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Abstract. We present a host-based intrusion detection system (IDS)
for Microsoft Windows. The core of the system is an algorithm that de-
tects attacks on a host machine by looking for anomalous accesses to the
Windows Registry. The key idea is to first train a model of normal reg-
istry behavior on a windows host, and use this model to detect abnormal
registry accesses at run-time. The normal model is trained using clean
(attack-free) data. At run-time the model is used to check each access
to the registry in real time to determine whether or not the behavior is
abnormal and (possibly) corresponds to an attack. The system is effec-
tive in detecting the actions of malicious software while maintaining a
low rate of false alarms.

1 Introduction

Microsoft Windows is one of the most popular operating systems today, and
also one of the most often attacked. Malicious software running on the host
is often used to perpetrate these attacks. There are two widely deployed first
lines of defense against malicious software, virus scanners and security patches.
Virus scanners attempt to detect malicious software on the host, and security
patches are operating systems updates to fix the security holes that malicious
software exploits. Both of these methods suffer from the same drawback. They
are effective against known attacks but are unable to detect and prevent new
types of attacks.

Most virus scanners are signature based meaning they use byte sequences
or embedded strings in software to identify certain programs as malicious [10,
24]. If a virus scanner’s signature database does not contain a signature for a
specific malicious program, the virus scanner can not detect or protect against
that program. In general, virus scanners require frequent updating of signature
databases, otherwise the scanners become useless [29]. Similarly, security patches
protect systems only when they have been written, distributed and applied to
host systems. Until then, systems remain vulnerable and attacks can and do
spread widely.

In many environments, frequent updates of virus signatures and security
patches are unlikely to occur on a timely basis, causing many systems to remain
vulnerable. This leads to the potential of widespread destructive attacks caused
by malicious software. Even in environments where updates are more frequent,



the systems are vulnerable between the time new malicious software is created
and the time that it takes for the software to be discovered, new signatures and
patches created by experts, and the ultimate distribution to the vulnerable sys-
tems. Since malicious software may propagate through email, often the malicious
software can reach the vulnerable systems long before the updates are available.

A second line of defense is through IDS systems. Host-based IDS systems
monitor a host system and attempt to detect an intrusion. In the ideal case, an
IDS can detect the effects or behavior of malicious software rather then distinct
signatures of that software. Unfortunately, the commercial IDS systems that are
widely in use are based on signature algorithms. These algorithms match host
activity to a database of signatures which correspond to known attacks. This ap-
proach, like virus detection algorithms, require previous knowledge of an attack
and is rarely effective on new attacks. Recently however, there has been growing
interest in the use of data mining techniques such as anomaly detection, in IDS
systems [23, 25]. Anomaly detection algorithms build models of normal behavior
in order to detect behavior that deviates from normal behavior and which may
correspond to an attack [9, 12]. The main advantage of anomaly detection is that
it can detect new attacks and can be an effective defense against new malicious
software. Anomaly detection algorithms have been applied to network intrusion
detection [12, 20, 22] and also to the analysis of system calls for host based in-
trusion detection [13, 15, 17, 21, 28]. There are two problems to the system call
approach to host based IDS which inhibits their use in actual deployment. The
first is that the computational overhead of monitoring all system calls is very
high, which degrades the performance of a system. The second is that system
calls themselves are irregular by nature, which makes it difficult to differentiate
between normal and malicious behaviors, which may cause a high false positive
rate.

In this paper, we examine a new approach to host IDS that monitors a pro-
gram’s use of the Windows Registry. We present a system called RAD (Registry
Anomaly Detection), which monitors the accesses to the registry in real time
and detects the actions of malicious software.

The Windows Registry is an important part of the Windows operating system
and is very heavily used, making it a good source of audit data. By building
a sensor on the registry and applying the information gathered to an anomaly
detector, we can detect activity that corresponds to malicious software. The main
advantages of monitoring the Windows Registry is that the activity is regular
by nature, can be monitored with low computational overhead, and almost all
system activities interact with the registry.

Our anomaly detection algorithm is a registry-specific version of PHAD
(Packet Header Anomaly Detection), an anomaly detection algorithm originally
presented to detect anomalies in packet headers [25]. We show that the data
generated by a registry sensor is useful in detecting malicious behavior. We shall
describe how various malicious programs use the registry, and what data can be
gathered from the registry to detect these malicious activities. We then apply an
anomaly detection algorithm to this data to detect abnormal registry behavior



which corresponds to the actions of malicious software. By showing the results
of an experiment and detailing how various malicious activities use the registry,
we show that the registry is a good source of data for intrusion detection. The
paper will also discuss the modifications of the PHAD algorithm as it is applied
in the RAD system.

