlinks in general. To implement this, we have Janus
stat files before it allows access to them, and if they
are symlinks, deny the call. Clearly our renaming attack
above still works, and we are aware that a race might still
occur, so we try so to ensure that our open will fail if
someone does try to slip us a symlink. We modify the
open call slightly by adding theO NOFOLLOWflag before
we let it execute. This flag will cause the open to fail if
it finds that/tmp/foo is a symlink. It seems like now
we are safe, but as it turns out, we can still get burned,
for any component of the path/tmp/foo may be a sym-
link, including tmp . Thus, we are only protected by this
approach if our path consists only offoo .

Problem: Symlinks in intermediate components in
our path.

Providing a general solution to this problem that yields
a tool that is not fragile in the presence of symlinks does
not seem possible using just subsetting, however, there are
other mechanisms that can be called upon. We will present
some potential alternative approaches to addressing this
problem in section 5.2.

We believe that this example clearly illustrates the po-
tential for mistakes when subsetting a complex and state-
ful interface such as the Unix file system. It also serves as
a clear illustration of the limitations of a purely subsetting
approach to user level application sandboxing.

4.5 Side Effects of Denying System Calls

System call interposition-based sandboxes restrict an
application’s behavior by preventing the execution of any
system call that would violate a predetermined security
policy. Preventing the execution of a system call, or caus-
ing a system call to return in a manner inconsistent with
its normal semantics, can have a detrimental impact on
the operation of the application, potentially undermining



its reliability and even its security.
Denying calls that an application uses to drop privilege

frequently introduces serious security flaws. This type of
problem is most often found in applications that run as
root and drop privilege usingsetuid . Many applications
that rely onsetuid fail to check its return value, and if
setuid fails, will continue to function in a compromised
state. Upon casual examination we were able to discover
this condition in several common FreeBSD daemons, and
it appears that this problem is quite widespread. We also
found that applications fail to check the return values from
other privilege-reducing calls, or simply fail-open. We
frequently saw failures being ignored for other privilege
reducing calls including:setrlimit to reduce resource
limits, andfcntl to drop privilege from descriptors.

Given that aborting privilege-dropping calls will often
undermine the security model of a sandboxed application,
it seems generally advisable to allow all such calls. For
setuid and related calls, it seems most prudent to abort
the application entirely if we wish to deny a call.

Forcing system calls to return with a value that is
not part of its specified interface, or that the application
designer simply did not anticipate, is another potential
source of problems. For example, the Solaris/proc pro-
cess tracing interface will only allow aborted system calls
to returnEINTR. This sometimes leads applications to
hang, repeatedly retrying the aborted system call with the
expectation that it will eventually complete [14, 13].

5 Solutions and Helpful Hacks

In this section we present techniques for solving or
avoiding some of the problems that we presented in the
Problems and Pitfalls Section. We consider several differ-
ent approaches for: avoiding argument races, avoiding file
system races, and denying system calls without adversely
effecting applications. For each set of solutions, we first
provide a brief review of the problem being addressed,
we then give a high level summary of the solutions. We
then present the details of implementing these solutions
and that trade-offs associated with each approach. We
give special attention to the solutions we chose for Janus,
and the rationale behind our choices. We conclude with
some more general principles for recognizing and avoid-
ing problems in this class of system.

5.1 Avoiding Argument Races

To recap our discussion in section 4.3.3, argument races
occur when system call arguments are modified between
the time that a monitor reads the arguments for a per-
mission check, and when the operating system uses the
arguments. The canonical example of this problem is a
process changing the argument string"/tmp/foo" to

"/etc/shadow" in the memory of another process that
has just used the string as an argument to anopen call.
Here we consider two approaches to preventing this class
of race condition:

• Copy arguments into a “safe” place in memory,
e.g. private memory,4 kernel address space, or the
address space of a trusted process. This guarantees
that sensitive arguments cannot be modified between
when they are read by the monitor and when they are
used by the kernel.

