
Casting out Demons: Sanitizing Training Data for Anomaly Sensors

Gabriela F. Cretu1 Angelos Stavrou2∗ Michael E. Locasto3∗ Salvatore J. Stolfo1

Angelos D. Keromytis1

1Department of Computer Science, Columbia University
{gcretu, sal, angelos}@cs.columbia.edu

2Department of Computer Science, George Mason University
astavrou@gmu.edu

3Institute for Security Technology Studies, Dartmouth College
locasto@cs.dartmouth.edu

Abstract

The efficacy of Anomaly Detection (AD) sensors depends
heavily on the quality of the data used to train them. Arti-
ficial or contrived training data may not provide a realistic
view of the deployment environment. Most realistic data
sets are dirty; that is, they contain a number of attacks or
anomalous events. The size of these high-quality training
data sets makes manual removal or labeling of attack data
infeasible. As a result, sensors trained on this data can
miss attacks and their variations. We propose extending the
training phase of AD sensors (in a manner agnostic to the
underlying AD algorithm) to include a sanitization phase.

This phase generates multiple models conditioned on
small slices of the training data. We use these “micro-
models” to produce provisional labels for each training in-
put, and we combine the micro-models in a voting scheme to
determine which parts of the training data may represent at-
tacks. Our results suggest that this phase automatically and
significantly improves the quality of unlabeled training data
by making it as “attack-free” and “regular” as possible in
the absence of absolute ground truth. We also show how a
collaborative approach that combines models from different
networks or domains can further refine the sanitization pro-
cess to thwart targeted training or mimicry attacks against
a single site.

1 Introduction

Anomaly-based classification provides a powerful
method of detecting inputs and behavior that are potentially
malicious without relying on a static set of signatures or a

∗The work described in this paper was performed while these co-
authors were at Columbia University.

potentially incomplete behavioral specification. Anomaly
sensors include those that classify both network traffic con-
tent [13, 29] and sequences of system calls [22]. Although
anomaly–based approaches are not perfect [9, 26, 27], re-
cent research indicates that signature–based network intru-
sion detection systems are quickly becoming ineffective at
identifying malicious traffic [4, 17, 23]. In particular, Song
et al. [23] demonstrate the relative ease with which poly-
morphic attack engines can overwhelm signature–based de-
tection methods. They conclude that modeling normal be-
havior or content represents one of a small set of promising
alternatives1. In short, relying on anomaly detection (AD)
sensors to discover 0-day attacks has become a necessity
rather than an option.

1.1 Obtaining Clean Data Sets

Current evidence seems to indicate that improving AD
sensors merits further attention. Effective anomaly detec-
tion, however, requires highly accurate modeling of normal
traffic — a process that remains an open problem. In par-
ticular, Taylor and Gates [26] point to the problem of pol-
luted or unclean training data sets as a key roadblock to the
construction of effective AD sensors. Specifically, “ground
truth” for large, realistic data sets is extremely hard to de-
termine.

In a related problem, the intrusion detection community
lacks a collection of significant, real-world data sets to test
and validate new intrusion detection algorithms. Although
an effort to assemble such a collection was made almost
a decade ago [14], the resulting data set was flawed in a

1Their claim rests on the assumption that the set of good input or behav-
iors is much more constrained than all possible bad input or behaviors for
realistic applications. We find this argument reasonable, especially since
application developers do not operate in an adversarial way: they do not
purposefully allow their software to accept widely differing sets of strings.



number of ways [15], and there is a growing consensus that
future experimental results based on this data set should
be ignored. The community, however, is left without any
acceptable replacement. As a result, researchers and cus-
tomers cannot validate the work of other researchers or ven-
dors, especially since placing real, large data sets into wide
circulation may reveal sensitive information belonging to
the organization kind enough to donate the data. The next
best solution involves every organization maintaining a pri-
vate extensive data collection. Laying aside the challenges
involved in addressing the privacy concerns of individuals
within the organization, the technical challenge of keeping
this data set pristine is currently an open problem.

1.2 Contributions

Creating a robust method of sanitizing data sets seems to
be a key challenge for these two complementary open prob-
lems. The large data sets required for both typically contain
an unpredictable spread of attacks, rare data items, and arti-
facts of misconfigurations or other errors. The potential size
and complexity of these data sets makes manual labeling or
removal of attacks a futile exercise.

In this paper, we propose a novel method for sanitizing
such data sets to help address these problems. For con-
creteness, our implementation and experiments focus on the
problem of cleaning training data sets of AD sensors. Our
work provides a number of contributions:

• We extend the training phase of anomaly sensors with
a new sanitization phase that uses our novel micro-
models in a voting scheme to eliminate attacks and
anomalies from training data

• We built a system to implement our algorithms, and
we applied it to training data for two anomaly sensors
drawn from the research literature

• We extend the sanitization phase to a novel distributed
architecture in order to cross-sanitize the models and
remove long-lasting attacks that might otherwise by-
pass the local sanitization process

• We identify the false false positive problem and pro-
pose a shadow sensor architecture for consuming false
positives (FP) with an automated process rather than
human attention

While we [5] have explored the basic problem of sim-
ilar sanitization techniques for single sites, our distributed
strategy (see Section 1.5) provides a major advance over
that work. In addition, we now conduct a far more thor-
ough analysis and experimental evaluation of data sanitiza-
tion techniques.

1.3 Technical Challenges

Ideally, an anomaly detector should achieve 100% de-
tection accuracy, i.e., true attacks are all identified, with 0%
false positives. Reaching this ideal is very hard due to a
number of problems. First, the generated model can under-
fit the actual normal traffic. Under-fitting means that the
AD sensor is overly general: it will flag traffic as “normal”
even if this traffic does not belong to the true normal model.
As a result, attackers have sufficient space to disguise their
exploit, thus increasing the amount of “false negatives” pro-
duced by the sensor. Second, and equally as troubling, the
model of normal traffic can over-fit the training data: non-
attack traffic that is not observed during training may be
regarded as anomalous. Over-fitting can generate an ex-
cessive amount of false alerts or “false positives.” Third,
unsupervised AD systems often lack a measure of ground
truth to compare to and verify against. The presence of an
attack in the training data “poisons” the normal model, thus
rendering the AD system incapable of detecting future or
closely related instances of this attack. As a result, the AD
system may produce false negatives. This risk becomes a
limiting factor of the size of the training set [25]. Finally,
even in the presence of ground truth, creating a single model
of normal traffic that includes all non-attack traffic can re-
sult in under-fitting and over generalization.

1.4 Solution Outline

These problems appear to stem from a common source:
the quality of the normality model that an AD system em-
ploys to detect abnormal traffic. This single, monolithic
normality model is the product of a training phase that tra-
ditionally uses all the traffic from a non-sanitized training
data set. Our goal in this paper is to extend the AD train-
ing phase to successfully sanitize training data by removing
both attacks and non-regular traffic, thereby computing a
more accurate anomaly detection model that achieves both
a high rate of detection and a low rate of false positives.

To that end, we generalize the notion of training for an
AD system. Instead of using a normal model generated by
a single AD sensor trained on a single large set of data, we
use multiple AD instances trained on small data slices. This
process produces multiple normal models, which we call
micro-models, by training AD instances on small, disjoint
subsets of the original traffic dataset. Each of these micro-
models represents a very localized view of the training data.
Armed with the micro-models, we are now in a position
to assess the quality of our training data and automatically
detect and remove any attacks or abnormalities that should
not be considered part of the normal model.

