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ABSTRACT
This paperdescribesa numberof visualizationtechniquesfor ren-
deringvariable-orderprobabilistictreeandautomatamodels.The
techniques,which arepresentedin thecontext of a graphicaluser
interfacefor analysisof maliciousmobilecode,areapproachedat
three levels: graph layout, user-interaction,and display. At the
graph layout level, we describeand comparetwo popularalgo-
rithms: Graphplace,which is suitablefor treedrawing due to its
simpleheuristicsfor computingedgecrossingreductionsfast,and
Dot, whichis betterfor automatalayoutsdueto its built-in network
simplex approachto optimizationaswell asits spline-basededge
routingmechanism.At theuser-interactionlevel, weprovidea fast
scrollingtechniquebasedona kd-treesearchalgorithm.Finally, at
thedisplaylevel, we show a numberof waysin which thedisplay
of aprobability-weightedtreeor automatoncanbefine-tunedin ac-
cordancewith a varietyof propertiessuchasdensity, edgeweight,
andotherrelevantfeatures.

1. INTRODUCTION
In numerousapplications,probability-weightedtreesandautomata
inferred from samplesof sequencesare highly effective models.
Realdataoftenyield large,complex models,theunderstandingof
which is aidedby effectivevisualization.Thismeansthatwherever
possible,thevisualizationshouldpreserve propertiessuchassym-
metry, planarityandnodedistance,sothatsubtlestructuralpatterns
in themodelcanbeexploredin a subsequentdata-miningprocess.
This paperdescribesa numberof visualizationtechniquesfor ren-
deringvariable-ordertreeandautomatamodels.Thetechniquesare
presentedin thecontext of agraphicaluserinterfacefor analysisof
maliciousmobilecodecalledSPARTA, which is shortfor Stochas-
tic ProfilingApplicationfor theRenderingof TreesandAutomata.
Sufficeit heretonotethatSPARTA buildsProbabilisticSuffix Trees
(PSTs)[2]and ProbabilisticSuffix Automata(PSAs)[7] to facili-

tatetheidentificationof commonbehavioral patternsamongappli-
cations,so that a standardof ���������
	 behavior can be specified
andusedto flag abnormal(andpotentiallymalicious)behavior in
a computersystem. We discusstree and automatavisualization
at threelevels: graphlayout,user-interaction,anddisplay. At the
graphlayout level, we briefly describesomeof theparadigmsand
commonapproachesto graphdrawing andoutline the stepsof a
genericalgorithmsuitablefor both treesandautomata.We then
discussthespecificsof treeandautomatadrawing, presentingtwo
popularvariationsof the genericalgorithm, namelyGraphplace,
which is suitablefor treedrawing dueto its simpleheuristicsfor
computingedgecrossingreductionsfast,andDot, which is better
for automatalayout due to its built-in network simplex approach
to optimizationas well as its spline-basededgerouting mecha-
nism. At the user-interactionlevel, we provide a fast scrolling
techniqueby introducingakd-treesearchalgorithmthatallowsup-
datingthescreenonly for visible nodesandedges.Finally, at the
displaylevel, we show a numberof waysin which the displayof
a probability-weightedtreeor automatoncanbe fine-tunedin ac-
cordancewith a variety of propertiessuchas density(which we
emphasizeby shrinkingnodesanddrawing themclosertogether),
edgeweight (which we useto renderunwantededgesinvisible as
well astocolor-codeedgesthatareregardedashaving similarprop-
erties),andother relevant features. Throughoutthis paper, trees
andautomatawill begenericallyreferredto as“graphs”whenever
propertiespertinentto bothmodelsaredescribed.

2. THE GRAPH LAYOUT ALGORITHM
Over the pastcoupleof decades,therehave beentremendousad-
vancesin graphlayout techniques.Although the work is still far
from beingcompleted(mostly due to the NP-completenessasso-
ciatedwith certainstepsof currentgraphlayout algorithms),re-
searchershave managedto establishparadigmsthat areessential
for the“successful”drawing of a graph.In this context, successis
measuredby the degreeto which a graphmanagesto representa
certainmodeland the dependencies/relationshipsamongits vari-
ableswith accuracy and intuitiveness. For example,PERT dia-
gramsandsubroutine-callgraphsare bestrepresentedby a hier-
archicalapproach,whereasdataflow diagramsareusually repre-
sentedby orthogonaldrawings in the topology-shape-metricsap-
proach.Thereaderis referredto [1] for furtherdetailsontheseand
otherpopularapproaches.For the purposesof SPARTA, the two
mostimportantaspectsof graphdrawing are:



� Aesthetics:The aestheticgoal in graphdrawing is to mini-
mizeedgecrossings,edgebends(sothatedgeslookasstraight
aspossible),totaledgelength,andtotalareaencompassedby
thegraph,while maximizingthedisplayof symmetries;

� Computationalefficiency: SinceSPARTA is intendedto be
a highly interactive tool, it mustprovide real-timeresponse
to userevents.Therefore,eventhelargestdrawingsmustbe
laid out in a timely fashion.