We present results of experiments evaluating the RAD system and demon-
strate that it is effective in detecting attacks while maintaining a low rate of
false alarms.

2 DModeling Registry Accesses

2.1 The Windows Registry

In Microsoft Windows, the registry file is a database of information about a
computer’s configuration. The registry contains information that is continually
referenced by many different programs. Information stored in the registry in-
cludes the hardware installed on the system, which ports are being used, profiles
for each user, configuration settings for programs, and many other parameters
of the system. It is the main storage location for all configuration information
for many Window programs. The Windows Registry is also the source for all se-
curity information: policies, user names, and passwords. The registry also stores
much of the important run-time configuration information that programs need
to run.

The registry is organized hierarchically as a tree. Each entry in the registry
is called a key and has an associated value. One example of a registry key is

HKCU\Software\America Online\AOL Instant Messenger (TM)
\CurrentVersion\Users\aimuser\Login\Password

This is a key used by the AOL instant messenger program. This key stores
an encrypted version of the password for the user name aimuser. Upon start up
the AOL instant messenger program queries this key in the registry in order to
retrieve the stored password for the local user. Information is accessed from the
registry by individual registry accesses or queries. The information associated
with a registry query is the key, the type of query, the result, the process that
generated the query and whether the query was successful. One example of a
query is a read for the key shown above. For example, the record of the query
is:

Process: aim.exe

Query: QueryValue

Key: HKCU\Software\America Online\AOL Instant Messenger
(TM) \CurrentVersion\Users\aimuser\Login\Password
Response: SUCCESS

ResultValue: " BCOFHIHBBAHF"



The Windows Registry is an effective data source to monitor attacks because
many attacks show up as anomalous registry behavior. Many attacks take ad-
vantage of Windows’ reliance on the registry. Indeed, many attacks themselves
rely on the Windows Registry in order to function properly.

Many programs store important information in the Registry, notwithstanding
the fact that other programs can arbitrarily access the information. Although
some versions of Windows include security permissions and Registry logging,
both features are rarely used (because of the computational overhead and the
complexity of the configuration options).

2.2 Analysis of Malicious Registry Accesses

Most Windows programs access a certain set of Registry keys during normal
execution. Furthermore, most users use a certain set of programs routinely while
running their machines. This may be a set of all programs installed on the
machine or more typically a small subset of these programs. Another important
characteristic of Registry activity is that it tends to be regular over time. Most
programs either only access the registry on start-up and shutdown, or access
the registry at specific intervals. This regularity makes the registry an excellent
place to look for irregular, anomalous activity, since a malicious program may
substantially deviate from normal activity and can be detected.

Many attacks involve launching programs that have never been launched
before and changing keys that have not been changed since the operating system
had first been installed by the manufacturer. If a model of the normal registry
behavior is computed over clean data, then these kinds of registry operations
will not appear in the model. Furthermore malicious programs may need to
query parts of the registry to get information about vulnerabilities. A malicious
program can also introduce new keys that will help create vulnerabilities in the
machine.

Some examples of malicious programs and how they produce anomalous reg-
istry activity are described below.

— Setup Trojan: This program when launched adds full read/write shar-
ing access on the file system of the host machine. It makes use of the reg-
istry by creating a registry structure in the networking section of the Win-
dows keys. The structure stems from HKLM\Software\Microsoft\Windows
\CurrentVersion \Network\LanMan. It then creates typically eight new
keys for its own use. It also accesses HKLM \Security\Provider in order
to find information about the security of the machine to help determine vul-
nerabilities. This key is not accessed by any normal programs during training
or testing in our experiments and its use is clearly suspicious in nature.

— Back Orifice 2000: This program opens a vulnerability on a host machine,
which grants anyone with the back orifice client program complete control
over the host machine. This program does make extensive use of the registry,
however, it uses a key that is very rarely accessed on the Windows system.
HKLM\Software\Microsoft\VBA\Monitors was not accessed by any normal



programs in either the training or test data, which allowed our algorithm to
determine it as anomalous. This program also launches many other programs
(LoadWC.exe, Patch.exe, runonce.exe, bo2k_1_o_intl.e) as part of the
attack all of which made anomalous accesses to the Windows Registry.

— Aimrecover: This is a program that steals passwords from AOL users.
It’s actually a very simple program that simply reads the keys from the
registry where the AOL Instant Messenger program stores the user names
and passwords. The reason that these accesses are anomalous is because
Aimrecover is accessing a key that usually is accessed by a different program
that created that key.