The intuition behind our approach is based on the ob-
servation that in a training set spanning a sufficiently large



time interval, an attack or an abnormality will appear only
in small and relatively confined time intervals. To iden-
tify these abnormalities, we test each packet of the training
data set against the produced micro-models. Using a voting
scheme, we can determine which packets to consider abnor-
mal and remove from our training set. In our analysis, we
explore the efficiency and tradeoffs of both majority voting
and weighted voting schemes. The result of our approach
is a training set which contains packets that are closer to
what we consider the “normal model” of the application’s
I/O streams.

This sanitized training set enables us to generate a sin-
gle sanitized model from a single AD instance. This model
is very likely free of both attacks and abnormalities. As a
result, the detection performance during the testing phase
should improve. We establish evidence for this conjec-
ture in the experiments of Section 3, which show a 5-fold
increase of the average detection rate. Furthermore, data
that was deemed abnormal in the voting strategy is used
for building a different model, which we call the abnormal
model. This model is intended to represent traffic that con-
tains attacks or any data that is not commonly seen during a
normal execution of the protected system.

1.5 Distributed Sanitization

Our initial assumptions do not hold when the training
set contains persistent and/or targeted attacks, or there ex-
ist other anomalies that persist throughout the majority of
the training set. To defend against such attacks, we propose
a novel, fully distributed collaborative sanitization strategy.
This strategy leverages the location diversity of collaborat-
ing sites to exchange information related to abnormal data
that can be used to clean each site’s training data set.

Consequently, our work introduces a two-phase training
process: initially, we compute the AD models of “normal”
and “abnormal” locally from the training set at each site.
In the second phase, we distribute the “abnormal” models
between sites, and we use this information to re-evaluate
and filter the local training data set. If data deemed normal
by the local micro-models happens to belong to a remote
“abnormal” model, we inspect or redirect this data to an or-
acle. Even if the identities of the collaborating sites become
known, attacking all the sites with targeted or blending at-
tacks is a challenging task. The attacker will have to gener-
ate mimicry attacks against all collaborators and blend the
attack traffic using the individual sites’ normal data models.

1.6 Evaluation Scenarios

Our evaluation considers two different defense config-
urations involving AD sensors. In the first case, we mea-
sure the increase in detection performance for a simple AD-

based defense system when we use the new training phase to
sanitize the training set. As a second scenario, we assume
that a latency-expensive oracle can help classify “suspect
data” and differentiate between false positives (FP) and true
positives (TP). In practice, our oracle consists of a heav-
ily instrumented host-based “shadow” server system (simi-
lar to strategies proposed by [1, 20]) that determines with
very high accuracy whether a packet contains an attack.
By diverting all suspect data to this oracle, we can iden-
tify true attacks by observing whether the shadow sensor
emits an alert after consuming suspicious data. This high
accuracy, however, comes at the cost of greatly increased
computational effort making the redirection of all traffic to
the shadow sensors unfeasible.

Many papers comment on anomaly detectors having too
high a false positive rate, thus making them less than ideal
sensors. In light of the above scenario, we see such com-
ments as the “false false positive problem,” as our shadow
sensor architecture allows an automated process (instead of
a human operator) to consume and vet FPs. We use this sce-
nario to demonstrate that failure to substantially reduce the
FP rate of a network AD sensor does not render the sen-
sor useless. By using a host-based shadow sensor, false
positives neither damage the system under protection nor
flood an operational center with alarms. Instead, the shadow
sensor processes both true attacks and incorrectly classified
packets to validate whether a packet signifies a true attack.
These packets are still processed by the shadowed applica-
tion and only cause an increased delay for network traffic
incorrectly deemed an attack.

2 Local Sanitization

In order to generate an accurate and precise normal
model, researchers must utilize an effective sanitization pro-
cess for the AD training data set. To that end, removing all
abnormalities, including attacks and other traffic artifacts,
from the AD training set is a crucial first step. Supervised
training using labeled datasets appears to be an ideal clean-
ing process. However, the size and complexity of training
data sets obtained from real-world network traces makes
such labeling infeasible. In addition, semi–supervised or
even unsupervised training using an automated process or
an oracle is computationally demanding and may lead to
an over-estimated and under-trained normal model. Indeed,
even if we assume that unsupervised training can detect
100% of the attacks, the resulting normal model may con-
tain abnormalities that should not be considered part of the
normal model.

These abnormalities represent data patterns or traffic that
are not attacks, but still appear infrequently or for a very
short period of time. For example, the random portion
of HTTP cookies and HTTP POST requests may be con-



sidered non-regular and thus abnormal. This type of data
should not form part of the normal model because it does
not convey any extra information about the site or modeled
protocol. Thus, in practice, both supervised and unsuper-
vised training might fail to identify and remove from the
training set non-regular data, thereby producing a large and
over-estimated normal model. We introduce a new unsu-
pervised training approach that attempts to determine both
attacks and abnormalities and separate them from the regu-
lar, normal model.

2.1 Assumptions

We observe that for a training set that spans a long period
of time, attacks and abnormalities are a minority class of
data. While the total attack volume in any given trace may
be high, the frequency of specific attacks is generally low
relative to legitimate input. This assumption may not hold
in some circumstances, e.g., during a DDoS attack or dur-
ing the propagation phase of a worm such as Slammer. We
can possibly identify such non-ideal AD training conditions
by analyzing the entropy of a particular dataset (too high
or too low may indicate exceptional circumstances). We
leave this analysis for the future. Furthermore, although we
cannot predict the time of an attack in the training set, the
attack itself will manifest as a few packets that will not per-
sist throughout the dataset. Common attack packets tend to
cluster together and form a sparse representation over time.
For example, once a worm outbreak starts, it appears con-
centrated in a relatively short period of time, and eventu-
ally system defenders quarantine, patch, reboot, or filter the
infected hosts. As a result, the worm’s appearance in the
dataset decreases [16]. We expect these assumptions to hold
true over relatively long periods of time, and this expecta-
tion requires the use of large training datasets to properly
sanitize an AD model. In short, larger amounts of training
data can help produce better models — a supposition that
seems intuitively reasonable.

We must be cautious, however, as having a large train-
ing set increases the probability that an individual datum
appears normal (the datum appears more frequently in the
dataset; consequently, the probability of it appearing “nor-
mal” increases). Furthermore, having the AD system con-
sider greater amounts of training data increases the proba-
bility of malcode presence in the dataset. As a result, mal-
code data can poison the model, and its presence compli-
cates the task of classifying normal data. We next describe
how we use micro-models in an ensemble arrangement to
process large training data sets in a manner that resists the
effects of malcode content in that data.

2.2 Micro-models

Our method of sanitizing the training data for an AD sen-
sor employs the idea of “ensemble methods.” Dietterich [7]
defines an ensemble classifier as “a set of classifiers whose
individual decisions are combined in some way (typically
by weighted or unweighted voting) to classify new exam-
ples.” Methods for creating ensembles include, among other
actions, techniques that manipulate the training examples.
Given our assumption about the span of attacks in our train-
ing set, it seems appropriate to use time-delimited slices of
the training data.

We employ the following strategy: consider a large train-
ing dataset T partitioned into a number of smaller disjoint
subsets (micro-datasets): T = {md1,md2, . . . ,mdN}
where mdi is the micro-dataset starting at time (i − 1) ∗ g
and, g is the granularity for each micro-dataset. We define
the model function AD: M = AD(T ) where AD can be
any chosen anomaly detection algorithm, T is the training
dataset, and M denotes the model produced by AD.

