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ABSTRACT

This paperdescribesa numberof visualizationtechniquegor ren-
deringvariable-ordeprobabilistictree andautomatamodels. The
techniqueswhich arepresentedn the contet of a graphicaluser
interfacefor analysisof maliciousmobile code,areapproacheat
threelevels: graphlayout, userinteraction,and display At the
graphlayout level, we describeand comparetwo popularalgo-
rithms: Graphplacewhich is suitablefor tree draving dueto its
simpleheuristicsfor computingedgecrossingreductionsast,and
Dot, whichis betterfor automatdayoutsdueto its built-in network
simplex approachto optimizationaswell asits spline-baseedge
routingmechanismaAt the userinteractionlevel, we provide afast
scrollingtechniquebasedn a kd-treesearchalgorithm. Finally, at
thedisplaylevel, we shav a numberof waysin which the display
of aprobability-weightedreeor automatorcanbefine-tunedn ac-
cordancewith avariety of propertiessuchasdensity edgeweight,
andotherrelevantfeatures.

1. INTRODUCTION

In numerouspplicationsprobability-weightedreesandautomata
inferred from samplesof sequencesire highly effective models.
Realdataoftenyield large, complex models the understandingf
whichis aidedby effective visualization.This meanghatwherever
possible thevisualizationshouldpresere propertiessuchassym-
metry, planarityandnodedistancesothatsubtlestructuralpatterns
in themodelcanbe exploredin a subsequerdata-miningprocess.
This paperdescribesa numberof visualizationtechniquedor ren-
deringvariable-ordetreeandautomatanodels.Thetechniquesre
presentedh the context of agraphicaluserinterfacefor analysisof
maliciousmobilecodecalledSFARTA, whichis shortfor Stochas-
tic Profiling Applicationfor the Renderingf TreesandAutomata.
Sufiiceit hereto notethatSFARTA builds ProbabilisticSuffix Trees
(PSTs)[2]and ProbabilisticSuffix Automata(PSAs)[7]to facili-

tatetheidentificationof commonbehaioral patternsamongappli-
cations,so that a standardof normal behaior canbe specified
andusedto flag abnormal(and potentially malicious)behaior in
a computersystem. We discusstree and automatavisualization
atthreelevels: graphlayout, userinteraction,anddisplay At the
graphlayoutlevel, we briefly describesomeof the paradigmsand
commonapproacheso graphdraving and outline the stepsof a
genericalgorithm suitablefor both treesand automata. We then
discusshe specificsof treeandautomatadraving, presentingwo
popularvariationsof the genericalgorithm, namely Graphplace,
which is suitablefor tree drawing dueto its simple heuristicsfor
computingedgecrossingreductionsfast,and Dot, which is better
for automatalayout dueto its built-in network simplex approach
to optimizationas well asits spline-basededgerouting mecha-
nism. At the userinteractionlevel, we provide a fast scrolling
techniqueby introducingakd-treesearchalgorithmthatallows up-
datingthe screenonly for visible nodesandedges.Finally, atthe
displaylevel, we shav a numberof waysin which the display of
a probability-weightedree or automatoncanbe fine-tunedin ac-
cordancewith a variety of propertiessuchas density (which we
emphasizévy shrinkingnodesanddrawing themclosertogether),
edgeweight (which we useto renderunwantededgesinvisible as
well asto colorcodeedgegshatareregardedashaving similar prop-
erties), and other relevant features. Throughoutthis paper trees
andautomatawill be genericallyreferredto as“graphs”wheneer
propertiegpertinentto bothmodelsaredescribed.

2. THE GRAPH LAYOUT ALGORITHM

Over the pastcoupleof decadestherehave beentremendousd-

vancesin graphlayouttechniques.Although the work is still far

from being completed(mostly dueto the NP-completenesasso-
ciatedwith certainstepsof currentgraphlayout algorithms),re-

searcherdhiave managedo establishparadigmsthat are essential
for the “successful’draving of a graph.In this contet, successs

measuredy the degreeto which a graphmanagedo represent,

certainmodel and the dependencies/relationshipsnongits vari-

ableswith accurag and intuitiveness. For example, PERT dia-

gramsand subroutine-callgraphsare bestrepresentedby a hier

archicalapproachwhereasdataflow diagramsare usually repre-
sentedby orthogonaldravings in the topology-shape-metricap-
proach.Thereadeliis referredto [1] for furtherdetailsontheseand
other popularapproachesFor the purposeof SFARTA, the two