— Disable Norton: This is a very simple exploitation of the registry that dis-
ables Norton Antivirus. This attack toggles one record in the registry, the key
HKLM\SOFTWARE\INTEL \LANDesk \VirusProtect6\CurrentVersion \Storages
\Files\System \RealTimeScan \OnOff.If this value is set to 0 then Norton
Antivirus real time system monitoring is turned off. Again this is anomalous
because of its access to a key that was created by a different program.

— LOphtCrack: This program is probably the most popular password cracking
program for Windows machines. It retrieves the hashed SAM file contain-
ing the passwords for all users and then uses either a dictionary or brute
force approach to find the passwords. This program also uses flaws in the
Windows encryption scheme which allows the program to discover some of
the characters in the password. This program uses the registry by creating
its own section in the registry. This will consist of many create key and set
value queries, all of which will be on keys that did not exist previously on
the host machine and therefore have not been seen before.

Another important piece of information that can be used in detecting attacks,
all programs observed in our data set, and presumably all programs in general,
cause Windows Explorer to access a specific key. The key

HKLM\Software\Microsoft\Windows NT \CurrentVersion\Image File
Execution Options\processName

where processName is the name of the process being executed, is a key that is
accessed by Explorer each time an application is run. Therefore we have a ref-
erence point for each specific application being launched to determine malicious
activity. In addition many programs add themselves in the auto-run section of
the Windows Registry under

HKLM\Software\Microsoft\Windows \CurrentVersion\Run .

While this is not malicious in nature, this is a rare event that can definitely be
used as a hint that a system is being attacked. Trojan programs such as Back
Orifice utilize this part of the registry to auto load themselves on each boot.
Anomaly detectors do not look for malicious activity directly. They look for
deviations from normal activity. It is for this reason that any deviation from
normal activity will be declared an attack by the system. The installation of



a new program on a system will be viewed as anomalous activity. Programs
often create new sections of the registry and many new keys on installation.
This will cause a false alarm, much like adding a new machine to a network may
cause an alarm on an anomaly detector that analyzes network traffic. There are
a few possible solutions to this problem. Malicious programs are often stealthy
and install quietly so that the user does not know the program is being installed.
This is not the case with most user initiated (legitimate) application installations
that make themselves (loudly) known. The algorithm could be modified to ignore
alarms while the install shield program was running because that would mean
that the user is aware that a new program is being installed. Another option
is to simply prompt the user when a detection occurs so that the user can
let the anomaly detection system know that a legitimate installed program is
under way and that therefore the anomaly detection model needs to be updated
with a newly available training set gathered in real time. This is a typical user
interaction in many application installations where user feedback is requested
for configuration information.

3 Registry Anomaly Detection

The RAD system has three basic components: an audit sensor, a model genera-
tor, and an anomaly detector. The sensor logs each registry activity to either a
database where it is stored for training, or to the detector to be used for anal-
ysis. The model generator reads data from the database and creates a model
of normal behavior. The model is then used by the anomaly detector to decide
whether each new registry access should be considered anomalous.

In order to detect anomalous registry accesses, RAD generates a model of
normal registry activity. A set of five features are extracted from each registry
access. Using these feature values over normal data, a model of normal registry
behavior is generated. This model of normalcy consists of a set of consistency
checks applied to the features. When detecting anomalies, the model of nor-
malcy determines whether the values in features of the current registry access
are consistent with the normal data or not. If new activity is not consistent, the
algorithm labels the access as anomalous.

3.1 RAD Data Model

The RAD data model consists of five features directly gathered from the registry
sensor. The five raw features used by the RAD system are as follows.

— Process: This is the name of process accessing the registry. This is useful
because it allows the tracking of new processes that did not appear in the
training data.

— Query: This is the type of query being sent to the registry, for example,
QueryValue, CreateKey, and SetValue are valid query types. This allows
the identification of query types that have not been seen before. There are
many query types but only a few are used under normal circumstances.



— Key: This is the actual key being accessed. This allows our algorithm to
locate keys that are never accessed in the training data. Many keys are used
only once for special situations like system installation. Some of these keys
can be used to create vulnerabilities.

— Response: This describes the outcome of the query, for example success,
not found, no more, buffer overflow, and access denied.