In order to create the ensemble of classifiers, we use
each of the “epochs” mdi to compute a micro-model, Mi.
Mi = AD(mdi). We posit that each distinct attack will be
concentrated in (or around) time period tj affecting only a
small fraction of the micro-models: Mj may be poisoned,
having modeled the attack vector as normal data, but model
Mk computed for time period tk, k �= j is likely to be un-
affected by the same attack. In order to maximize this like-
lihood, however, we need to identify the right level of time
granularity g. Naturally, epochs can range over the entire
set of training data. Our experiments, reported in Section 3,
analyze network packet traces captured over approximately
500 hours. We find that a value of g from 3 to 5 hours was
sufficient to generate well behaved micro-models.

2.3 Sanitized and Abnormal Models

After generating the micro-models, we compute a new
AD model using the set of previously computed micro-
models. In this second phase, we produce a sanitized nor-
mal model using either the training set used to produce the
micro-models or a second set of training data. Splitting the
training data set into two parts represents the worst case sce-
nario, because it assumes that we are not able to store the
large dataset necessary to build the micro-models. Hence,
the AD sensor is required to generate the micro-models on-
line using a fraction of the necessary space (the models are
far smaller than the raw traffic). Then, we can sanitize the
training dataset by (online or offline) testing using all the
pre-computed micro-models Mi. Each test results in a new
labeled data set with every packet Pj labeled as normal or
abnormal:

Lj,i = TEST (Pj ,Mi) (1)



where the label, Lj,i, has a value of 0 if the model Mi deems
the packet Pj normal, or 1 if Mi deems it abnormal.

However, these labels are not yet generalized; they re-
main specialized to the micro-model used in each test. In or-
der to generalize the labels, we process each labeled dataset
through a voting scheme, which assigns a final score to each
packet:

SCORE(Pj) =
1
W

N∑

i=1

wi · Lj,i (2)

where wi is the weight assigned to model Mi and W =∑N
i=1 wi. We have investigated two possible strategies:

simple voting, where all models are weighted identically,
and weighted voting, which assigns to each micro-model
Mi a weight wi equal to the number of packets used to train
it. The study of other weighting strategies can provide an
avenue for future research.

To understand the AD decision process, we consider the
case where a micro-model Mi includes attack-related con-
tent. When used for testing, the AD may label as normal
a packet containing that particular attack vector. Assum-
ing that only a minority of the micro-models will include
the same attack vector as Mi, we use the voting scheme to
split our data into two disjoint sets: one that contains only
majority-voted normal packets, Tsan from which we build
the sanitized model Msan, and the rest, used to generate a
model of abnormal data, Mabn.

Tsan =
⋃
{Pj | SCORE(Pj) ≤ V }, Msan = AD(Tsan)

Tabn =
⋃
{Pj | SCORE(Pj) > V }, Mabn = AD(Tabn)

where V is a voting threshold. In the case of unweighted
voting, V is the maximum percentage of abnormal labels
permitted such that a packet is labeled normal. Conse-
quently, it must be the case that 1 − V > Np, where Np

is the maximum percentage of models expected to be poi-
soned by any specific attack vector. We provide an analysis
of the impact of this threshold on both voting schemes in
Section 3.

After this two-phase training process, the AD sensor can
use the sanitized model for online testing. Note that we
have described a general approach to sanitization without
resorting to the specific details of the AD decision process;
it is enough that the AD sensor outputs a classification for
each discrete piece of its input (e.g., a network packet or
message). Consequently, we believe that our approach can
help generate sanitized models for a wide range of anomaly
detection systems. In the remainder of this paper, we eval-
uate our approach on two anomaly sensors drawn from the
research literature; we are in the process of evaluating two
others (pH and libanomaly).

3 Evaluation of Sanitization

In this section, we quantify the increase in the detection
accuracy of any content-based AD system when we apply
training data sanitization. We treat the AD sensor as a black
box to avoid using optimizations that are specific to a par-
ticular AD system. In the following experiments, we use
two anomaly sensors: Anagram [29] and Payl [28,30]. Both
sensors are n-gram content-based anomaly detectors for net-
work packets. Although they both use an n-gram approach,
these sensors have very different learning algorithms. The
details of these algorithms are beyond the scope of this pa-
per. We refer the interested reader to the citations above.

We evaluate our approach using two different scenarios.
In the first scenario, we measure the performance of the sen-
sor with and without sanitization. Additionally, we use the
sensor as a packet classifier for incoming network traffic:
we test each packet and consider the computational costs
involved in diverting each alert to a host-based shadow sen-
sor. Both the feasibility and scalability of this scenario de-
pend mainly on the amount of alerts generated by the AD
sensor, since all “suspect-data” (data that causes the sensor
to generate an alert) are significantly delayed by the shadow
sensor.

Our experimental corpus consists of 500 hours of real
network traffic, which contains approximately four million
content packets. We collected the traffic from three differ-
ent hosts: www, www1, and lists. We partitioned this data
into three separate sets: two used for training and one used
for testing. We use the first 300 hours of traffic to build the
micro-models and the next 100 hours to generate the sani-
tized model.

The remaining 100 hours of data was used for testing. It
consists of approximately 775, 000 packets (with 99 attack
packets) for www1, 656, 000 packets (with 70 attack pack-
ets) for www, and 26, 000 packets (with 81 attack packets)
for lists. Given that www1 exhibits a larger volume of traf-
fic, we chose to perform a more in-depth analysis on its
traffic. In addition, we applied a cross-validation strategy:
we used the last 100 hours to generate the sanitized model
while testing on the other preceding 100-hour dataset.

Throughout the paper, we refer to detection and false
positive rates as rates determined for a specific class of at-
tacks that we observed in these data sets. We note that dis-
covering ground truth for any realistic data set is currently
infeasible. We are, in part, trying to address this chicken-
and-egg problem through this work.

3.1 Experimental Results

Initially, we measured the detection performance of both
Anagram and Payl when used as standalone AD sensors
without sanitizing the training data. Then, we repeated the



experiments with the same setup and network traces, but
we included the sanitization phase. Table 1 presents our
findings, which show that sanitization boosts the detection
capabilities of both sensors. The results summarize the av-
erage values of false positive (FP) and true positive (TP)
rates. Both voting methods perform well. We used a granu-
larity of three hours and a value of V which maximizes the
detection performance (in our case V ∈ [0.15, 0.45]).

The optimal operating point appears to be that which
maximizes the detection of the real alerts and has the lowest
FP rate. Section 3.2 studies this point in more detail. For
Anagram, when the sanitized and abnormal models were
created, given the nature of the sensor, the two models were
built to be disjoint (no abnormal feature would be allowed
inside the sanitized model). The traffic contains instances
of phpBB forum attacks (mirela, cbac, nikon, criman) for
all three hosts that are analyzed.