mostimportantaspect®f graphdrawving are:



e Aesthetics:The aesthetigyoal in graphdrawing is to mini-
mizeedgecrossingsedgebendgsothatedgedook asstraight
aspossible)totaledgelength,andtotal areaencompasseily
thegraph,while maximizingthe displayof symmetries;

e Computationakfficieng/: Since SPARTA is intendedto be
a highly interactize tool, it mustprovide real-timeresponse
to userevents. Therefore gventhelargestdravings mustbe
laid outin atimely fashion.

It is importantto noticethatthe aestheticriteriamentionedabore
often conflict with eachother makingit next to algorithmically
infeasibleto enforcethemall at the sametime. Tradeofs arethus
unavoidable,andthe final layoutmustrely on heuristicsto obtain
the bestcompromiseamongall the aestheticcriteria adoptedand
still generatenacceptableisualizationof agraph.

SPARTA relieson two independenalgorithmsto generatdayouts
for its graphs. PSTsare constructedising a Java port of Graph-
place originally developedby JosvanEijndhovenattheEindhoven
University of Technology whereasPSAsare constructedvith the
sophisticatedDot algorithm, developedin C by Gansner Kout-
sofios,North, and Vo atthe AT&T Bell Labs[4]. Sincetreesand
automataarebasicallymodelingdependengrelationshipsthe hi-
erarchicabpproachs adoptedn SFARTA. Thestandaralgorithm
basedon this approachtakesasits input a graphdescription(for-
mally, a setV of verticesanda set E of edges),and generates
coordinatedor its verticesandedgesn four steps:

1. Cycle Removal: This is an optional stepthat takes place
wheneer the graphcontainscycles. Sinceit is often aes-
theticallypleasingo generatgraphswheremostedgeslow
in the samedirection (e.g., from top to bottom), this step
transformsa cyclic graphinto an agyclic one by reversing
someof its edges.Thegraphis thenlaid outaccordingo the
next threesteps,andall reversededgesarerestorecto their
original directionsbeforethe algorithmreturns;

2. Layering: This steptransformghe agyclic input graphinto
a properlayereddigraph,whereits verticesare assignedo
layersLy, Ls, ...L,, suchthattheboundingboxesof vertices
sittingonthesamdayerhave the sametop y-coordinateand
edgesnever spanmore thanonelayer. If the endpointsof
anedgearemorethanonelayerapart,thendummyvertices
(alsoknown asvirtual vertices)areinsertedacrosghelayers
to enforcetheone-layersparrule. Someof theaestheticon-
cernsinvolved in this steparethe final width and heightof
thegraph(measuredby the sizeof its boundingbox), andthe
numberof dummyverticescreatedsinceit canbe quadratic
if thereareO(n) edgesspanningD(n) layers;

3. CrossingReduction: As the namesuggeststhis stepre-
ceivesasaninputthelayereddigraph,andreordershe ver
ticeson eachlayerin sucha way thatthe numberof edges
crossingis minimum. Unfortunately the problemof reduc-
ing edgecrossingss equivalentto thecombinatoriaproblem
of choosingappropriatevertex orderingsfor eachlayer, thus
beingNP-complete[5].This problemcanbe dealtwith in a
variety of ways,all of themapplyingsomesortof heuristics;
themostcommonapproachearethe BarycenteendMedian
methods[1]sincethey runin lineartime andare capableof
generatingplanarlayouts(i.e., layoutswhereno two edges
cross)wheneer oneexistsfor a giveninputgraph;

4. Horizontal Coordinate Assignment This stepassignsx-
coordinatedo the verticesin eachlayer, respectingthe or-
deringcomputedn the crossingreductionstep.Furtheraes-
theticrefinemenin thedraving canbeachievedin this step
by vertically aligningdummyvertices sincethis reduceghe
numberof bendsin long edges Although conceptuallysim-
ple, this steprelieson quadratigprogrammingechniques[4]
thatrequirea greatdealof computationakffort.