— Result Value: This is the value of the key being accessed. This will allow the
algorithm to detect abnormal values being used to create abnormal behavior
in the system.

|Feature laim.exe l]aimrecover.exe

Process aim.exe aimrecover.exe

Query QueryValue QueryValue

Key HKCU\Software\America Online|HKCU\Software\America Online
\AOL Instant Messenger (TM) [\AOL Instant Messenger (TM)
\CurrentVersion\Users \CurrentVersion\Users
\aimuser\Login\Password \aimuser\Login\Password

Response SUCCESS SUCCESS

Result Value||" BCOFHIHBBAHF" " BCOFHIHBBAHF"

Table 1. Registry Access Records. Two registry accesses are shown. The first is a
normal access by AOL Instance Messenger to the key where passwords are stored.
The second is a malicious access by AIMrecover to the same key. The final column
shows which fields register as anomalous. Note that the pairs of features must be used
to detect the anomalous behavior of AIMrecover.exe. This is because under normal
circumstances only AIM.exe accesses the key that stores the AIM password. Another
process accessing this key generates an anomaly.

3.2 RAD Anomaly Detection Algorithm

Using the features that we monitor from each registry access, we train a model
over features extracted from normal data. That model allows us to classify reg-
istry accesses as either normal or malicious.

Any anomaly detection algorithm can be used to perform this modeling.
Since we aim to monitor a significant amount of data in real time, the algorithm
must be very efficient. We apply a probabilistic algorithm described in Eskin,
2002 [14] and here we provide a short summary of the algorithm. The algorithm
is similar to the heuristic algorithm that was proposed by Chan and Mahoney
in the PHAD system [25], but is more robust.

In general, a principled probabilistic approach to anomaly detection can be
reduced to density estimation. If we can estimate a density function p(z) over



the normal data, we can define anomalies as data elements that occur with
low probability. In practice, estimating densities is a very hard problem (see the
discussion in Scholkopf et al., 1999 [26] and the references therein.) In our setting,
part of the problem is that each of the features have many possible values. For
example, the Key feature has over 30,000 values in our training set. Since there
are so many possible feature values relatively rarely does the same exact record
occur in the data. Data sets with this characterization are referred to as sparse.

Since probability density estimation is a very hard problem over sparse data,
we propose a different method for determining which records from a sparse data
set are anomalous. We define a set of consistency checks over the normal data.
Each consistency check is applied to an observed record. If the record fails any
consistency check, we label the record as anomalous.

We apply two kinds of consistency checks. The first consistency check eval-
uates whether or not a feature value is consistent with observed values of that
feature in the normal data set. We refer to this type of consistency check as a first
order consistency check. More formally, each registry record can be viewed as
the outcome of 5 random variables, one for each feature, X1, Xo, X3, X4, X5. Our
consistency checks compute the likelihood of an observation of a given feature
which we denote P(X;).

The second kind of consistency check handles pairs of features as motivated
by the example in Table 1. For each pair of features, we consider the conditional
probability of a feature value given another feature value. These consistency
checks are referred to as second order consistency checks. We denote these likeli-
hoods P(X;|X;). Note that for each value of X, there is a different probability
distribution over Xj;.

In our case, since we have 5 feature values, for each record, we have 5 first
order consistency checks and 20 second order consistency checks. If the likelihood
of any of the consistency checks is below a threshold, we label the record as
anomalous.

What remains to be shown is how we compute the likelihoods for the first
order (P(X;)) and second order (P(X;|X;)) consistency checks. Note that from
the normal data, we have a set of observed counts from a discrete alphabet for
each of the consistency checks. Computing these likelihoods reduces to simply
estimating a multinomial. In principal we can use the maximum likelihood esti-
mate which just computes the ratio of the counts of a particular element to the
total counts. However, the maximum likelihood estimate is biased when there
is relatively small amounts of data. When estimating sparse data, this is the
case. We can smooth this distribution by adding a virtual count to each possi-
ble element. This is equivalent to using a Dirichlet estimator [11]. For anomaly
detection, as pointed out in Mahoney and Chan, 2001 [25], it is critical to take
into account how likely we are to observe an unobserved element. Intuitively,
if we have seen many different elements, we are more likely to see unobserved
elements as opposed to the case where we have seen very few elements.

To estimate our likelihoods we use the estimator presented in Friedman and
Singer, 1999 [16] which explicitly estimates likelihood of observing a previously



unobserved element. The estimator gives the following prediction for element ¢

) o+ N;
PX=0=oa N M
if element 7 was observed and
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if element ¢ was not previously observed. « is a prior count for each element, N;
is the number of times ¢ was observed, N is the total number of observations,
k9 is the number of different elements observed, and L is the total number of
possible elements or the alphabet size. The scaling factor C takes into account
how likely it is to observe a previously observed element versus an unobserved
element. C' is computed by
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where m, = P(S = k)ﬁ% and P(S = k) is a prior probability
associated with the size of the subset of elements in the alphabet that have non-
zero probability. Although the computation of C' is expensive, it only needs to
be done once for each consistency check at the end of training.