It is importantto noticethattheaestheticcriteriamentionedabove
often conflict with eachother, making it next to algorithmically
infeasibleto enforcethemall at thesametime. Tradeoffs arethus
unavoidable,andthefinal layoutmustrely on heuristicsto obtain
the bestcompromiseamongall the aestheticcriteria adoptedand
still generateanacceptablevisualizationof agraph.

SPARTA relieson two independentalgorithmsto generatelayouts
for its graphs. PSTsareconstructedusinga Java port of Graph-
place,originally developedby JosvanEijndhovenattheEindhoven
University of Technology, whereasPSAsareconstructedwith the
sophisticatedDot algorithm, developedin C by Gansner, Kout-
sofios,North, andVo at the AT&T Bell Labs[4]. Sincetreesand
automataarebasicallymodelingdependency relationships,thehi-
erarchicalapproachis adoptedin SPARTA. Thestandardalgorithm
basedon this approachtakesasits input a graphdescription(for-
mally, a set � of verticesand a set 
 of edges),and generates
coordinatesfor its verticesandedgesin four steps:

1. Cycle Removal: This is an optional step that takes place
whenever the graphcontainscycles. Sinceit is often aes-
theticallypleasingto generategraphswheremostedgesflow
in the samedirection (e.g., from top to bottom), this step
transformsa cyclic graphinto an acyclic oneby reversing
someof its edges.Thegraphis thenlaid outaccordingto the
next threesteps,andall reversededgesarerestoredto their
originaldirectionsbeforethealgorithmreturns;

2. Layering: This steptransformstheacyclic input graphinto
a properlayereddigraph,whereits verticesareassignedto
layers����������������� ��� suchthattheboundingboxesof vertices
sittingonthesamelayerhavethesametopy-coordinate,and
edgesnever spanmore thanone layer. If the endpointsof
anedgearemorethanonelayerapart,thendummyvertices
(alsoknown asvirtual vertices)areinsertedacrossthelayers
to enforcetheone-layer-spanrule. Someof theaestheticcon-
cernsinvolved in this steparethe final width andheightof
thegraph(measuredby thesizeof its boundingbox),andthe
numberof dummyverticescreated,sinceit canbequadratic
if thereare �����! edgesspanning�����" layers;

3. CrossingReduction: As the namesuggests,this stepre-
ceivesasan input the layereddigraph,andreordersthever-
ticeson eachlayer in sucha way that the numberof edges
crossingis minimum. Unfortunately, theproblemof reduc-
ing edgecrossingsis equivalentto thecombinatorialproblem
of choosingappropriatevertex orderingsfor eachlayer, thus
beingNP-complete[5].This problemcanbedealtwith in a
varietyof ways,all of themapplyingsomesortof heuristics;
themostcommonapproachesaretheBarycenterandMedian
methods[1],sincethey run in linear time andarecapableof
generatingplanarlayouts(i.e., layoutswhereno two edges
cross)whenever oneexistsfor a giveninputgraph;

4. Horizontal Coordinate Assignment: This stepassignsx-
coordinatesto the verticesin eachlayer, respectingthe or-
deringcomputedin thecrossingreductionstep.Furtheraes-
theticrefinementin thedrawing canbeachieved in this step
by verticallyaligningdummyvertices,sincethis reducesthe
numberof bendsin long edges.Althoughconceptuallysim-
ple, this steprelieson quadraticprogrammingtechniques[4]
thatrequirea greatdealof computationaleffort.

Thenext two sectionsdescribehow this genericalgorithmis used
in thevisualizationof treesandautomata.