Sensor
www1 www lists

FP(%) TP(%) FP(%) TP(%) FP(%) TP(%)

A 0.07 0 0.01 0 0.04 0
A-S 0.04 20.20 0.29 17.14 0.05 18.51
A-SAN 0.10 100 0.34 100 0.10 100
P 0.84 0 6.02 40 64.14 64.19
P-SAN 6.64 76.76 10.43 61 2.40 86.54

FP: false positive rate; TP: true positive rate

Sensor www1 www lists

A 0 0 0
A-S 505 59.10 370.2
A-SAN 1000 294.11 1000
P 0 6.64 1.00
P-SAN 11.56 5.84 36.05

signal-to-noise ratio (TP/FP); higher values mean
better results

Table 1. Impact of the sanitization phase on
the AD performance (A = Anagram; A - S = Ana-
gram + Snort; A - SAN = Anagram + sanitization; P = Payl;
P - SAN = Payl + sanitization )

Note that without sanitization, the normal models used
by Anagram would be poisoned with attacks and thus un-
able to detect new attack instances appearing in the test data.
Therefore, increasing AD sensor sensitivity (e.g. changing
its internal detection threshold) would only increase false
alerts without increasing the detection rate. When using
previously known malcode information (using Snort signa-
tures represented in an “abnormal model”), Anagram was
able to detect a portion of the attack packets. Of course, this
detection model is limited because it requires that a new 0-
day worm will not be sufficiently different from previous
worms that appear in the traces. To make matters worse,

such a detector would fail to detect even old threats that do
not have a Snort signature. On the other hand, if we enhance
Anagram’s training phase to include sanitization, we do not
have to rely on any other signature or content-based sensor
to detect malware.

Furthermore, the detection capability of a sensor is in-
herently dependent on the algorithm used to compute the
distance of a new worm from the normal model. For ex-
ample, although Payl is effective at capturing attacks that
display abnormal byte distributions, it is prone to miss well-
crafted attacks that resemble the byte distribution of the tar-
get site [9]. Our traces contain such attacks: we observe
this effect when we use the sanitized strategy on Payl, as
we can only get a maximum 86.54% attack detection rate.
In this case the sanitization phase is a necessary but not suf-
ficient process for reducing false negatives: the actual algo-
rithm used by the sensor is also important in determining
the overall detection capabilities of the sensor.

Interestingly, the combination of Payl operating on the
lists data set without sanitization shows a high FP rate com-
pared to the same case where sanitization is used. After
investigating this phenomena, we realized that for a specific
packet length, 161, the unsanitized model included a cen-
troid for length 161 that caused many false positives. The
sanitized model did not contain a specific centroid created
for length 161 (the packets with this length were considered
abnormal in the sanitization phase) and the closest length
centroid (178) was used for the testing phase.

Overall, our experiments show that the AD signal-to-
noise ratio (i.e., TP/FP ) can be significantly improved
even in extreme conditions, when intrinsic limitations of the
anomaly detector prevent us from obtaining a 100% attack
detection, as shown in Table 1. Higher values of the signal-
to-noise ratio imply better results. There is one exception:
Payl used on the www data set. In this case, the signal-to-
noise ratio is slightly lower, but the detection rate is still
higher after using sanitization.

To stress our system and to validate its operation, we
also performed experiments using traffic in which we in-
jected worms such as CodeRed, CodeRed II, WebDAV, and
a worm that exploits the nsiislog.dll buffer overflow vulner-
ability (MS03-022). All instances of the injected malcode
were recognized by the AD sensors when trained with san-
itized data. That result reinforced our initial observations
about the sanitization phase: we can both increase the prob-
ability of detecting a zero-day attack and of previously seen
malcode.

3.2 Analysis of Sanitization Parameters

We have seen how our sanitization techniques can boost
the performance of the AD sensors. Our results summarize
the FP and the detection rates as averaged values obtained



for the optimal parameters. We next explore these parame-
ters and their impact on performance with a more detailed
analysis using Anagram. We show the optimal operating
point for any sensor can be identified automatically with of-
fline tuning that requires no manual intervention.

There are three parameters we need to fine-tune: the
granularity of the micro-models, the voting algorithm, and
the voting threshold. In order to determine a good granu-
larity, we have to inspect the volume of traffic received by
each site (given the characteristics of the chosen anomaly
detector) such that we do not create models that are under-
trained. In our initial experiments, we used 3-hour, 6-hour,
and 12-hour granularity. We employed both the simple and
weighted voting algorithms proposed in Section 2. The
threshold V is a parameter that needs to be determined once.
It depends on the training set and the site/application mod-
eled by the sensor. As we show, both the optimal values of
V and the micro-model granularity appear to be the same
for all the sites in our experiments.

In Figures 1 and 2, we present the performance of the
system when using Anagram enhanced with the sanitiza-
tion method applied on the www1 traffic. We notice that the
weighted voting algorithm appears to be a slight improve-
ment. We seek a value for V that maximizes detection and
achieves the lowest possible FP rate. We can observe that
the sanitized model built using the 3-hour micro-models
shows the best performance, achieving a detection rate of
100% and minimizing the FP rate. The granularity and the
voting threshold are inversely proportional because for the
same data set fewer models are built when the granularity is
increased.

In Figures 3 and 4, we present the results for www and
lists for a granularity of three hours and for both types of
voting techniques. The best cases for these two sites are
reached at almost the same value as the ones obtained for
www1. We observe that the best case is where V has the
minimum value 0.01 (this is dependent on the training data
set).

To verify these results, we studied the impact that gran-
ularity has on the performance of the system. We fix the
voting threshold, and we sample a large range of granular-
ity values. This analysis allows us to determine the best
granularity. In Figure 5, we can observe that the granular-
ity of three hours performs the best, given the two threshold
bounds 0.15 and 0.45 obtained from the previous experi-
ments. For all other values of V ∈ (0.15, 0.45), the granu-
larity of three hours seemed to be the optimal choice. Notice
that for V = 0.45, all values of granularity from 3-12 hours
are optimal but not for V = 0.15.

When using Payl, the granularity of three hours again
performs the best, given the two threshold bounds 0.15 and
0.55. Payl behaves differently than Anagram due to its dif-
ferent learning algorithm. The way the models are built is

more dependent on the number of training samples because
models are created for each packet length.

As we mentioned previously, our technique assumes the
use of a large training dataset in order to increase the prob-
ability that an individual datum which is normal is not in-
correctly deemed an anomaly. To analyze the impact that
training data set size has on performance, we tested our
methodology on Anagram using a certain percentage of the
micro-models, starting from a randomly chosen position in
the training dataset, as shown in Figure 7. This experiment
uses 300 hours of training data, a granularity of three hours
per mico-model, the weighted voting scheme, and a thresh-
old of V = 0.45. The FP rate degrades when only a percent-
age of the 100 models is used in the voting scheme. Another
factor is the relationship between the internal threshold of
the sensor, τ , and the voting threshold, V , and the way it
influences the performance of the system. Intuitively, if the
anomaly sensor is more relaxed, the data seen as anomalous
by the micro-models will decrease. As a result, the sanitized
model will actually increase in size and exhibit a smaller FP
rate as shown in Figure 8. Although using a “relaxed” AD
can improve the FP rate, we do not advocate such an ap-
proach to the extreme. In our experiments, the threshold for
Anagram was set to τ = 0.4, and we analyzed the effect of
changing the internal threshold had over the performance
of our system. We observed that if we increase the internal
threshold too much, the FP rate decreases along with the
detection rate.