• Leave arguments in place and ensure that the mem-
ory they reside in is private (i.e. “safe”).

Using these strategies we have sought to make argu-
ments accessible only to the kernel and trusted process
(e.g. Janus) and when safe, the thread of control request-
ing the system call.

5.1.1 Copying Sensitive Arguments into the Kernel

OS kernel’s prevent argument races by copying arguments
into kernel memory before use. This approach makes
sense; the cost of this copy is usually minimal, and it is
easy to verify the safety of this approach.mod janus
protects system call arguments using a variation on this
theme by copying volatile system call arguments into ker-
nel memory before they are used.

Whenmod janus traps a system call it immediately
looks in a table to see if this call has any arguments
that reside in user memory. If arguments are present,
mod janus will copy these arguments into a thread-
specific buffer in the kernel and twiddle the argument
pointers in the trapped thread’s registers to point to this
new location in memory. It will then set a flag indicating
to the kernel that it is OK for the current system call to
obtain its arguments from kernel memory. When Janus
subsequently examines the arguments of the untrusted ap-
plication, it will fetch a copy of them directly from the
thread-specific buffer, not from the memory of the un-
trusted process.

The primary advantage of this approach is the simplicity
of verifying its correctness. We can say with a high degree
of certainty that arguments in a kernel buffer cannot be
modified by untrusted processes, even in the presence of
multi-threading.

The disadvantage of this approach is that it adds some
complexity to the kernel resident portion of Janus; about

4For memory to be private in the sense we mean here, the mem-
ory must be modifiable only by the monitor processes and the process
that owns the memory. This means not only that the memory is not
explicitly shared between processes (e.g. created via.mmapwith the
MAPPRIVATE flag), but also that it is not shared between multiple
threads, modifiable via. a process tracing interface, etc.



25% ofmod janus is dedicated to performing this task
(mod janus is well under 2K lines of C total, so this
is not a major penalty). Individual system calls require
special treatment in order to copy their arguments into the
kernel. Fortunately, the arguments of interest are typically
of two standard types, socket addresses and path names.
Most of the work of specifying per-call copying behavior
is reduced to filling in a per-call entry in a table which
specifies its argument types.

Another worrisome property of this approach is that
system calls are permitted to fetch their arguments from
kernel memory instead of user memory. Ifmod janus
failed to twiddle a threads argument pointers (or pointers
in the arguments themselves, when there are arguments
with nested pointers), the untrusted application might be
able to gain unauthorized access to kernel memory. The
difficulty of verifying this is somewhat ameliorated by our
table-driven approach. This minimizes code duplication
and simplifies auditing.

We considered the possibility of moving some of this
complexity into Janus by giving it finer grained control
over moving arguments to and from this per-thread scratch
space at user level, but we ultimately decided against this
approach as we believe it provided too much power to the
tracing process, and greatly increased the possibility of
creating an exploitable hole inmod janus , which is in-
tended to be accessible by unprivileged processes.

5.1.2 Protecting Arguments in User Memory

Another solution to the problem of preventing argument
races is copying arguments into a read-only section of
memory in the address space of the untrusted process. Set-
ting up this section can be accomplished either by dedi-
cated kernel code or by forcing the process tommapand
mprotect a region of memory. Before system call ar-
guments are checked, they can be copied into this region
by Janus. This approach was taken by earlier versions
of Janus that would create a read-only memory region by
callingmmapin the context of the untrusted process when
that process was “attached”, then keep track of the loca-
tion of this scratch space in the untrusted application’s ad-
dress space. The correctness of this approach relies on
Janus judiciously guarding themprotect , mmapand
mremap interfaces to ensure that this read-only section
of memory is not tampered with.

This approach is attractive, as much less work must be
done in the kernel in order to implement it. The Sub-
terfugue [1] system actually does this using onlyptrace ,
although the inefficiency of usingptrace to copy argu-
ments makes this prohibitively expensive, given a more ef-
ficient mechanism this seems like an attractive approach.
Concerns about assuring that access to the user scratch

space was sufficiently restricted and efficiency lead us to
abandon this approach in Janus.