3. TREE DRAWING
Becauseof theirplanarrepresentation,treescanusuallybelaid out
muchmore easily thana genericgraph. For this reason,Graph-
placeis usedto renderPSTsin SPARTA. This algorithmoffers a
simple,yet effective implementationof thegraphlayoutalgorithm
describedin theprevioussection.It bestows a very fastlinear-time
heuristicfor nodeplacement,traversingthegraphin a Top-Down
(North-South),depth-firstsearchorderalongtheedges,which are
just assumedto be directed(this hasno implication in the layout
of undirectedgraphs,which is thecaseof PSTs).Furthermore,the
Java port of Graphplaceusedin SPARTA completelyignoresthe
cycle removal step,sincetreesareby definitionacyclic undirected
graphs.Theoverall computationalcomplexity of thealgorithmis�����$#�%'&��! , where � is the numberof vertices,which allows fast
placementof evenvery largegraphs.Thelimitations in theplace-
mentprovidedby Graphplacerestin thefollowing facts:

� Nodesareassumedto berepresentedasdots(i.e., they have
noarea).Thiscancausenodesto overlapif theirareascover
thevertical/ horizontalspacethatseparatesthem.In SPARTA,
wherePSTnodesarerepresentedby ellipses,this problem
wasfixedby specifyingmaximumvaluesfor thewidthsand
heightsof the nodes’boundingboxesandmakingthe hori-
zontalandverticaldistancesbetweenany two nodesgreater
thanthosevalues;� Thelayouttechniqueimplicitly assumesthatedgesaredrawn
aspolylinescontainingthedummynodescreatedin thelay-
eringstepasverticesin apolygonalchain.Thisis notaprob-
lem in treedrawing, sincetreeedgescanalwaysbe drawn
asstraightlines without the aid of dummynodes(seeFig.
1). However, thedisplayof a moregenericgraphsuchasan
automatonwould be impairedby a polyline approach,asit
would be moredesirableandintuitive to draw the edgesas
splinesegments.

Theselimitationsarenext to harmlessin treedrawing, andin fact
helptheGraphplacealgorithmrun faster. They do,however, show
why Graphplacewould not be aseffective in the layout of more
generalgraphs.For onething, theassumptionthatnodesarerep-
resentedaspoints could not be handledso easily, sinceoverlaps
might occur not only betweentwo ordinary nodes,but also be-
tweennodesanddummynodes,which would resultin edgesrun-
ning over nodesother than its endpointsor control points. If on
theonehanddimensionconstraintscouldbeappliedto thenodes’
boundingboxes to avoid node-nodeoverlap, applying the same
constraintsto dummy nodeswould be likely to result in unnec-
essarilylarge layoutsthat would fail to wisely explore the spaces
betweennodesin the routing of edges. Furthermore,the simple
heuristicsusedin thecrossreductionandx-coordinateassignment
stepsof Graphplaceusually are not very effective in the layout



Figure1: A small PST.

of moregenericgraphcs,resultingin excessive edgecrossingand
sharpbendsof longedges.

Sincenodesin a treeareby constructiononelayerapartfrom their
parents,straightlines canbe usedto connecta nodeand its off-
spring.In SPARTA, this is accomplishedby definingtheendpoints
of an edgeto be the centerof the parent’s boundingbox, andthe
nearestpoint on the children’s elliptical shape.Let ( denotethe
parentnode’s centerpoint, and (*) its nearestpoint on the child’s
ellipse. (,+.-�/1032�4'065 canbe easily calculatedby the following
formulas:

/ 0 +7/98;:=<'> , 4 0 +74$8;?@<�> ,
where / and 4 are the left andtop coordinates,and : and ? are
thewidth andheightof theparentnode’s boundingbox. Obtaining( ) is moreproblematic,sinceits calculationdependson equations
of polynomialsof degree4, for which thereis no closed-formso-
lution[3]. A numericalapproximationcouldbeattempted,but this
could slow down the renderingprocesssignificantly. Sincegeo-
metric accuracy is not absolutelyessentialin the context of PST
rendering(theonly hardrequirementis that ( ) lies on thechild’s
ellipse), it is possibleto usean alteredversionof the formula for
the nearestpoint on a circle to generateacceptableresults. This
formulafor ( ) +A-�/@B@2�4'BC5 is givenbelow:

/ B +7/ )0 8 DFE@GIHKJ�L�M�DFN3O�P1N�GO LQ DFN O P1N GO LSR6TUD�V O P@V GO LSR , 4 B +74 )0 8 DXW�GSHYJ�L�M6D�VYOYP@V�GO LQ D�N O P@N GO LSRYTZD�V O P@V GO LSR ,
where / )0 2�4 )0 2�: ) , and ? ) arethe child node’s analogousvaluesto/ 0 2�4 0 2[: , and ? .