3.3 Computational Performance Evalua-
tion

Using an AD sensor to classify input, especially if the
AD sensor is operating inline with the input stream, can be
expensive (in terms of latency for benign requests). We ex-
amine the average time it takes to process a request, and the
impact that sanitization has on this time. In addition, we es-
timate the overall computational requirements of a detection
system consisting of an AD sensor and a host-based shadow
sensor. The AD sensor acts as a packet classifier that diverts
all packets that generate alerts to the shadow sensor while
allowing the rest of the packets to reach the native service.
This architecture effectively creates two service paths.

Our goal is to create a system that does not incur a pro-
hibitive increase in the average request latency and that can
scale to millions of service requests. Due to the overhead of
the shadow sensor, we cannot redirect all traffic to it. There-
fore,we want the AD to shunt only a small fraction of the
total traffic to the shadow. The shadow sensor serves as an
oracle that confirms or rejects the AD’s initial classification.

Although one could argue that using a shadow sensor
alone is sufficient to protect a system from attack (and there-
fore we have scant need of a robust anomaly sensor in



Figure 1. Performance for www1 for 3-hour
granularity when using simple voting and
Anagram (V is the voting threshold; see section 2)

Figure 2. Performance for www1 when us-
ing weighted voting and Anagram (V is the
voting threshold)

the first place), shadow sensors have significant shortcom-
ings. First, they impose a hefty performance penalty (due to
the instrumentation, which could include tainted dataflow
analysis, a shadow stack, control-flow integrity, instruction
set randomization and other heavyweight detectors). Us-
ing a shadow sensor without the benefit of an AD sensor to
pre-classify input would be unacceptable for many environ-
ments. Second, a shadow requires synchronization of state
between it and the shadowed “production” application. In
many environments, this is a difficult task. Finally, shadow
sensors have only an incomplete notion of what malicious
behavior is: they use instrumentation aimed at detecting
certain classes of attacks. Thus, a shadow sensor is not a
perfect oracle. It serves only to offer a lower bound on the
removal of attacks (and it completely misses abnormalities)
if it were used to directly “sanitize” data sets.

For our performance estimation, we used two instrumen-
tation frameworks: STEM [21] and DYBOC [1]. STEM
exhibits a 4400% overhead when an application such as
Apache is completely instrumented to detect attacks. On the
other hand, DYBOC has a lighter instrumentation, provid-
ing a faster response, but still imposes at least a 20% over-
head on server performance. Given that we know ground
truth based on the attacks these sensors detect, we can esti-
mate what the answers of the shadow servers would be. We
can also estimate the overall overhead based on the reported
performance of the frameworks in [21] and [1].

To compute the overall overhead, we borrow the method
used in [29], where the latency of such an architecture is
defined as following:

l′ = (l ∗ (1− fp)) + (l ∗Os ∗ fp)

where l is the standard (measured) latency of a protected
service, Os is the shadow server overhead, and fp is the
AD false positive rate.

To quantify the performance loss/gain from using the
sanitization phase, we compare the average latency of the
system when using Payl and Anagram with sanitized and
non-sanitized training data. Table 2 shows that the alert rate
for both sensors does not increase by much after sanitizing
the training data, and in some cases fewer numbers of pack-
ets will have to be processed by the shadow server (lists
when using Payl).

Table 2. Latency for different anomaly detec-
tors

Sensor
STEM DYBOC

www1 www lists www1 www lists

N/A 44 44 44 1.2 1.2 1.2
A 1.0301 1.0043 1.0172 1.0001 1.0000 1.0000
A-S 1.0172 1.1247 1.0215 1.0000 1.0005 1.0000
A-SAN 1.0430 1.462 1.0430 1.0002 1.0006 1.0002
P 1.3612 3.5886 28.5802 1.0016 1.0120 1.1282
P-SAN 3.8552 5.4849 2.0320 1.0132 1.0208 1.0048

3.4 Long-lasting Training Attacks

In some cases a worm may appear in all micro-models
as well as the training dataset of the sanitized model. This
scenario represents what we call a long-lasting training at-
tack. In this attack, the adversary continuously targets a
particular site such that the modeling process is disturbed.



Figure 3. Performance for www for 3-hour
granularity when using Anagram (V is the
voting threshold)

Figure 4. Performance for lists for 3-hour
granularity when using Anagram (V is the
voting threshold)

This situation is not covered by our previous experiments,
which injected real worms into real traffic such that each
one appeared in a small fraction of the micro-models. To
test our methodology in such an extreme case, we injected a
specific attack packet (in our case mirela) into every micro-
model and the dataset from which the sanitized model was
computed. Table 3 compares poisoned and “clean” or non-
poisoned sanitized models. The results were obtained us-
ing Anagram, weighted voting, a granularity of three hours,
and V = 0.35. We can see that this method can evade our
architecture. For this reason, we next investigate ways to
alleviate the impact of long-lasting training attacks.

Table 3. Long lasting training attacks
Sanitized www1 www lists
model FP(%) TP(%) FP(%) TP(%) FP(%) TP(%)

non-poisoned 0.13 100 0.26 100 0.10 100
poisoned 0.10 29.29 0.26 38.27 0.10 35.80

4 Collaborative Sanitization

Section 3.4 noted that our local sanitization architecture
has a weakness in the presence of long-lasting attacks in
the initial set of training data. Because attack data may
span multiple micro-models, it can poison a large portion
of them. Since we predicate our cleaning capability on
micro-model voting, extensive poisoning of the training
data would seriously deteriorate our ability to detect long-
lived or frequently occurring attack payloads. We hypoth-
esize, however, that the distribution of such long-lived at-
tacks among Internet hosts would require an adversary with

significant resources (e.g., a potentially large number of
source IP addresses) — a requirement that effectively limits
the scope of such attack to few target hosts or networks.

Given this hypothesis, we can counter the effects of such
attacks by extending our sanitization mechanism to sup-
port sharing models of abnormal traffic among collaborat-
ing sites. Sharing these models enables a site to re-evaluate
its local training data2. Our goal is to enhance the local view
of abnormal behavior characteristics (rather than normal be-
havior characteristics, which cannot be meaningfully shared
because they are unique to an individual site). As we will
show, “cross-sanitization” between sites boosts our ability
to remove long-lived or frequent attacks from the training
data (regardless of whether or not the attack data is “tar-
geted”, i.e., injected specifically to blind the sensor). Col-
laboration on this scale is not unheard of. Collaboration
exists in the real world, and we believe it can exist in the
digital world. In particular, examples of organizations em-
ploying a collaborative approach to defense include the De-
partment of the Treasury and the FSISAC leveraging the tal-
ent and resources of the financial community to protect the
community as a whole. The DISA/DoD manages and lever-
ages information from its many customer .mil hosts. Uni-
versities with hundreds of divisions and units across schools
and departments also follow this model.

4.1 Cross-Sanitization

In some sense, attack vectors that saturate training data
define normal traffic patterns. Local knowledge alone may

2To alleviate the privacy concerns of sharing content, these models may
incorporate privacy-preserving representations [12, 18].



Figure 5. Granularity impact on the perfor-
mance of the system for www1 when using
Anagram

Figure 6. Granularity impact on the perfor-
mance of the system for www when using
Payl

not provide enough evidence to weed out consistent attack
vectors in training data. To isolate and remove these vec-
tors, we need to incorporate knowledge from some other
remote source. This information sharing is the essence of
cross-sanitization: comparing models of abnormality with
those generated by other sites.

Cross-sanitization compares models of abnormality be-
cause normal models are tightly coupled with an individual
site’s traffic. In contrast, the consistency of characteristics
of abnormal packets across sites can help filter out attacks
that saturate the training data. Individual sites can utilize
this external knowledge to cross-sanitize their training set
and generate a better local normal model.