5.1.3 Checking that Arguments Do Not Reside in
Shared Memory

Argument races can only occur if arguments reside in
unprotected shared memory. On approach to prevent-
ing this is restricting the interfaces that allow the cre-
ation of shared memory, suchclone for creating multi-
ple threads, certain uses ofmmapand the SYSV facilities
for creating shared memory areas.

For many applications this is a viable solution. Rel-
atively few Linux applications use multi-threading. The
same is true of the BSD-based operating systems, which
until recently [31] did not provide kernel support for
multi-threading. The use of other shared memory facil-
ities is also not terribly widespread.

We can check that arguments do not reside in shared
memory at user level by examining the permissions on the
virtual memory area that arguments currently reside. This
can be accomplished through the/proc filesystem under
Linux. For this approach to be correct we must be ensure
not only that the virtual memory area that an argument re-
sides in is not shared, but also that the untrusted process
has its own copy. For privatemmaped memory regions
this can be enforced by reading our of the process’s mem-
ory and writing them back to the same location to ensure
that the process has a private copy. This is necessary as a
privately mmaped files may reflect changes in the under-
lying file, a process is not guaranteed to get its own copy
of an area of an mmaped file until it writes to that area.

While this approach enforces some limitation on the
generality of a tool, it requires no kernel modifications and
minimal effort on the part of the implementer.

5.2 Avoiding File System Race Conditions

In order to verify that Janus sees exactly what filesys-
tem accesses a process makes, file system access must
take place in a manner that ensures that no race condition
can take place. In section 4.4 we demonstrated that trying
to achieve this by simply subsetting away problematic be-
haviors left us with a policy for file system access that was
quite cumbersome and difficult to use safely. In this sub-
section, we present some potential approaches to solving
this problem. Our approaches work by coercing applica-
tions into always accessing the file system using an access
pattern that we can easily verify is safe (e.g. via shared li-
brary replacement), and then simply disallowing all access
that does not conform to this access pattern i.e. we even
disallow potentially safe operations which would simply
be hard to verify.



5.2.1 What is Good Behavior?

Unix applications can obtain access to files without en-
countering symlink races. This is important for normal
application programmers who, for example, might want
to write an ftp server that securely checks file system ac-
cesses against a security policy. The programmer can ac-
complish this by leveraging the fact that the current work-
ing directory of a process is private state5 and will not
change between the time that it performs a check on a file
relative to this directory, and the time that the call com-
pletes. The programmer can leverage this to perform a
race free open by recursively expanding (viareadlink )
and following a path one component at a time until they
have reached a file, or until they have found that the path
violates policy. A similar sequence of calls can be used to
perform other file system operations without races. If we
are monitoring an application performing such a sequence
of calls, we can also check each call in the sequence with-
out the risk of a race condition. This follows from the fact
that we perform our check after the application makes the
call, if there cannot be a race that can fool the application,
there cannot be a race that will fool the monitor. Clearly
this is a very specific behavior pattern that we would not
normally expect applications to conform to. However, we
can play some tricks to coerce applications into always
conforming to good behavior patterns.

5.2.2 Enforcing Good Behavior

There are several mechanisms we can use to “force” an
application to conform to our definition of good behavior,
i.e. to access the filesystem in a manner that we can easily
verify is safe.

1. Induce safe call sequences: The monitored pro-
cess can be forced to directly execute a safe se-
quence of calls using a process tracing mechanism.
For example, if a monitored process makes the call
open("/tmp/foo",...) , we could force the
operating system to make the appropriate safe se-
quence of system calls specified above in the context
of the traced process.

2. Static or dynamic library replacement:6 Using this
approach we replace problematic library calls with
code that converts these calls to their easy-to-check
counterparts. Again, we could have a shared li-
brary replacement foropen , which if called with

5As mentioned above under Linux this invariant can be violated if we
allow threads to clone themselves with shared file system state.