The prediction of the probability estimator is derived using a mixture of
Dirichlet estimators each of which represent a different subset of elements that
have non-zero probability. Details of the probability estimator and its derivation
are given in [16] and complete details of the anomaly detection algorithm are
given in [14].

Note that this algorithm labels every registry access as either normal or
anomalous. Programs can have anywhere from just a few registry accesses to
several thousand. This means that many attacks will be represented by large
numbers of records where many of those records will be considered anomalous.

Some records are anomalous because they have a value for a feature that is
inconsistent with the normal data. However, some records are anomalous because
they have an inconsistent combination of features although each feature itself
may be normal. Because of this, we examine pairs of features. For example,
let us consider the registry access displayed in Table 1. The basic features for
the normal program aim.exe versus the malicious program aimrecover.exe do
not appear anomalous. However, the fact that the program aimrecover.exe is
accessing a key that is usually associated with aim.exe is in fact an anomaly.
Only by examining the combination of the two raw features can we detect this
anomaly.

4 Architecture

The basic architecture of the RAD system consists of three components, the
registry auditing module (RegBAM), the model generator, and the real-time
anomaly detector. An overview of the RAD architecture is shown in Figure 1.
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Fig. 1. The RAD System Architecture. RegBAM outputs to the data warehouse during
training model and to the anomaly detector during detection mode.

4.1 Registry Basic Auditing Module

The RAD sensor is composed of a Basic Auditing Module (BAM) for the RAD
system which monitors accesses to the registry. BAMs implement an architecture
and interface for sensors across the system. They include a hook into the audit
stream (in this case the registry) and various communication and data-buffering
components. BAMs use an XML data representation similar to the IDMEF
standard (of the IETF) for IDS systems [19]. BAMs are described in more detail
in [18].

The Registry BAM (RegBAM) runs in the background on a Windows ma-
chine as it gathers information on registry reads and writes. RegBAM uses Win32
hooks to tap into the registry and log all reads and writes to the registry. Reg-
BAM is akin to a wrapper and uses a similar architecture to that of SysInternal’s
Regmon [27]. After gathering the registry data, RegBAM can be configured for
two distinct purposes. One use is as the audit data source for model generation.
When RegBAM is used as the data source, the output data is sent to a database
where it is stored and later used by the model generator described in Section 4.2
[18]. The second use of RegBAM, is as the data source for the real-time anomaly
detector described in Section 4.3. While in this mode, the output of RegBAM
is sent directly to the anomaly detector where it is processed in real time. An
alternative method to collect the registry accesses is to use the Windows audit-
ing mechanism. All registry accesses can be logged in the Windows Event Log.
Each read or write can generate multiple records in the Event Log. However, this



method is problematic because the event logs are not designed to handle such a
large amount of data. Simple tests demonstrated that by turning on all registry
auditing the Windows Event Logger caused a major resource drain on the host
machine, and in many cases caused the machine to crash. The RegBAM appli-
cation provides an efficient method for monitoring all registry activity, with far
less overhead than the native tools provided by the Windows operating system.

4.2 Model Generation Infrastructure

Similar to the Adaptive Model Generation (AMG) architecture [18], the system
uses RegBAM to collect registry access records. Using this database of collected
records from a training run, the model generator then creates a model of normal
usage.

The model generator uses the algorithm discussed in Section 3 to build a
model that represents normal usage. It utilizes the data stored in the database
which was generated by RegBAM during training. The model itself is comprised
and stored as serialized Java objects. This allows for a single model to be gener-
ated and to be easily distributed to additional machines. Having the model easily
deployed to new machines is a desirable feature, since in a typical network, many
Windows machines have similar usage patterns. This allows the same model to
be used for multiple host machines.

4.3 Real-Time Anomaly Detector

For real time detection, RegBAM feeds live data for analysis by an anomaly
detector. The anomaly detector will load the normal usage model created by
the model generator define and begin reading each record from the output data
stream of RegBAM. The algorithm discussed in Section 3 is then applied against
each record of registry activity. The score generated by the anomaly detection
algorithm is compared by a user configurable threshold to determine if the record
should be considered anomalous. A list of anomalous registry accesses are stored
and displayed as part of the detector. A user configured threshold allows the
user to customize the alarm rate for the particular environment. Lowering the
threshold, will result in more alarms being issued. Although this can raise the
false positive rate, it can also increase the chance of detecting new attacks.

