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ABSTRACT 

Email is one of the most prevalent communication tools today, 

and solving the email overload problem is pressingly urgent. A 

good way to alleviate email overload is to automatically prioritize 

received messages according to the priorities of each user. 

However, research on statistical learning methods for fully 

personalized email prioritization (PEP) has been sparse due to 

privacy issues, since people are reluctant to share personal 

messages and importance judgments with the research 

community. It is therefore important to develop and evaluate PEP 

methods under the assumption that only limited training examples 

can be available, and that the system can only have the personal 

email data of each user during the training and testing of the 

model for that user. This paper presents the first study (to the best 

of our knowledge) under such an assumption. Specifically, we 

focus on analysis of personal social networks to capture user 

groups and to obtain rich features that represent the social roles 

from the viewpoint of a particular user.  We also developed a 

novel semi-supervised (transductive) learning algorithm that 

propagates importance labels from training examples to test 

examples through message and user nodes in a personal email 

network.  These methods together enable us to obtain an enriched 

vector representation of each new email message, which consists 

of both standard features of an email message (such as words in 

the title or body, sender and receiver IDs, etc.) and the induced 

social features from the sender and receivers of the message.  

Using the enriched vector representation as the input in SVM 

classifiers to predict the importance level for each test message, 

we obtained significant performance improvement over the 

baseline system (without induced social features) in our 

experiments on a multi-user data collection. We obtained 

significant performance improvement over the baseline system 

(without induced social features) in our experiments on a multi-

user data collection: the relative error reduction in MAE was 31% 

in micro-averaging, and 14% in macro-averaging. 

Categories and Subject Descriptors 

I.7.m [Computing Methodologies]: Document and Text 

Processing—Miscellaneous; I.5.3 [Computing Methodologies]: 

Pattern Recognition—Clustering; I.5.4 [Computing 

Methodologies]: Pattern Recognition—Applications 

General Terms 

Algorithms, Experimentation, Security, Human Factors, and 

Languages. 

Keywords 

Email Prioritization, Social Network, and Text Mining. 

1. INTRODUCTION 
Email is one of the most prevalent personal and business 

communication tools today; however, it is not without significant 

drawbacks. In contrast to telephone conversations or face-to-face 

meetings, communication through email is asynchronous in the 

sense that we receive messages (after some spam filtering) in the 

same way regardless of our level of interest, and a single sender 

can flood multiple receivers (unlike telephone or instant 

messaging). Users are left with the burden of having to process a 

large volume of email messages of differing importance. This 

tedious task has been shown to cause significant negative effects 

on both personal and organization performance [6] [20]. There is 

an urgent need to solve this information overload problem; i.e., 

we need to develop systems that automatically learn personal 

priorities for each user, and that identify personally interesting and 

important messages for user’s attention. 

Many statistical learning techniques have been studied in support 

of email-based prediction tasks, including supervised, 

unsupervised and semi-supervised methods for spam 

identification [21][22], folder recommendation [23], recipient 

reminding [24], action-item identification [25], social group 

analysis [26], etc. In spite of the wide variety of efforts and 

significant accomplishments, personalized email prioritization 

(PEP) remains an under-explored problem. Thorough 

investigations and conclusive solutions have been rare, mainly 

due to privacy issues in collecting personal data for training and 

testing. Unlike spam filtering where people are less concerned 

with sharing individually labeled spam messages, PEP requires 

personal judgments of the importance levels of non-spam email 

messages. Few are willing to share this data due to privacy 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

KDD’09, June 28– July 1, 2009, Paris, France. 

Copyright 2009 ACM  978-1-60558-495-9/09/06...$5.00. 



concerns. Companies who have access to customers’ email 

messages (like Google, Yahoo! and Microsoft) cannot share such 

data with academic institutes for the same reason. Personal 

importance judgments are also missing from the Enron corpus, 

which has been used as a benchmark dataset in email research and 

evaluations. A message important for an Enron employee might 

not be equally important for a high-level manager. In short, there 

is no publicly available dataset that contains personal importance 

judgments by real users and on personal messages, leaving 

researchers no choice but to go through a process of collecting 

private data under strict IRB (Institutional Review Board) 

guidelines. Such data collection processes are costly, time 

consuming, tedious, and difficult to scale to a large number of 

users with diverse criteria in judging the importance of email 

messages. As a result, PEP remains an area which has not been 

well studied thus far.  