6This approach also requires that we also use a modified loader. This
“trick” does not work with the loader, because the loader must first ac-
cess the file system directly in order to load the shared libraries before it
can use them.

/tmp/foo would make the safe sequence of calls
given above. When using this approach we still rely
only on Janus for the security of our system, the li-
braries are not trusted, but merely serve to facilitate
easy checking.

3. Force access through a proxy: Instead of letting an
application access the file system directly we can
require it to go through a proxy process which ac-
cesses the file system on the application’s behalf.
This proxy can in turn use safe operations when it
accesses files, preventing it from falling victim to file
system races. We have had promising results with
preliminary experiments in facilitating proxy-based
file system access with shared library replacement. It
is interesting to note that this approach also solves
the problem of argument races.

5.3 Denying System Calls without Breaking Ap-
plications

Often the reason that we wish to deny a system call is
that it allows a process to modify some sensitive global
state, such as a sensitive file, its own resource limits, or
its uid. However, it is often the case that the process can
be given its own local copy of this state without affecting
its functionality. This approach of giving an application
its own copy of some global state is what we call virtu-
alization. Virtualization is a powerful technique because
it allows us to isolate an untrusted application from sensi-
tive resources, while preserving normal system semantics,
thus obviating the risk of breaking an application. There
are several ways that we can virtualize the sensitive re-
sources.

We can emulate the normal semantics of an unau-
thorized portion of the operating system interface using
shared library replacement e.g. this technique can be used
to simulate the semantics of running as root for processes
running without privilege. This technique is used by tools
like fakeroot [18], to simplify packaging software.

We canredirect calls to sensitive resources to a copy of
those resources. For example, through modifying the ar-
guments to system calls, either directly through the tracing
mechanism as done in MapBox [3] or indirectly through
shared library replacement.

We canreplicate resources using the normal operating
system facilities for this task; for example, usingchroot
we can give an untrusted application its own copy of the
file system.

If possible it is always preferable to virtualize the re-
sources than deny access as this gives us the highest level
of certainty that we have not broken our sandboxed appli-
cation.



5.4 Let the Kernel Do the Work

If the kernel does some complex operation, don’t try to
replicate that code yourself, just call the code in the ker-
nel. In section 4.1 we discussed the problem of canon-
icalizing file names. Sometimes the OS will provide a
system call for just this purpose7. Janus addresses this
problem by havingmod janus canonicalize path names
at the same time that they are fetched from the untrusted
process upon system call entry. This is advantageous for
two reasons. First, the file system namespace varies on a
per process basis, canonicalizing path names in the execu-
tion context of the monitored processes ensures that these
differences are taken into account. Second, because the
Janus kernel module simply calls the kernel’s canonical-
ization code, we can be sure that we are getting the correct
canonicalization. A final advantage of letting the kernel
do the work of canonicalization for us is that it simplifies
our policy engine by several hundred lines.

5.5 Lessons for the Implementer

To summarize the lessons from our experience:

• Avoid replicating OS state and functionality. Reuse
OS functionality and query the OS directly for state
whenever possible. Beware of inconsistency.

• Be conservative in your design. Don’t underestimate
the complexity of the system call API. Don’t overes-
timate your understanding of its nuances.

• Be aware of race conditions that can occur between
the OS and monitor. Consider all the state that a sys-
tem call relies upon to perform its function. Think
about what parts of the system can modify that state.
Think about what can happen between the time you
make a policy decision about a system call and when
the system call finishes.

• Be aware of the multi-threading semantics of your
particular operating system.

• Be explicit. Document and justify the decisions you
have made in your design and the assumptions that
must hold in order for your implementation to be cor-
rect. These assumptions may be violated as the OS
evolves, when your tool is ported to another platform,
etc. The security of system call interposition-based
tools often rely on a complex set of assumptions that
rarely make it beyond the mind of the implementer.