The next two sectionsdescribehow this genericalgorithmis used
in thevisualizationof treesandautomata.

3. TREE DRAWING

Becausef their planarrepresentatiortreescanusuallybelaid out

much more easily thana genericgraph. For this reason,Graph-
placeis usedto renderPSTsin SFARTA. This algorithmoffersa

simple,yet effective implementatiorof the graphlayoutalgorithm

describedn the previous section.It bestovs avery fastlineartime

heuristicfor nodeplacementfraversingthe graphin a Top-Dowvn

(North-South) depth-firstsearchorderalongthe edgeswhich are
just assumedo be directed(this hasno implication in the layout

of undirectedyraphswhich is the caseof PSTs).Furthermorethe

Java port of Graphplaceusedin SFARTA completelyignoresthe

cycle removal step,sincetreesareby definitionagyclic undirected
graphs. The overall computationacompleity of the algorithmis

O(nlog n), wheren is the numberof vertices,which allows fast
placemenbf evenvery large graphs.Thelimitationsin the place-
mentprovidedby Graphplaceaestin thefollowing facts:

e Nodesareassumedo berepresentedsdots(i.e., they have
no area).This cancausenodego overlapif theirareascover
thevertical/ horizontalspacehatseparatethem.In SFARTA,
wherePST nodesarerepresentedby ellipses,this problem
wasfixed by specifyingmaximumvaluesfor thewidthsand
heightsof the nodes’boundingboxes and makingthe hori-
zontalandvertical distancebetweerary two nodesgreater
thanthosevalues;

e Thelayouttechniquémplicitly assumethatedgesaredravn
aspolylinescontainingthedummynodescreatedn thelay-
eringstepasverticesin apolygonalchain. Thisis notaprob-
lem in treedrawing, sincetree edgescan always be dravn
as straightlines without the aid of dummy nodes(seeFig.
1). However, thedisplayof a moregenericgraphsuchasan
automatorwould be impairedby a polyline approachasit
would be more desirableandintuitive to drav the edgesas
splinesggments.

Theselimitations arenext to harmlessn treedraving, andin fact
helpthe Graphplacealgorithmrun faster They do, howvever, shav
why Graphplacewould not be as effective in the layout of more
generalgraphs.For onething, the assumptiorthat nodesarerep-
resentedas points could not be handledso easily sinceoverlaps
might occur not only betweentwo ordinary nodes,but also be-
tweennodesanddummynodeswhich would resultin edgesrun-
ning over nodesotherthanits endpointsor control points. If on
the onehanddimensionconstraintsould be appliedto the nodes’
boundingboxes to avoid node-nodeoverlap, applying the same
constraintsto dummy nodeswould be likely to resultin unnec-
essarilylarge layoutsthat would fail to wisely explore the spaces
betweennodesin the routing of edges. Furthermore the simple
heuristicsusedin the crossreductionandx-coordinateassignment
stepsof Graphplaceusually are not very effective in the layout



Figurel: A small PST.

of more genericgraphcsyresultingin excessie edgecrossingand
sharpbendsof long edges.

Sincenodesin atreeareby constructioronelayerapartfrom their
parents,straightlines can be usedto connecta nodeandits off-
spring.In SFARTA, thisis accomplishedby definingtheendpoints
of an edgeto be the centerof the parents boundingbox, andthe
nearesfpoint on the childrens elliptical shape.Let P denotethe
parentnodes centerpoint, and P’ its nearespoint on the child’s
ellipse. P = (z.,y.) canbe easily calculatedby the following
formulas:

Te =z +w/2, Ye =y + h/2,
wherez andy arethe left andtop coordinatesandw andh are
thewidth andheightof the parentnodes boundingbox. Obtaining
P' is moreproblematic sinceits calculationdepend®n equations
of polynomialsof degree4, for which thereis no closed-formso-
lution[3]. A numericalapproximatiorcould be attemptedbut this
could slow down the renderingprocesssignificantly Sincegeo-
metric accurag is not absolutelyessentiain the context of PST
rendering(the only hardrequiremenis that P’ lies on the child’s
ellipse),it is possibleto usean alteredversionof the formulafor
the nearestpoint on a circle to generateacceptableaesults. This
formulafor P’ = (z,, y,) is givenbelaw:

(B /2)*(ye—yL)
V(@e—2l)2+(ye—yL)2’

(W' /2)x(wc—2},)
V(@e—2L)2+(ye—yl)?