This paper presents the first study with several statistical 

classification and clustering methods (including our new 

approach) addressing the PEP problem based on personal 

importance judgments by multiple users. We constructed a new 

dataset of anonymized email messages from each user, and used 

parts of the data to train personalized models and other parts to 

test the effectiveness of those models. Our primary research 

question is: ―How can we effectively learn user-specific models 

for accurate prediction of personalized importance using only 

small amounts of labeled training data and limited observations on 

personal communications with others?‖ Specifically, our 

contributions in this paper include: 

1) We created a new collection of anonymized personal email 

data with fine-grained importance levels. Previous work used 

datasets with only two priority levels, i.e., spam vs. non-

spam [14], which are not sufficient for discriminating 

personal importance levels on non-spam email messages. On 

the other hand, past research with human subjects indicates 

that users would have difficulties in producing consistent 

labels if too many levels were required [13][27]. Hence, we 

took a middle ground with 5 levels. To our knowledge, this is 

the first multi-user email prioritization dataset with fine-

grained importance labels. 

2) We proposed a fully personalized methodology for technical 

development and evaluation. By fully personalized we mean 

that only the personal email data (textual or social network 

information) of each user is available for the system during 

the training and testing of the user-specific model. This is an 

important assumption for the generality of PEP methods, i.e., 

we cannot rely on the availability of centralized access to 

customer private data, neither in the development circle nor 

in the evaluation phase, and we cannot take the liberty to use 

a particular user’s private data to build models for other users 

because the potential leak of private information across 

users. This assumption makes our work in this paper 

fundamentally different from those in spam filtering and 

other previous work on email-based prediction tasks. 

3) We developed a supervised classification framework for 

modeling personal priorities over email messages, and for 

predicting importance levels for new messages. Using 

standard Support Vector Machines (SVMs) as the classifiers, 

the novel part of our approach is the enriched representation 

of each input email message, especially in the part that 

represent the contact persons (sender or recipients in the CC 

list) in the message. We explore three different types of 

enriched features that are automatically induced based on 

personal social networks as follows: 

 Clustering contact persons based on personal 

social networks We want to capture social groups 

among senders and recipients, which can be 

learned from personal email messages without 

importance labels (unsupervised learning). For 

example, email messages from two different 

senders who are members of the same team may 

carry similar importance. A personal social 

network is constructed for each user using his or 

her own data (Section 2.2). Finding closely-

associated user groups from the personal 

perspective enables us to estimate the expected 

importance level per group, as a strategy for 

improving the robustness of importance prediction 

when training data are relative sparse.  

 Measuring social importance of contacts We 

want to capture leadership levels of individual 

contacts, and we define eight centrality measures 

that can be automatically computed using the graph 

structure of each personalized social network. Most 

of those metrics have been commonly used in 

Social Network Analyses (SNA) research for spam 

filtering; however, their use in personalized email 

prioritization has not been studied in depth. As 

personal social networks are different from user to 

user, using multi-dimensional leadership metrics to 

jointly characterize different users would lead to 

more robust predictions than using any single 

metric alone.  

 Simi-supervised importance propagation When 

importance labels are available for some email 

messages (e.g. older messages) but not available 

for other messages (e.g. newer ones), we can use 

the personal social network of each user to 

propagate the importance scores from messages to 

contacts, then from contacts to messages, and 

repeat the propagation until all the scores are 

stabilized. By doing so, we make another use of 

personal social networks, i.e., leveraging the 

transitivity of importance scores through personal 

social connections.  

4) We present an empirical evaluation of the proposed approach 

in comparison with the baseline classifiers (SVMs) that do 

not use social-network induced features to represent senders. 

SVMs with the enriched sender representation obtained a 

significant error reduction (31% in micro-averaged MAE and 

14% in macro-average MAE) over the results of the baseline 

method. Our experiments also show that for different users 

we need to rely on very different social network features for 

accurate PEP predictions and that our system can 

automatically discover and utilize those features. 

2. SOCIAL CLUSTERING 

2.1 Motivation 
In predicting the importance of email messages, the sender 

information is one of the most indicative features. For example, 

we may have multiple user groups such as project teams or social 



activity groups, and email reflects membership in such social 

groups naturally through co-recipient list. Often the messages sent 

by the members of the same group tend to share similar priority 

levels; thus, capturing sender groups would be informative for 

predicting the importance of messages. 