4.4 Efficiency Considerations

In order for a system to detect anomalies in a real time environment it can
not consume excessive system resources. This is especially important in registry
attack detection because of the heavy amount of traffic that generated by appli-
cations interacting with the registry. While the amount of traffic can vary greatly
from system to system, in our experimental setting (described below) the traffic
load was about 50,000 records per hour. Our distributed architecture is designed
to minimize the resources used by the host machine. It is possible to spread the



work load on to several separate machines, so that the only application running
on the host machine is the lightweight RegBAM. However this will increase net-
work load due to the communication between components. These two concerns
can be used to configure the system to create the proper proportion between host
system load and network load. The RegBAM module is a far more efficient way
of gathering data about registry activity than full auditing with the Windows
Event Log.

5 Evaluation and Results

The system was evaluated by measuring the detection performance over a set
of collected data which contains some attacks. Since there are no other existing
publicly available detection systems that operate on Windows registry data we
were unable to compare our performance to other systems directly.

5.1 Data Generation

In order to evaluate the RAD system, we gathered data by running a registry
sensor on a host machine. Since there are no publicly available data sets contain-
ing registry accesses, we collected our own data. Beyond the normal execution
of standard programs, such as Microsoft Word, Internet Explorer, and Winzip,
the training also included performing housekeeping tasks such as emptying the
Recycling Bin and using the Control Panel. All simulations were done by hand
to simulate a real user. All data used for this experiment is publicly available
online in text format at http://www.cs.columbia.edu/ids/rad. The data in-
cludes a time stamp and frequency of the launched programs in relation to each
other.

The training data collected for our experiment was collected on Windows NT
4.0 over two days of normal usage (in our lab). We informally define “normal”
usage to mean what we believe to be typical use of a Windows platform in a
home setting. For example, we assume all users would log in, check some internet
sites, read some mail, use word processing, then log off. This type of session is
assumed to be relatively “typical” of many computer users. Normal programs
are those which are bundled with the operating systems, or are in use by most
Windows users. Creating realistic testing environments is a very hard task and
testing the system under a variety of environments is a direction for future work.

The simulated home use of Windows generated a clean (attack-free) dataset
of approximately 500,000 records. The system was then tested on a full day of test
data with embedded attacks executed. This data was comprised of approximately
300,000 records most of which were normal program executions interspersed with
attacks. The normal programs run between attacks were intended to simulate an
ordinary Windows session. The programs used were Microsoft Word, Outlook
Express, Internet Explorer, Netscape, AOL Instant Messenger, and others.

The attacks run include publicly available attacks such as aimrecover, browslist,
bok2ss (back orifice), install.exe xtxp.exe both for backdoor.XTCP, 10phtcrack,



runattack, whackmole, and setuptrojan. Attacks were only run during the one
day of testing throughout the day. Among the twelve attacks that were run, four
instances were repetitions of the same attack. Since some attacks generated mul-
tiple processes there are a total of seventeen distinct processes for each attack.
All of the processes (either attack or normal) as well as the number of registry
access records in the test data is shown in Table 3.

The reason for running some of the attacks twice, was to test the effectiveness
of our system. Many programs act differently when executed a second time within
a windows session. In the experiments reported below our system was less likely
to detect a previously successful attack on the second execution of that attack.
The reason is that a successful attack creates permanent changes to the registry
and hence on subsequent queries the attack no longer appears irregular. Thus
the next time the same attack is launched it is more difficult to detect since it
interacts less with the registry.

We observed that this is common for both malicious and regular applications
since many applications will do a much larger amount of registry writing during
installation or when first executed.

5.2 Experiments

The training and testing environments were set up to replicate a simple yet real-
istic model of usage of Windows systems. The system load and the applications
that were run were meant to resemble what one may deem typical in normal
private settings.

We trained the anomaly detection algorithm presented in Section 3 over the
normal data and evaluated each record in the testing set. We evaluate our system
by computing two statistics. We compute the detection rate and the false positive
rate.

The natural way we may evaluate the performance of RAD is to measure de-
tection performance over processes labeled as either normal or malicious. How-
ever, with only seventeen malicious processes at our disposal in our test set,
it is difficult to obtain a robust evaluation for the system. We do discuss the
performance of the system system in terms of correctly classified processes, but
also measure the performance in terms of the numbers of records correctly and
incorrectly classified. Future work on RAD will focus on testing over long peri-
ods of time to measure significantly more data and process classifications as well
as alternative means of alarming on processes. (For example, a process may be
declared an attack on the basis of one anomalous record it generates, or perhaps
on some number of anomalous records.) There is also an interesting issue to be
investigated regarding the decay of the anomaly models that may be exhibited
over time, perhaps requiring regenerating a new model.