For an attacker to successfully blind each sensor in this
type of environment, she would need to identify each col-
laborator and launch the same training attack on all partic-
ipating sites for the same time period. Accomplishing this
goal requires a significant amount of resources and knowl-
edge. Therefore, we postulate that when a particular site ex-
periences a targeted training attack, the attack data will not
appear at all collaborating sites at the same time. As a re-
sult, with a large enough group of collaborators, some frac-
tion of sites will have seen the attack, but will not have had
their model corrupted by it. In this case, sharing abnormal
models helps cleanse the local models of sites in the group
that have been corrupted. When a site with sanitized model
Msan receives the abnormal models Mabn1 . . . MabnM

from
its collaborators, it needs to compute a new model, Mcross.
The methods to compute this model are presented in Sec-
tions 4.2 and 4.3.

Polymorphic attacks present a special challenge because
each propagation attempt will display a distinct attack vec-

tor that may be captured in different abnormal models. We
conjecture, however, that a polymorphic attack targeting a
single site can still be captured by the local sanitization
scheme presented in this paper. Section 5 explores how well
our approach can cope with polymorphism.

4.2 Direct Model Differencing

Collaborative cross-sanitization requires us to define a
method of directly comparing and “differencing” AD mod-
els. However, the composition of models may vary across
sites depending on the particular AD algorithm in use and
the specific representation of the model. If models are di-
rectly comparable or a translation method exists (although
a full treatment of such a mechanism is beyond the scope
of this work, we consider how to deal with complex models
in Section 4.3), then we can construct a new local sanitized
model from the shared abnormal models as follows:

Mcross = Msan −
⋃
{Mabni

∩Msan} (3)

where Mabni
∩ Msan represents the features common to

both models.

4.3 Indirect Model Differencing

When models are more complex, e.g. probabilistic or
statistical models, the model differencing computation can-
not be applied analytically, but indirectly. Equation (3) is
expressed differently, not as model differencing, but as a
difference of sets of packets used to compute the models.

We recompute the sanitized model using the informa-
tion from Msan and Mabn1 . . . MabnM

. The dataset used



1 10 20 30 40 50 60 70 80 90 100
0

50

100

Number of micro−models

F
al

se
 p

o
si

ti
ve

 r
at

e 
(%

)

1 20 40 60 80 100
90

95

100

Number of micro−models

D
et

ec
ti

o
n

 r
at

e 
(%

)

99.31

0.30 0.16 0.13 0.11 0.09

Figure 7. Impact of the size of the training
dataset for www1 Figure 8. Impact of the anomaly detector’s

internal threshold for www1 when using
Anagram

in the second phase of the local sanitization is tested against
Msan (we identify the packets that are normal, that is, used
for actually computing Msan). The packets labeled as nor-
mal (TEST (Pj ,Msan) = 0) are also checked against each
of the collaborative abnormal models, Mabn1 . . . MabnM

.
Note that TEST (Pj ,Mabni

) = 0 means that the packet is
labeled normal by an abnormal model, which translates to
the fact the packet is abnormal. If at least one of the abnor-
mal models labels a packet Pj as normal (i.e., the packet is
considered abnormal by at least one collaborator), then fea-
tures are extracted from the packet and used for computing
the new local abnormal model, otherwise they are used for
computing the cross-sanitized model.

Table 4. Recalculating sanitized and abnor-
mal models. These routines use the abnormal models
of collaborating peers to regenerate models of both normal
and abnormal local data.
ROUTINE CROSSSANITIZED()
∀i ∈ [1..M ]

if 0=TEST(Pj ,Msan) and 1=TEST(Pj ,Mabni
)

Tcross ← Pj

Mcross← AD(Tcross)
ROUTINE CROSSABNORMAL()
∃i ∈ [1..M ]

s.t. 0=TEST(Pj ,Msan) and 0=TEST(Pj ,Mabni
)

Tcabn ← Pj

Mcabn ← AD(Tcabn)

4.4 Additional Optimizations

Although direct/indirect model differencing can help
identify abnormal samples that have poisoned a site, we
must take care during the comparison. Because sites exhibit
content diversity [28], (i.e., they do not experience identical
traffic flows), an abnormal model from site B may include
some common but ultimately legitimate data from site A.
In other words, data items that are indeed normal for a par-
ticular site can be considered abnormal by others. If site A
attempts to identify abnormal content in its local model us-
ing cross-sanitization with site B, then A may incorrectly
remove legitimate data patterns from its model along with
truly abnormal or malicious data patterns. Doing so in-
creases the false positive rate — an increase that may not
be matched by an increase in detection rate.

An alternative approach to reconciling different mod-
els or disagreements between models involves the use of
a shadow server. If the sanitized model and an abnormal
model disagree on the label of a packet (for example, the
sanitized model labels it normal and the abnormal one as
abnormal), we redirect the traffic to the shadow server to
determine if the packet causes a real attack. Based on this
information the packet is used in the construction of either
the local sanitized model or the local abnormal model.

5 Performance of Collaborative Sanitization

This Section shows that even if local sanitization fails
to detect an attack, we can compensate by using the ex-
ternal information received from other collaborating sites.



Furthermore, we show that the performance of the local ar-
chitecture remains unaffected when faced with polymorphic
attacks. The experiments in this Section use the Anagram
sensor and were conducted on a PC with a 2GHz AMD
Opteron processor 248 and 8G of RAM, running Linux.

5.1 Training Attacks

We will assume that at least some of the collaborative
sites are poisoned by a long lasting training attack, while
others were able to filter it and use it for building the ab-
normal model. If the targeted site receives an abnormal
model that contains an attack vector, the local sanitized
model can be “cross-sanitized” by removing the common
grams between the two models (direct model differencing).
Given the diversity in content exhibited by different sites,
the same gram can be characterized differently by different
sites. Therefore, it is possible that after cross-sanitation the
sanitized model becomes smaller. As an immediate conse-
quence, the false positive rate will increase.

We consider all the possible cases in which each of our
three hosts model is poisoned by each of the four attacks
present in our data. When one site is poisoned, we consider
that the other two are not. Every poisoned host receives the
abnormal models Mabn of its peers in order to cross-sanitize
its own model, Mpois. Table 5 presents the average per-
formance of the system before and after cross-sanitization
when using direct and indirect model differencing.

Table 5. Performance when the sanitized
model is poisoned and after it is cross-
sanitized when using direct/indirect model
differencing

Model
www1 www lists

FP(%) DR(%) FP(%) DR(%) FP(%) DR(%)

Mpois 0.10 44.94 0.27 51.78 0.25 47.53
Mcross 0.24 100 0.71 100 0.48 100
(direct)
Mcross 0.10 100 0.26 100 0.10 100
(indirect)

In the case of direct model differencing, once the cross-
sanitization is done, the detection rate is improved, but the
false positive rate degrades. To further investigate how the
cross-sanitization influences the performance of the local
systems, we analyze the size of the models (presented in
Table 6).

As Table 6 shows, the size of the models has decreased.
This decrease leads to an increase in the FP rate. As we
mentioned before, this behavior is a disadvantage of our dis-
tributed sanitization method, as it depends on site diversity.