Since we have a limited amount of training data, it is very likely 

that in the test data we encounter a sender who does not have any 

labeled instances in the training set. However, if we can identify 

this user as a member of a group based on unsupervised 

clustering, then we can infer that user’s importance from that of 

other group members.  In other words, the clustering produces 

equivalent classes of users based on their communication patterns 

in a personal social network. These clusters are used later by 

SVMs as input features (in addition to a standard bag-of-word 

representation) to each message (Sections 2.3 and 5.3). As a 

result, senders without labeled messages can also receive non-zero 

weight through these clusters, effectively addressing the data 

sparse problem in PEP. 

2.2 Personalized Social Network 
We construct a personalized social network for each particular 

user using only the email data of that user. There are two reasons 

for this: Practicality—we want our method to not rely on the 

unrealistic assumption that multi-user private data are always 

available for system development and model optimization. 

Personalization—we want the social network best representing 

the user’s own social activity; a global social network may include 

noisy features and de-emphasize personalization in the inductive 

learning of important features through the network. 

Let us use a graph G=(V,E) to represent the email contact network 

where vertices V correspond to the email contacts (users) in the 

network, and edges E correspond to the messages sending events 
among users. The edges are un-weighted, i.e., E

ij
=1 if there is (at 

least) a message from user i to user j, and E
ij

=0 otherwise.  

2.3 Newman Clustering 
We choose the Newman clustering algorithm, which has been 

reported to successfully find social structures in large 

organizations [17][18]. It defines the edge-betweenness as a 

normalized number of shortest paths going through a specific link 

from all-pairs shortest paths. If a link has a high edge-

betweenness score, it means that the link is crucial between two 

boundary nodes of two different highly-connected clusters. The 

algorithm assumes that members in a highly-connected cluster 

have many communication passages within the cluster, but not 

many links outside the cluster. Based on this assumption, it 

deletes links with high edge-betweenness scores, which results in 

disconnect components as clusters. 

One way to control the granularity level of clusters is to pre-

specify the number of desired clusters. This number may be based 

on domain knowledge about the network or automatically 

determined by an algorithm which certain optimization criterion 

or a heuristic measure. The Organization Risk Analyzer 

(ORA) [5] picks the number that yields the largest decrease in the 

sum of edge-betweenness per cluster. We use ORA in this work. 

Figure 1 shows embedded clusters in a network where ORA 

selects 27 as the number of clusters. 

 

3. MEASURING SOCIAL IMPORTANCE 
We want to measure the social importance levels of contacts, and 

this can be done without labeled training data. Instead, the 

personal contact network induced from senders and recipients link 

relations provides useful information about the centrality of each 

contact in the network. For instance, the Newman Cluster #1 in 

Figure 1 is highly connected with others and the person in the 

center of the cluster may be an important person in the network. 

We examine multiple graph-based metrics to characterize the 

social centrality of each node, which have been commonly used in 

social network analysis (SNA) or link structure analysis. 

 

Figure 1 The clusters produced using the Newman clustering 

algorithm based on the email contact network of a user: nodes 

are the senders, and node sizes are adjusted to reflect the 

average importance of members in each cluster. 

3.1 In-degree centrality 

For node i, we define InDegreeCent(i) as the normalized number 

of unique senders who sent email to contact i:  
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where }1,0{
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E , and |V| is the total number of contacts in the 

personal email social network. A high in-degree may indicate that 

the recipient is a popular person. 

3.2 Out-degree centrality 
OutDegreeCent(i) is defined as the normalized number of people 

who receive email from contact i. Having a high out-degree may 

also mean certain kind of importance, e.g., as an announcement 

sender or a mailing-list organizer.  
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3.3 Total-degree centrality 
TotalDegreeCent(i) is defined as the normalized number of 

unique senders and recipients who had email communication with 

node i. That is, it is the simple average of the in-degree and out-

degree of the node:  
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Figure 2: The Pearson Correlation Scores (vertical axis) of social metrics (horizontal axis) for different users 

3.4 Clustering Coefficient   
Clustering Coefficient of node v, denoted as ClustCoef(v), 

measures the connectivity among the neighborhood of the node. 
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where  0,0:)( 
xvvx

EExvNbr is the neighborhood and 

)1)((|)(|  vNbrvNbrZ  is the normalization denominator. 

Boykin and Roychowdhury [2] used this metric to discriminate 

spam from non-spam email messages based on the neighborhood 

connectivity of the recipients of messages.  

3.5 Clique Count  
The clique count of a node v is also a neighborhood metric where 

the clique is a fully connected sub-graph. The clique count of a 

node v, ClqCnt(v), is the number of clique sub-graphs which 

contain the node v. A large clique count means that the node v is 

connected to large and well-connected sub-graph and node v is 

located in the center of the sub-graph. Although it is not a global 

social metric, it measures wider network centrality than degree-

based centralities or clustering coefficients. 