The detection rate reported below is the percentage of records generated by
the malicious programs which are labeled correctly as anomalous by the model.
The false positive rate is the percentage of normal records which are mislabeled
anomalous. Each attack or normal process has many records associated with it.
Therefore, it is possible that some records generated by a malicious program will



be mislabeled even when some of the records generated by the attack are accu-
rately detected. This will occur in the event that some of the records associated
with one attack are labeled normal. Each record is given an anomaly score, S,
that is compared to a user defined threshold. If the score is greater than the
threshold, then that particular record is considered malicious. Fig 2 shows how
varying the threshold affects the output of detector. The actual recorded scores
plotted in the figure are displayed in Table 2.

Threshold Score|False Positive Rate|Detection Rate
6.847393 0.001192 0.005870
6.165698 0.002826 0.027215
5.971925 0.003159 0.030416
5.432488 0.004294 0.064034
4.828566 0.005613 0.099253
4.565011 0.006506 0.177161
3.812506 0.009343 0.288687
3.774119 0.009738 0.314301
3.502904 0.011392 0.533084
3.231236 0.012790 0.535219
3.158004 0.014740 0.577908
2.915094 0.019998 0.578442
2.899837 0.020087 0.627001
2.753176 0.033658 0.629136
2.584921 0.034744 0.808431
2.531572 0.038042 0.869797
2.384402 0.050454 1.000000

Table 2. Varying the threshold score and its effect on False Positive Rate and Detection
Rate.

Table 3 is sorted in order to show the results for classifying processes. From
the table we can see if the threshold is set at 8.497072, we would label the
processes LOADWC.EXE and ipccrack.exe as malicious and would detect the
Back Orifice and IPCrack attacks. Since none of the normal processes have
scores that high, we would have no false positives. If we lower the threshold to
6.444089, we would have detected several more processes from Back Orifice and
the BrowseList,BackDoor.xtcp, SetupTrojan and AimRecover attacks. However,
at this level of threshold, the following processes would be labeled as false pos-
itives: systray.exe, CSRSS.EXE, SPOOLSS.EXE, ttssh.exe, and winmine.exe.
As we have mentioned, our future work on RAD will model and measure a Win-
dows system for a far longer period of time over many more processes in order
to generate a meaningful ROC curve in terms of processes. The measurements
reported next are cast in terms of registry query records.
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5.3 Detection

By varying the threshold for the inconsistency scores on records, we were able
to demonstrate the variability of the the detection rate and false positive rate.
We plot the false positive rate versus the detection rate in an ROC (Receiver
Operator Characteristic) curve shown in Figure 2 and Table 2.

Many of the false positives were from processes that were simply not run
as a part of the training data but were otherwise normal Windows programs. A
thorough analysis of what kinds of processes generate false positives is a direction
for future work.

Part of the reason why the system is successfully able to discriminate between
malicious and normal records is that accesses to the Windows Registry are very
regular which makes normal registry activity relatively easy to model.