Table 6. Size of the sanitized model when poi-
soned and after cross-sanitization when us-
ing direct/indirect model differencing

Model
www1 www lists

#grams file size #grams file size#gramsfile size

Mabn 2,289,888 47M 199,011 3.9M 6,025 114K
Mpois 1,160,235 23M 1,270,009 24M 43,768 830K
Mcross 1,095,458 21M 1,225,829 24M 37,113 701K
(direct)
Mcross 1,160,004 23M 1,269,808 24M 43,589 828K
(indirect)

Furthermore, this phenomena provides a potential avenue
of attack for an adversarial collaborator. We consider de-
fending against this type of attack to be out of the scope
of our current efforts, but Byzantine robustness or reputa-
tion systems can be applied in the future. Of course, even
appropriately authenticated or otherwise trustworthy peers
could be exploited after they are included in the collabora-
tive network. We note that dealing with trusted insiders is
an inherently hard problem faced by many large-scale col-
laborative systems, from anonymity networks to mandatory
access control frameworks.

In order to improve our method for cross-sanitization,
we can use the indirect model differencing approach. This
approach tests the poisoned local model and the collabo-
rative abnormal models against the second training dataset
used in our local methodology. The goal of this method is
to eliminate the packets responsible for poisoning the local
model from the training data set. The most challenging part
of this method is to set the internal threshold of Anagram
when testing the traffic against the abnormal models. An
intuitive approach is to actually use the inverse value of the
normal thresholding. For example, if the internal threshold
for Anagram when testing against the normal model was τ ,
then the threshold for abnormal models would be 1-τ . In
our experiments, we used an internal threshold of 0.4: the
threshold for abnormal models becomes 0.6 (analyzing the
scores given by the packets that contributed to the poison-
ing 0.5 would have been also enough). As we can observe in
Table 5, the FP rate has improved and the detection rate re-
mains at 100%. The improvement of the FP rate is reflected
in the size of the cross-sanitized models (see Table 6).

In terms of computational performance, as expected, the
indirect model differencing is more expensive than the di-
rect model differencing (see Table 7). There is a tradeoff
between how fast the cross-sanitization needs to be done
and how high the FP rate is. If a higher FP rate is allowed,
a quicker cross-sanitization can be applied by using the di-
rect differencing; otherwise the best solution is the indirect



model differencing.
Finally, any of the methods can be refined using feed-

back from a shadow sensor, but this process would intro-
duce more computational effort. The benefit of using a
shadow sensor is that we can cross-sanitize the model to
optimize the FP rate.

Table 7. Time to cross-sanitize for direct and
indirect model differencing

Method www1 www lists

direct 13.98s 26.35s 16.84s
indirect 1966.68s 1732.32s 685.81s

5.2 Polymorphic Attacks

Polymorphic attacks are of increasing concern. To test
against such attacks, we used a popular polymorphic en-
gine, CLET [6] to generate samples of polymorphic shell-
code. In these experiments, we assume that an attacker
tries to perform a training attack using a polymorphic vector
(which implies that the exploit would include polymorphic
shellcode). For the experiments, we used 2100 samples of
shellcode generated with CLET. We used 100 micro-models
with a three hour granularity derived from our dataset for
www1. We poisoned each micro-model with 20 samples of
shellcode. We also poisoned the data set from which the
sanitized model is built with the remaining 100 shellcode
samples.

We rebuilt the sanitized model with our system. In the
voting strategy, all of the micro-models found the 100 shell-
code samples as being anomalous, given that, on average,
82% of the grams from 100 samples were found abnormal
by the micro-models. After the sanitized model was com-
puted, we tested it against the testing dataset of 100 hours.
As expected, the performance results were identical with
the ones given when the sanitized model was constructed
without any shellcode samples. These experiments indicate
that most common polymorphic attacks can be handled by
the local sanitization architecture.

6 Related work

Our approach for sanitizing training datasets shares ele-
ments with ensemble methods, which are reviewed in [7]. It
is important to note that, while most of these methods tra-
ditionally fall in the category of supervised learning algo-
rithms, due the applications of our work (e.g. real network
traffic), we are forced to use unlabeled training data. In
particular, we construct a set of classifiers and then classify
the new data points using a (weighted) vote. We generate

AD models from slices of the training data, thus manipulat-
ing the training examples presented to the learning method.
Another similar machine learning approach is that of Bag-
ging predictors [2], which uses a learning algorithm with
a training set that consists of a sample of m training ex-
amples drawn randomly for the initial data set. The cross-
validated committees method [19] proposes to construct a
training model by leaving out disjoint subsets of the train-
ing data. ADABoost [11] generates multiple hypothesis
and maintains a set of weights over the training example.
Each iteration invokes the learning algorithm to minimize
the weighted error and returns a hypothesis, which is used
in a final weighted vote.

One of the most similar work to ours is MetaCost [8],
which is an algorithm that implements cost-sensitive classi-
fication. Instead of modifying an error minimization classi-
fication procedure, it views the classifier as a black box, the
same as we do, and wraps the procedure around it in order to
reduce the loss. MetaCost estimates the class probabilities
and relabels the training examples such that the expected
cost of predicting new labels is minimized. Finally it builds
a new model based on the relabeled data. Our algorithm
also labels the training examples and ignores the abnormal
ones in the training process.

We have previously explored the feasibility of clean-
ing traffic [5]. That work contains a very limited analysis
and did not address the problem of long-lasting attacks in
the training data. In contrast, this paper performs an ex-
tended analysis on larger and more realistic data sets to help
confirm the hypothesis that cleaning is possible. We also
present alternatives that can be used when the local archi-
tecture fails due to long lasting training attacks.

JAM [24] focuses on developing and evaluating a range
of learning strategies for fraud detection. That work
presents methods for “meta-learning” by computing sets
of “base classifiers” over various partitions or sampling of
the training data. The combining algorithms proposed are
called “class-combiner” or “stacking” and they are built
based on work presented in [3] and [31]. The exchange
of abnormal models was used in [24] for commercial fraud
detection. Their results show that fraud detection systems
can be substantially improved by combining multiple mod-
els of fraudulent transactions shared among banks. We ap-
ply a similar idea in the case of network traffic content-
based anomaly detection in order to cross-sanitize the nor-
mal model.

The perceived utility of anomaly detection is based on
the assumption that malicious inputs rarely occur during
the normal operation of the system. Because a system can
evolve over time, it is also likely that new non-malicious
inputs will be seen [10]. Perhaps more troubling, Fogla
and Lee [9] have shown how to evade anomaly classifiers
by constructing polymorphic exploits that blend with nor-



mal traffic (a sophisticated form of mimicry attack [27]),
and Song et al. [23] have improved on this technique and
shown that content–based approaches may not work against
all polymorphic threats, since many approaches often fix on
specific byte patterns [17].

7 Conclusions

Due to recent advances in polymorphic attacks, we be-
lieve that the research community should make a con-
certed effort to revive the use of content–based anomaly
detection as a first-class defensive technique. To that end,
we introduce a novel sanitization technique that signifi-
cantly improves the detection performance of out-of-the-
box anomaly detection (AD) sensors. We are the first to
introduce the notion of micro-models: models of “normal”
trained on small slices of the training data set. Using sim-
ple weighted voting schemes, we significantly improve the
quality of unlabeled training data by making it as “attack-
free” and “regular” as possible. Our approach is straightfor-
ward and general, and we believe it can be applied to a wide
range of unmodified AD sensors (because it interacts with
the training data rather than the AD algorithm) without in-
curring significant additional computational cost other than
in the initial training phase.