Tn = Ty+ UYn = Yot

wherez,, y.,w', andh’ arethe child nodes analogous/aluesto
Zey Yo, w, andh.

4. AUTOMATA DRAWING

The needfor a morepowerful layoutalgorithmfor draving PSAs
led to the useof Dot. This algorithm offers improvementson all
themajorissueswith Graphplaceaforementioned:

e Node dimensionsare consideredwhen generatingcoordi-
natesfor their boundingboxes. Thesedimensionscan be
custom-specifiedandwidths caneven be automaticallycal-
culatedbasedn thelabellengthsof the nodes;

e A morecompl versionof the Median methodis usedfor
crossreduction, resultingin “cleaner” dravings and more
straightedges. This is very useful when displayinglarge
PSAswith numerousiodesandedges;

e A powerful splinerouting mechanisnwhich transformsthe
dummypointsof thelayeringstepinto B-splinecontrolpoints
is used.Thisresultsin very smoothsplinesreducinga great
dealthe“spaghettieffect” causedy unnecessargendsn an
edge(seeFig. 2). The splinerouting mechanisnmalsosup-
ports self-edgeqor “loops”) in the layout, which are quite
commonin automatalrawing.

Dot is alsoinnovative in thatit relieson a network simplex algo-
rithm (NSA) duringthe stepsthatrequireheuristics The methodis
avariationof thepopularLinearProgrammingalgorithmknown as
simplex, which basicallytriesto find anoptimalsolutionto a prob-
lem by iteratively generatingintermediate(and increasinglybet-
ter) solutionsuntil anoptimality criterionis met. The network ver-
sionof thealgorithmtriesto make the numberof iterationssmaller
by approachinghe problemin a geometrical,graphicalcontext,
ratherthanasa numericalone. The NSA is usedin two occasions
in the layout process.First, to solve a linear programmingprob-
lem (which can be translatednto an integer programmingprob-
lem in polynomialtime) of generatinga “ranking” (i.e., a certain
verticalorderingof nodesanalogougo the layeringstepof the ba-
sic algorithmaforementioneddf nodesthatresultsin the shortest
edges(whoselengthsare associatedvith weightswhich have to
be greaterthana certainthreshold,usuallyone). The NSA is used
againin the assignmenbf x-coordinateshy solving the problem
of finding an arrangemenof nodesalongthe x-axis whereedges
betweemodesin adjacentanksremainascloseto verticalaspos-
sible. In otherwords,the NSA triesto assignclosez valuesto the
endpointsof a given edge. Thesetwo instancesf the algorithm
(especiallythe secondone)are usedbecausehey areeasyto pro-
gram, but asa dravbackthey canbe rathercostly for mediumto
large graphs,sincethe size of the simplex matrix cangrow from
VEt02VE + E? entries(whereV is the numberof vertices,and
E thenumberof edges).

In orderto take advantageof the splinerouting mechanisnof Dot
andgeneratehe smoothespossiblelayoutfor automataSPARTA
usesJava’s CubicCurve object[6]to interpolatesplinesalongthe
dummy nodescreatedby Dot. Neverthelesspeforethesepoints
canbeusedthey mustfirst becorvertedinto Beziercontrolpoints,
sincethatis the only geometrysupportecby Java. The corversion
is straightforvard, andusesthe BezierandB-spline characteristic
matriceg(denotedby B, andB,, respectiely) shavn below:

-1 3 =3 1

3 -6 3 0

B. = -3 3 00
1 0 00

-1 3 =31
1 3 -6 3 0
B.=3% -3 0 3 0
1 4 10



Figure2: A small PSA.