7Solaris provides theresolvepath system call to canonicalize file
names. However, theresolvepath interface is not fool proof. The
issue of differences in per process views of the file system still remains
a problem. Also, having to callresolvepath could add several addi-
tional system calls to your policy engines critical path.

• Be aware of all direct and indirect paths to resources.
Know all the ways that a process can modify the
file system, network, and other sensitive system re-
sources.

• The file system is a huge chunk of mutable shared
state. It is fraught with race conditions of the obvi-
ous and non-obvious variety. Dealing with the file
system interface is the most difficult part of confin-
ing/monitoring an application.

• Any time you change the behavior of your operating
system, for example by aborting system calls, you
risk breaking your applications and potentially intro-
ducing new security holes. Avoid making changes
that conflict with normally specified OS semantics,
or diverge from application designer’s expectations.

6 Future Work

There are still a variety of problems to be solved in order
to demonstrate a system call interposition-based sandbox
that can support the full range of potential applications in
a secure fashion. The most notable omission in our list
of solutions was an answer to the question of how to sup-
port multi-threaded applications. We are not aware of any
user-level system call interposition-based sandboxing tool
that has addressed this problem. One potential solution is
to offer functionality in a kernel module to allow locking
of per thread meta-data. Since this is per-process state,
and not globally shared state like file system meta-data, it
seems quite possible that a user level process could safely
be allowed to lock it. The performance implications of
such a solution are unclear and require further study.

An important trend from first generation sandboxes
such as the Janus prototype, MapBox, Consh, etc., to sec-
ond generation sandboxes as exemplified by Janus and
Systrace, has been to abandon a purely user-level ap-
proach to application sandboxing and instead embrace
a hybrid [24] solution where a dedicated kernel mod-
ule/patch is used for tasks such as system call interposi-
tion, canonicalizing pathnames, fetching system call argu-
ments, etc. Significant performance and security benefits
have already been realized through the reliance on a small
amount of additional kernel code (well under 2K lines of
C for mod janus , and a comparable number in the Sys-
trace kernel patch). It is not clear that the correct balance
between user and kernel space functionality has yet been
found. Pushing a small amount of additional functionality
into the kernel to deal with file system access policy could
potentially eliminate the race checking file system access
control that we examined in Sections 4.3.1 and 4.3.2. Sub-
domain [8] has demonstrated that such a solution is feasi-
ble with the addition of a modest amount of additional
kernel code.



Another important question to be addressed is whether
the system call boundary remains best place to interpose
on applications access to sensitive resources at all. Under
Linux, an alternative approach will likely soon be avail-
able in the form of the Linux Security Module(LSM) [32]
that provides low-level hooks for adding new access con-
trol mechanisms to the kernel. LSM does not provide a
complete solution, however, it does provides a common
foundation on which to build other mechanisms that could
potentially yield a cleaner abstraction for controlling ac-
cess to sensitive resources.

We have briefly touched upon the relationship between
this work and host-based intrusion detection. We believe
there are likely to be challenges unique to that application
of interposition and would hope to see comparable study
examining the interactions between policy, mechanism
and implementation in the context of a real interposition-
based HIDS system. Currently the closest work to this
has been work by Wagner et. al. [28] examining weak-
nesses in the policy models of system call interposition-
based anomaly detection tools such as those proposed by
Hofmeyr et. al. [15].

7 Conclusion

We have presented a variety of problems and pitfalls
that can occur in the design and implementation of system
call interposition based security tools. We have broadly
categorized these problems under the headings of: in-
correctly replicating OS semantics, overlooking indirect
paths to resources, race conditions, incorrectly subsetting
a complex interface, and side effects of denying system
calls. We have shown how these problems can allow sand-
boxes and related tools to be circumvented. We have con-
sidered a variety of solutions to the problems we have
identified in this domain, as well as noting principles that
can aid the implementer in avoiding common pitfalls. Fi-
nally, we have touched on a number of problems in this
area that we believe merit further study.
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