The experimental results indicate that our system can
serve both as a stand-alone sensor and as an efficient and
accurate online packet classifier using a shadow sensor. Fur-
thermore, the alerts generated by the “sanitized” AD model
represent a small fraction of the total traffic. The model
detects approximately 5 times more attack packets than the
unsanitized AD model. In addition, the AD system can de-
tect more threats both online and after an actual attack, since
the AD training data are attack-free. In case local sanitiza-
tion is evaded, we extend our methodology to support shar-
ing models of abnormal traffic among collaborating sites.
A site can cross-sanitize its local training data based on the
remote models. Our results show that if the collaborating
sites were targeted by the same attack and they were able to
capture it in their abnormal models, the detection rate can
be improved up to 100%.

Obtaining anomaly sensors from the research commu-
nity is a difficult process; most sensors are heavily protected
IP or are under active development. We are, however, cur-
rently investigating two additional sensors: one based on
libanomaly and one based on the pH system [22]. We
plan to investigate how to clean training data for these algo-
rithms to help show that our approach extends to other AD
sensors.

Acknowledgements

We would like to thank Yingbo Song for helpful feed-
back and Wei-Jen Li and Vanessa Frias-Martinez for inter-
esting discussions. This material is based on research spon-
sored by the Air Force Research Laboratory under agree-
ment number FA8750-06-2-0221, the Army Research Of-
fice under grant No. DA W911NF-04-1-0442, and by the
National Science Foundation under NSF grants CNS-06-
27473 and CNS-04-26623. We authorize the U.S. Govern-
ment to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.

References

[1] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis,
E. Markatos, and A. D. Keromytis. Detecting Targeted At-
tacks Using Shadow Honeypots. In Proceedings of the 14th

USENIX Security Symposium, August 2005.
[2] L. Breiman. Bagging Predictors. Machine Learning,

24(2):123–140, 1996.
[3] P. K. Chan and S. J. Stolfo. Experiments in Multistrategy

Learning by Meta-Learning. In Proceedings of the sec-
ond international conference on information and knowledge
management, pages 314–323, Washington, DC, 1993.

[4] J. R. Crandall, Z. Su, S. F. Wu, and F. T. Chong. On Deriv-
ing Unknown Vulnerabilities from Zero-Day Polymorphic
and Metamorphic Worm Exploits. In ACM Conference on
Computer and Communications Security, Alexandria, VA,
2005.

[5] G. F. Cretu, A. Stavrou, S. J. Stolfo, and A. D. Keromytis.
Data Sanitization: Improving the Forensic Utility of
Anomaly Detection Systems. In Workshop on Hot Topics
in System Dependability (HotDep), 2007.

[6] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. S. von
Underduk. Polymorphic Shellcode Engine Using Spectrum
Analysis. Phrack, 11(61-9), 2003.

[7] T. G. Dietterich. Ensemble Methods in Machine Learning.
Lecture Notes in Computer Science, 1857:1–15, 2000.

[8] P. Domingos. Metacost: A general method for making clas-
sifiers cost-sensitive. In Knowledge Discovery and Data
Mining, pages 155–164, 1999.

[9] P. Fogla and W. Lee. Evading Network Anomaly Detection
Systems: Formal Reasoning and Practical Techniques. In
Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS), pages 59–68, 2006.

[10] S. Forrest, A. Somayaji, and D. Ackley. Building Diverse
Computer Systems. In Proceedings of the 6th Workshop on
Hot Topics in Operating Systems, pages 67–72, 1997.

[11] Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. In
European Conference on Computational Learning Theory,
pages 23–37, 1995.



[12] S. S. Janak Parekh, Ke Wang. Privacy-preserving payload-
based correlation for accurate malicious traffic detection. In
SIGCOMM Workshop on Large Scale Attack Defense, 2006.

[13] C. Kruegel, T. Toth, and E. Kirda. Service Specific Anomaly
Detection for Network Intrusion Detection. In Symposium
on Applied Computing (SAC), Madrid, Spain, 2002.

[14] R. P. Lippmann and J. Haines. Analysis and Results of the
1999 DARPA Off-Line Intrusion Detection Evaluation. In
Proceedings of the Recent Advances in Intrusion Detection
(RAID 2000), pages 162–182, 2000.

[15] J. McHugh. Testing Intrusion Detection Systems: A Cri-
tique of the 1998 and 1999 DARPA Intrusion Detection Sys-
tem Evaluations as Performed by Lincoln Laboratory. ACM
TISSEC, 3(4):262–291, 2000.

[16] D. Moore and C. Shannon. The Spread of
the Code Red Worm (CRv2). http://www.
caida.org/analysis/security/code-red/
coderedv2 analysis.xml.

[17] J. Newsome, B. Karp, and D. Song. Polygraph: Automat-
ically Generating Signatures for Polymorphic Worms. In
IEEE Security and Privacy, Oakland, CA, 2005.

[18] J. J. Parekh. Privacy-Preserving Distributed Event Corrob-
oration. PhD thesis, Columbia University, 2007.

[19] B. Parmanto, M. P. W., and H. R. Doyle. Improving Com-
mittee Diagnosis with Resampling Techniques. Advances in
Neural Information Processing Systems, 8:882–888, 1996.

[20] H. Patil and C. N. Fischer. Efficient Turn-time Monitoring
Using Shadow Processing. In Proceedings of the 2nd Inter-
national Workshop on Automated and Algorithmic Debug-
ging, 1995.

[21] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a Reactive Immune System for Soft-
ware Services. In Proceedings of the USENIX Technical
Conference, June 2005.

[22] A. Somayaji and S. Forrest. Automated Response Using
System-Call Delays. In Proceedings of the 9th USENIX Se-
curity Symposium, August 2000.

[23] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and
S. J. Stolfo. On the Infeasibility of Modeling Polymorphic
Shellcode. In ACM Computer and Communications Security
Conference (CCS), 2007.

[24] S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan.
Cost-based Modeling for Fraud and Intrusion Detection: Re-
sults from the JAM Project. In Proceedings of the DARPA
Information Survivability Conference and Exposition (DIS-
CEX), 2000.

[25] K. M. Tan and R. A. Maxion. Why 6? Defining the Oper-
ational Limits of stide, an Anomaly-Based Intrusion Detec-
tor. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 188–201, May 2002.

[26] C. Taylor and C. Gates. Challenging the Anomaly Detection
Paradigm: A Provocative Discussion. In Proceedings of the
15th New Security Paradigms Workshop (NSPW), pages 21–
29, September 2006.

[27] D. Wagner and P. Soto. Mimicry Attacks on Host-Based
Intrusion Detection Systems. In ACM CCS, 2002.

[28] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous Payload-
based Worm Detection and Signature Generation. In Pro-
ceedings of the Symposium on Recent Advances in Intrusion
Detection (RAID), September 2005.

[29] K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A Con-
tent Anomaly Detector Resistant to Mimicry Attack. In Pro-
ceedings of the Symposium on Recent Advances in Intrusion
Detection (RAID), September 2006.

[30] K. Wang and S. J. Stolfo. Anomalous Payload-based Net-
work Intrusion Detection. In Proceedings of the Symposium
on Recent Advances in Intrusion Detection (RAID), Septem-
ber 2004.

[31] D. Wolpert. Stacked Generalization. In Neural Networks,
volume 5, pages 241–259, 1992.