Define P (%) to beaB-splinecontrolpoint, with  rangingfrom 1 to
n-3, wheren is thenumberof controlpoints. Then,

P@i—1)
P(3)
P(i+1)
P(i+2)

P =

canbecorvertedinto P’ in Beziergeometrythroughthefollowing
formula:

P'=B,'B,P

Anotherissueinvolvedin thedraving of PSAedgess thefactthat
automataare directedgraphs,and henceone of the endpointsof
an edgemustbe combinedwith an arraovhead. SinceJava does
not provide an arrovheadobject, we approachedhe problemge-
ometrically Specifically arravheadsarerepresentedsisosceles
triangleswhoseheightsare collinearwith the line connectingtwo
points, namely A(the closestcontrol point to the child’s ellipse)
and B(the closestpoint on the child’s ellipse). Let the subscripts
x andy denotethe horizontalandvertical coordinatedor a given
point,and R beaconstanpositive integervalue. Then,thevertices
Py, P;, and P, of thetriangleare obtainedthroughthe following
formulas:

Py = (B, —DmR+Dy§,By —DyR—ng)
P, = (B, By)
P, = (B, —DwR—Dyg,By —DyR+Dm§)
where
D, = By—As D, = By —Ay

V(Ba—A2)2+(By— Ay)? YT V(Ba—Az)2+(By—Ay)? '
Without loss of generality assumethe arravheadis pointing up-
wards(otherwiseotateits verticessothatit pointsupwards).Then,
Py is theleft basevertex, P; is thetop vertex, and P is theright
basevertex. The arrovheadis renderedby connectingthe points
Py, Py, andpPs.

5. SCROLLING ACROSSLARGE GRAPHS

The modelsconsideredtanyield fairly large andcomple graphi-
cal representationsThis makesit infeasibleto fit the entiregraph
on the screen.One possibleremedyis to scalethe layoutaccord-
ing to the size of the graph,but this canbe impracticalbecauset

cancausenodeso berenderedoo small,makingit difficult to read
theirlabels.Anotherplausiblesolutionis to implementzoomingso
thatparticularregionsof agraphcould be obsenedin moredetail,
but thiswould still beineffective becausef the possibleslovdown

causedby re-renderingthe graphevery time a zoom action was
performedwhich would be somevhatof anuisancdor theuser A

betteralternatve is to implementscrolling so thata graphcanbe
renderedn its full sizeandaccordingto the aestheticcriteria out-

linedabore. Theresultingdisplayis acompromiséoetweerseeing
agoodportionof the graphon the screerandeasyvisualizationof

nodelabels.

SPARTA implementsgraphscrolling by meansof a classcalled
VertexWindow, whichis usedto maintainarecordof nodesthat
arevisible on the screergiventhe positionof the viewport.* The
underlyingdatastructureusedby the VertexWindow classis a
kd-tree,which is consideredhe bestamong“several exotic struc-
turesthat supportrangesearching”[8]. The kd-treeinstanceused
in SPARTA is a two-dimensionabinary searchtree (or 2d-tree),
which operatesby returningnodesthat fall within two rangesat
the sametime: onefor valuesalongthe x-axis, and one for val-
uesalongthey-axis. Theserangesaredenotedy [top,top+height]

and[left,left+width], wheretop andleft arethe coordinatesor the
viewport's upperleft corner and width and height are the view-

port’s width and height. Thesevaluesare updatedwheneer a
scrollingor resizingactionoccurs,andareimmediatelyfed to the
VertexWindow object,which performsa rangequeryin its 2d-
treeandreturnsthe visible nodesin O(m + +/n) (Wherem is the
numberof matches}ime, sincethe 2d-treeis always a perfectly
balancedree. This is possiblebecausencea graphis laid out,
nodesarenever addedo or removedfrom it.

6. VISUAL ENHANCEMENTS

Having describednoregeneralisualizationtechniquesn thepre-
vious sectionswe now presentspecificwaysto fine-tunethe dis-
play of graphsby meanf fourindependentechniquesvhichhave
provento beusefulin the data-miningprocesf profiling applica-
tion behaior. Thesetechniqueswhich canbe appliedto ary type
of visualdatamodelingbasedntreesandautomataareasfollows:

e Skeleton Mode: The large, complex graphlayoutsyielded
by real datamight obfuscaterelevant structuralpatternsin
thefinal display jeopardizingthe data-miningproccess.In
malicious mobile code profiling, it is imperatve that such
patternsdo not go unnoticed,and SFARTA dealswith this
by offering an alternatve visualizationof its treesand au-
tomata,in whatwe call skeleton mode. This visualization
emphasizethedensityof agraphoverindividual nodeinfor-
mationby shrinkingthenodesf thegraphanddraving them
closertogetherso that more nodesfit in the viewport. This
canbe seenasa rudimentary yet practicalimplementation
of zooming,in thatit is easyto codeandallows the userto
quickly switch betweenvisualizationmodeswithout having
to specifyresizefactors.This sortof structuralvisualization