ROC Curves for Registry Record Data Set
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Fig. 2. Figure showing varying the threshold on the data set.
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Program Name [(Number of Records|Maximum Record Value|Minimum Record Value|Classification
LOADWC.EXE[2] 1 8.497072 8.497072 ATTACK
ipccrack.exe[6] 1 8.497072 8.497072 ATTACK
mstinit.exe[2] 11 7.253687 6.705313 ATTACK
bo2kss.exe[2] 12 7.253687 6.62527 ATTACK
runonce.exe[2] 8 7.253384 6.992995 ATTACK
browselist.exe[4] 32 6.807137 5.693712 ATTACK
install.exe[3] 18 6.519455 6.24578 ATTACK
SetupTrojan.exe[8] 30 6.444089 5.756232 ATTACK
AimRecover.exe[1] 61 6.444089 5.063085 ATTACK
happy99.exe[5] 29 5.918383 5.789022 ATTACK
bo2k_1_0_intl.e[2] 78 5.432488 4.820771 ATTACK
_INS0432._MP[2] 443 5.284697 3.094395 ATTACK
xtcp.exe[3] 240 5.265434 3.705422 ATTACK
bo2kcfg.exe[2] 289 4.879232 3.520338 ATTACK
10phtcrack.exe[7] 100 4.688737 4.575099 ATTACK
Patch.exe[2] 174 4.661701 4.025433 ATTACK
bo2k.exe[2] 883 4.386504 2.405762 ATTACK
systray.exe 17 7.253687 6.299848 NORMAL
CSRSS.EXE 63 7.253687 5.031336 NORMAL
SPOOLSS.EXE 72 7.070537 5.133161 NORMAL
ttssh.exe 12 6.62527 6.62527 NORMAL
winmine.exe 21 6.56054 6.099177 NORMAL
em_exec.exe 29 6.337396 5.789022 NORMAL
winampa.exe 547 6.11399 2.883944 NORMAL
PINBALL.EXE 240 5.898464 3.705422 NORMAL
LSASS.EXE 2299 5.432488 1.449555 NORMAL
PING.EXE 50 5.345477 5.258394 NORMAL
EXCEL.EXE 1782 5.284697 1.704167 NORMAL
WINLOGON.EXE 399 5.191326 3.198755 NORMAL
rundll32.exe 142 5.057795 4.227375 NORMAL
explore.exe 108 4.960194 4.498871 NORMAL
netscape.exe 11252 4.828566 -0.138171 NORMAL
java.exe 42 4.828566 3.774119 NORMAL
aim.exe 1702 4.828566 1.750073 NORMAL
findfast.exe 176 4.679733 4.01407 NORMAL
TASKMGR.EXE 99 4.650997 4.585049 NORMAL
MSACCESS.EXE 2825 4.629494 1.243602 NORMAL
IEXPLORE.EXE 194274 4.628190 -3.419214 NORMAL
NTVDM.EXE 271 4.59155 3.584417 NORMAL
CMD.EXE 116 4.579538 4.428045 NORMAL
WINWORD.EXE 1541 4.457119 1.7081 NORMAL
EXPLORER.EXE 53894 4.31774 -1.704574 NORMAL
msmsgs.exe 7016 4.177509 0.334128 NORMAL
OSA9.EXE 705 4.163361 2.584921 NORMAL
MYCOME 1.EXE 1193 4.035649 2.105155 NORMAL
wscript.exe 527 3.883216 2.921123 NORMAL
WINZIP32.EXE 3043 3.883216 0.593845 NORMAL
notepad.exe 2673 3.883216 1.264339 NORMAL
POWERPNT.EXE 617 3.501078 -0.145078 NORMAL
AcroRd32.exe 1598 3.412895 0.393729 NORMAL
MDM.EXE 1825 3.231236 1.680336 NORMAL
ttermpro.exe 1639 2.899837 1.787768 NORMAL
SERVICES.EXE 1070 2.576196 2.213871 NORMAL
REGMON.EXE 259 2.556836 1.205416 NORMAL
RPCSS.EXE 4349 2.250997 0.812288 NORMAL

Table 3. Information about all processes in testing data including the number of
registry accesses and the maximum and minimum score for each record as well as the
classification. The top part of the table shows this information for all of the attack
processes and the bottom part of the table shows this information for the normal
processes. The reference number (by the attack processes) give the source for the
attack. Processes that have the same reference number are part of the same attack.
[1] AIMCrack. [2] Back Orifice. [3] Backdoor.xtcp. [4] Browse List. [5] Happy 99. [6]

IPCrack. [7] LOpht Crack. [8] Setup Trojan.




6 Conclusions

By using registry activity on a Windows system, we were able to label all pro-
cesses as either attacks or normal, with relatively high accuracy and low false
positive rate, for the experiments performed in this study. We have shown that
registry activity is regular, and described ways in which attacks would generate
anomalies in the registry. Thus, an anomaly detector for registry data may be
an effective intrusion detection system augmenting other host-based detection
systems. It would also improve protection of systems in cases of new attacks that
would otherwise pass by scanners that have not been updated on a timely basis.

We plan on testing the system under a variety of environments and condi-
tions to better understand its performance. Future plans include combining the
RAD system with another detector that evaluates Windows Event Log data.
This will allow for various data correlation algorithms to be used to make more
accurate system behavior models which we believe will provide a more accurate
anomaly detection system with better coverage of attack detection. Part of our
future plans for the RAD system include adding data clustering and aggregation
capabilities. Aggregating alarms will allow for subsets of registry activity records
to be considered malicious as a group initiated from one attack rather than indi-
vidual attacks. We also plan to store the system registry behavior model as part
of the registry itself. The motivation behind this, is to use the anomaly detec-
tor to protect the system behavior model from being maliciously altered, hence
making the model itself secured against attack. These additions to the RAD
system will make the system a more complete and effective tool for detecting
malicious behavior on the Windows platform.
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