4. AUTOMATA DRAWING
Theneedfor a morepowerful layoutalgorithmfor drawing PSAs
led to the useof Dot. This algorithmoffers improvementson all
themajorissueswith Graphplaceaforementioned:

\ Node dimensionsare consideredwhen generatingcoordi-
natesfor their boundingboxes. Thesedimensionscan be
custom-specified,andwidthscanevenbeautomaticallycal-
culatedbasedon thelabellengthsof thenodes;

\ A morecomplex versionof the Medianmethodis usedfor
crossreduction,resulting in “cleaner” drawings and more
straightedges. This is very useful when displaying large
PSAswith numerousnodesandedges;

\ A powerful splineroutingmechanismwhich transformsthe
dummypointsof thelayeringstepintoB-splinecontrolpoints
is used.This resultsin verysmoothsplines,reducinga great
dealthe“spaghettieffect” causedby unnecessarybendsin an
edge(seeFig. 2). The splinerouting mechanismalsosup-
portsself-edges(or “loops”) in the layout, which arequite
commonin automatadrawing.

Dot is alsoinnovative in that it relieson a network simplex algo-
rithm (NSA) duringthestepsthatrequireheuristics.Themethodis
avariationof thepopularLinearProgrammingalgorithmknown as
simplex, whichbasicallytriesto find anoptimalsolutionto aprob-
lem by iteratively generatingintermediate(and increasinglybet-
ter) solutionsuntil anoptimality criterionis met.Thenetwork ver-
sionof thealgorithmtriesto make thenumberof iterationssmaller
by approachingthe problemin a geometrical,graphicalcontext,
ratherthanasa numericalone.TheNSA is usedin two occasions
in the layout process.First, to solve a linear programmingprob-
lem (which can be translatedinto an integer programmingprob-
lem in polynomial time) of generatinga “ranking” (i.e., a certain
verticalorderingof nodesanalogousto thelayeringstepof theba-
sic algorithmaforementioned)of nodesthat resultsin theshortest
edges(whoselengthsareassociatedwith weightswhich have to
begreaterthana certainthreshold,usuallyone).TheNSA is used
againin the assignmentof x-coordinatesby solving the problem
of finding an arrangementof nodesalongthe x-axis whereedges
betweennodesin adjacentranksremainascloseto verticalaspos-
sible. In otherwords,theNSA triesto assignclose / valuesto the
endpointsof a given edge. Thesetwo instancesof the algorithm
(especiallythesecondone)areusedbecausethey areeasyto pro-
gram,but asa drawbackthey canbe rathercostly for mediumto
large graphs,sincethe sizeof the simplex matrix cangrow from]_^

to > ]`^ 8 ^ J entries(where
]

is thenumberof vertices,and^
thenumberof edges).

In orderto take advantageof thesplineroutingmechanismof Dot
andgeneratethesmoothestpossiblelayoutfor automata,SPARTA
usesJava’s a=bCc6dfe�a=b1g�hji object[6] to interpolatesplinesalongthe
dummy nodescreatedby Dot. Nevertheless,beforethesepoints
canbeused,they mustfirst beconvertedinto Beziercontrolpoints,
sincethat is theonly geometrysupportedby Java. Theconversion
is straightforward,andusestheBezierandB-splinecharacteristic
matrices(denotedby k=l and k=m , respectively) shown below:

k=ln+
opp
q
r$s turvtwstwrvx tzyrvt t yzys y yzy

{Y||
}

k m + sx
opp
q
r$s turvtwstwrvx t~yrvt y t~ys � s�y

{Y||
}



Figure2: A small PSA.

Define ������� to beaB-splinecontrolpoint,with � rangingfrom 1 to� -3, where� is thenumberof controlpoints.Then,

���
���
�
�����"���3�������������@���3������@���'�

� ��
�

canbeconvertedinto �*� in Beziergeometrythroughthefollowing
formula:

� � �����!�� �=�Y�
Anotherissueinvolvedin thedrawing of PSAedgesis thefactthat
automataare directedgraphs,andhenceoneof the endpointsof
an edgemust be combinedwith an arrowhead. SinceJava does
not provide an arrowheadobject,we approachedthe problemge-
ometrically. Specifically, arrowheadsarerepresentedasisosceles
triangleswhoseheightsarecollinearwith the line connectingtwo
points, namely � (the closestcontrol point to the child’s ellipse)
and � (the closestpoint on the child’s ellipse). Let the subscripts� and � denotethehorizontalandvertical coordinatesfor a given
point,and   beaconstantpositive integervalue.Then,thevertices�!¡ , � � , and �Z¢ of the triangleareobtainedthroughthe following
formulas:

�U¡v�A�f�=£*�¥¤9£¦ §��¤9¨   �$© �=¨=�¥¤9¨� ��ª¤«£   � �� � �A�f� £ © � ¨ �
� ¢ �A�f� £ �¥¤ £  7�¥¤ ¨   � © � ¨ �¥¤ ¨  ��§¤ £   � �

where

¤«£`� ¬�­®�1¯°­± ² ¬ ­ �1¯ ­�³S´Yµ ² ¬�¶¦�1¯°¶ ³S´ , ¤«¨$� ¬ ¶ �@¯ ¶± ² ¬ ­ �@¯ ­�³·´�µ ² ¬@¶'�@¯�¶ ³S´ .

Without lossof generality, assumethe arrowheadis pointing up-
wards(otherwiserotateits verticessothatit pointsupwards).Then,�!¡ is the left basevertex, � � is the top vertex, and �U¢ is the right
basevertex. The arrowheadis renderedby connectingthe points�!¡ , � � , and �Z¢ .

5. SCROLLING ACROSSLARGE GRAPHS
Themodelsconsideredcanyield fairly largeandcomplex graphi-
cal representations.This makesit infeasibleto fit theentiregraph
on thescreen.Onepossibleremedyis to scalethe layout accord-
ing to thesizeof thegraph,but this canbe impracticalbecauseit
cancausenodesto berenderedtoosmall,makingit difficult to read
their labels.Anotherplausiblesolutionis to implementzoomingso
thatparticularregionsof a graphcouldbeobservedin moredetail,
but thiswouldstill beineffectivebecauseof thepossibleslowdown
causedby re-renderingthe graphevery time a zoom action was
performed,whichwouldbesomewhatof anuisancefor theuser. A
betteralternative is to implementscrolling so that a graphcanbe
renderedin its full sizeandaccordingto theaestheticcriteriaout-
linedabove. Theresultingdisplayis acompromisebetweenseeing
a goodportionof thegraphon thescreenandeasyvisualizationof
nodelabels.

SPARTA implementsgraphscrolling by meansof a classcalled¸_¹3º3»�¹ ��¼ � ��½®¾�¿ , which is usedto maintaina recordof nodesthat
arevisible on thescreengiventhepositionof the À®� ¹ ¿ÂÁ1¾ º�» .1 The
underlyingdatastructureusedby the

¸_¹3º3»�¹ ��¼ � ��½®¾�¿ classis a
kd-tree,which is consideredthebestamong“several exotic struc-
turesthat supportrangesearching”[8]. The kd-treeinstanceused
in SPARTA is a two-dimensionalbinary searchtree (or 2d-tree),
which operatesby returningnodesthat fall within two rangesat
the sametime: one for valuesalong the x-axis, andone for val-
uesalongthey-axis.Theserangesaredenotedby [top,top+height]
and[left,left+width], wheretop andleft arethecoordinatesfor the
viewport’s upperleft corner, and width and height are the view-
port’s width and height. Thesevaluesare updatedwhenever a
scrollingor resizingactionoccurs,andareimmediatelyfed to the¸_¹3º3»�¹ ��¼ � ��½®¾�¿ object,which performsa rangequeryin its 2d-
treeandreturnsthevisible nodesin Ã���ÄÅ� ± � � (where Ä is the
numberof matches)time, sincethe 2d-treeis always a perfectly
balancedtree. This is possiblebecauseoncea graphis laid out,
nodesarenever addedto or removedfrom it.

6. VISUAL ENHANCEMENTS
Having describedmoregeneralvisualizationtechniquesin thepre-
vious sections,we now presentspecificwaysto fine-tunethe dis-
playof graphsby meansof four independenttechniqueswhichhave
provento beusefulin thedata-miningprocessof profiling applica-
tion behavior. Thesetechniques,which canbeappliedto any type
of visualdatamodelingbasedontreesandautomata,areasfollows:

Æ Skeleton Mode: The large, complex graphlayoutsyielded
by real datamight obfuscaterelevant structuralpatternsin
the final display, jeopardizingthe data-miningproccess.In
maliciousmobile codeprofiling, it is imperative that such
patternsdo not go unnoticed,andSPARTA dealswith this
by offering an alternative visualizationof its treesandau-
tomata,in whatwe call Ç�È ¹3ÉI¹�» ¾�� mode. This visualization
emphasizesthedensityof agraphover individualnodeinfor-
mationbyshrinkingthenodesof thegraphanddrawing them
closertogetherso that morenodesfit in the viewport. This
canbe seenasa rudimentary, yet practicalimplementation
of zooming,in that it is easyto codeandallows theuserto
quickly switchbetweenvisualizationmodeswithout having
to specifyresizefactors.This sortof structuralvisualization

1A À®� ¹ ¿�Á1¾ º3» is a Java objectdenotingthe visible part of a panel
when the latter is larger than its boundingframe. The viewport
moves upon a scrolling action, revealing previously hidden(and
hiding previously visible) areasof thepanel.



is especiallyusefulfor trees,sincetheir planarlayoutsoffer
cleandisplayswherepatternsmightbeobservedmoreeasily
(seeFig. 3).Ê Edge Color-Coding: The traditional techniqueof labeling
anedgewith its weightvaluedoesnot fully explore thepo-
tential of a visual representationof a graph and becomes
next to uselesswhen the graph is large. Ideally, weight-
relatedpatternsshouldbe observed with a simpleglanceat
thegraph,andthiscanbeaccomplishedin avarietyof ways.
One of them is to make edgesthicker as their weights in-
crease,but thismightstill notbevery indicativeof patternsif
theweightsdo not vary much.A betterway is to color-code
edgesaccordingto rangesof weightvalues.In SPARTA, for
example,edgeshave associatedprobabilities,and the user
is allowed to map probability rangesto colors and “paint”
edgesaccordingly(seeFig. 4), or even“turn off ” edgesthat
have low probabilitiesby renderingtheminvisible. This re-
sults in cleanerlayouts,whereonly relevant information is
displayed,thusbeingan importantdata-miningaid. How-
ever, color-codinghasto beusedwith judiciousnessto avoid
a “rainbow” effect wheretheexcessof colorsbecomesmore
distractingthaninformative.Ê NodeCondensing: Sometimesit is possibleto identify node
regionsthat areuninterestingandonly occupy spacein the
display. In SPARTA, this occursin automatawherenodes
arechainedby edgesof probability Ë . Theuseris given the
optionto condensethesenodesinside“supernodes”andstill
be ableto retrieve informationpertainingto a particularin-
ternalnodeby selelectinga supernode(seeFig. 4). In many
instancesthis condensingtechniquereducesthe sizeof au-
tomatasignificantly, speedingup the layout processandof-
feringcleanerandmoreconcisevisualizations.Ê Node Blurring : In SPARTA treescanbe merged two at a
time, which is representative of combiningthesequencesof
systemcalls performedby the applicationsthey aremodel-
ing. Mergedtreesmaintaina “merging history” in thesense
that they provide information on the origin of their nodes,
andSPARTA conveys this informationby allowing theuser
to blur out nodesthat do not originatefrom onetreeor an-
other(seeFig. 5). More generally, this ideaof nodeblurring
canbe thoughtof asa way to distinguishnodesaccording
to specifiedpropertiesthat they have in a similar fashionto
whatcoloringdoesto edges.This canbevery usefulin the
explorationof compositemodels(i.e., modelsassembledby
thecombinationof othermodels)in thatit givestheuserthe
possibility to observe how the different componentsaffect
thefinal model.

7. CONCLUSION
The goal of this paperwasto presenta numberof techniquesfor
generatingeffectivevisualizationsof probability-weightedtreeand
automatonmodels. We have presentedimplementationsof two
known algorithmsfor graphlayout, onetailoredfor treedrawing
and one for automatondrawing, and introduceda kd-tree-based
scrolling techniquethat hasproven to be fast for even the largest
graphs.We have alsodescribedparticularwaysin which the dis-
play of a graphcan be enhancedand fine-tunedto suit different
aspectsof a data-miningproccess.We believe that,while thedis-
cussionwas presentedin the context of an applicationfor mali-
cious mobile codeinvestigation,the techniquesdescribedin this
paperareuniversalenoughto beeasilymodifiedto suitany kind of

Figure3: A PST in Ì�ÍÏÎ3ÐIÎ�ÑÓÒ�Ô mode.

Figure 4: A condensedPSA with color-codededges. Supern-
odes’labelsare prefixedby an Õ .

Figure5: A PST with blurr ednodes.



modelthatcanberepresentedby sometypeof graph,regardlessof
it beinga treeor automaton.
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