LA viewport is a Java objectdenotingthe visible partof a panel
whenthe latter is larger thanits boundingframe. The viewport
moves upon a scrolling action, revealing previously hidden (and
hiding previously visible) areaof the panel.



is especiallyusefulfor trees,sincetheir planarlayoutsoffer
cleandisplayswherepatternamightbe obsered moreeasily
(seeFig. 3).

e Edge Color-Coding: The traditionaltechniqueof labeling
anedgewith its weight valuedoesnot fully explorethe po-
tential of a visual representatiorof a graphand becomes
next to uselesswhenthe graphis large. Ideally, weight-
relatedpatternsshouldbe obsered with a simple glanceat
thegraph,andthis canbeaccomplishedh avariety of ways.
One of themis to make edgesthicker as their weightsin-
creasebut this mightstill notbeveryindicative of patternsf
theweightsdo not vary much. A betterway is to color-code
edgesaccordingto rangesof weightvalues.ln SFARTA, for
example, edgeshave associategrobabilities,and the user
is allowed to map probability rangesto colors and “paint”
edgesaccordingly(seeFig. 4), or even“turn off” edgeghat
have low probabilitiesby renderingtheminvisible. This re-
sultsin cleanerlayouts,whereonly relevantinformationis
displayed,thus being an importantdata-miningaid. How- Figure 3: A PSTin skeleton mode.
ever, color-codinghasto be usedwith judiciousnesso avoid
a“rainbow” effectwherethe excessof colorsbecomesnore
distractingthaninformative.

e NodeCondensing Sometimedt is possibleto identify node
regionsthat are uninterestingand only occupy spacein the
display In SFARTA, this occursin automatawherenodes
arechainedby edgesof probability 1. The useris giventhe
optionto condense¢hesenodesinside“supernodesandstill
be ableto retrieve information pertainingto a particularin-
ternalnodeby selelectinga supernodéseeFig. 4). In mary
instanceghis condensingechniquereduceshe size of au-
tomatasignificantly speedingup the layout processand of-
fering cleanerandmoreconcisevisualizations.

1.000

e Node Blurring : In SPARTA treescanbe melgedtwo at a
time, which is representatie of combiningthe sequencesf
systemcalls performedby the applicationsthey are model- <;1_u 646
ing. Mergedtreesmaintaina “merging history” in the sense — T
that they provide information on the origin of their nodes,
andSFARTA corveys this informationby allowing the user
to blur out nodesthat do not originatefrom onetreeor an-
other(seeFig. 5). More generally thisideaof nodeblurring
canbe thoughtof asa way to distinguishnodesaccording
to specifiedpropertieshatthey have in a similar fashionto
what coloring doesto edges.This canbe very usefulin the
explorationof compositemodels(i.e., modelsassembledy
the combinationof othermodels)in thatit givesthe userthe
possibility to obsere how the different componentsaffect
thefinal model.
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Figure 4: A condensedPSA with color-coded edges. Supem-
odes’labelsare prefixedby an S.

7. CONCLUSION

The goal of this paperwasto presenta numberof techniquegor

generatingffective visualizationof probability-weightedreeand ?
automatonmodels. We have presentedmplementationsof two

known algorithmsfor graphlayout, onetailoredfor tree drawving

and one for automatondrawing, and introduceda kd-tree-based

scrolling techniquethat hasproven to be fastfor even the largest

graphs. We have alsodescribedparticularwaysin which the dis- =

play of a graphcan be enhancedand fine-tunedto suit different 27_13 12_12

aspectof a data-miningproccess.We believe that, while the dis-

cussionwas presentedn the contet of an applicationfor mali-

cious mobile codeinvestigation,the techniquesdescribedn this Figure5: A PSTwith blurr ednodes.

paperareuniversalenoughto beeasilymodifiedto suitary kind of



modelthatcanberepresentely sometypeof graph,regardlesof
it beingatreeor automaton.
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