3.6 Betweenness centrality  
Betweenness centrality of a node v, BetCent(v), is the percentage 

of existing shortest paths out of all possible paths that goes 

through the node v. A node with high betweenness centrality 

means that the corresponding person is a contact point between 

different social groups. 
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where 
jk

  is the number of shortest path between j and k and 

)(i
jk

  is the number of shortest path between j and k that goes 

through i. This metric has been used in social network analysis 

[17]. 

3.7 HITS Authority  
)(iHITSAuth  measures the global importance of the node i. The 

difference between )(iHITSAuth and degree-based centrality is 

that HITS is recursively defined, taking the transitivity of 

popularity into account. )(iHITSAuth is defined as follows: Let us 

use an N-by-N matrix to define the adjacency matrix whose 

elements are defined as }1,0{
ijij

EX  where 1
ij

X  if and 

only if there is a link from i to j, i.e., if and only if there is at least 

one message sent from person i to j. The )(iHITSAuth  can be 

calculated by finding the principle eigenvector r of matrix 
T

XX where r satisfies the equation rrXX
T

 and λ is the largest 

eigenvalue of T
XX . 

3.8 PPC Analysis 
We computed the PCC (Pearson Correlation Coefficient) values 

of each social metric with respect to the human-labeled 

importance levels of email messages in our dataset. The PCC 

values are indicative about how useful each social metric feature 

would be for predicting the importance of messages based on the 

metric alone (i.e., not counting the interactions among the 

metrics). Figure 2 shows the absolute values of the correlation 

coefficient scores. The multi-metric PCC values differ from user 

to user, which is not surprising. For user 1, as an example, 

Clustering Coefficient, Clique Count and HITS Authority scores 

are highly informative, but In-degree, Out-degree and Total-

degree are not. But for User 5, HITS Authority score is not a good 

predictor but in-degree is highly informative. Using multiple 

metrics we improve the robustness of the predictions.  

 

4.  SIMI-SUPERVISED IMPORTANCE 

PROPAGATION (SIP) 
So far we have focused on unsupervised feature induction to 

enrich the representation of email contact persons. Now let us 

focus on another way to leverage personal email social networks, 

i.e., to propagate the importance values of labeled email messages 

(the training examples) to other messages and corresponding 

contact persons. We propose a new solution for Semi-supervised 

Importance Propagation (SIP) as the following. 

 



 

Figure 3: An example of bipartite email network: circles are 

contact persons and rectangles are email messages. Some 

email messages have human-assigned importance values but 

others do not. The network enables us to propagate the 

partially available importance values from messages to 

persons, and vice versa. 

4.1 SIP Algorithm  
As shown in Figure 3, we use a bipartite graph to represent the 

interactions between email contacts (circles) and email messages 

(boxes); we call this graph a personal email network. Let N be the 

number of email contacts and M be the number of messages, the 

two types of edges in the graph can be represented using matrix A 

(N by M) and matrix B (N by M), respectively where Ai,j = 1 if 

person i sends message j, and Ai,j = 0 otherwise; Bi,j = 1 if person i 

received message j, and Bi,j = 0 otherwise. 

The bipartite network allows us in ―inject‖ human-assigned 

importance values which are available for some messages in the 

graph, and propagate them through the links among messages and 

contact persons. To be specific, let us treat each importance label 

(among 1, 2, 3, 4 and 5) as a ―category‖, and use vector 
k

x


 (M-

by-1) to indicate the labels of messages with respect to category k 

as: 
ik

x
,

 = 1 if message i belongs to category k, and 
ik

x
,

 = 0 

otherwise. The importance propagation from messages to persons 

(receivers) is calculated as
kk

xBy


 , and the importance 

propagation from persons (senders) to messages is calculated as 

kk
yAx


. Updating of the importance values for contact persons at 

each time step (t) is calculated by: 
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tTt
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1  

Through this formula, we see that vector 1t

k
y


is a linear 

transformation of the starting vector 
k

x


 whose elements are the 

partially available importance values (at a specific level) of 

messages, and the transformation is uniquely defined by  
tT

BA  

which is induced from the personal email network. It is well 

understood in link analysis that if matrix T
BAC   is irreducible 

and if t is sufficiently large, then 
k

y


 stabilizes at the principal 

eigenvector of C. However, as C is induced from an arbitrary 

email collection, the irreducible property of the matrix is not 

guaranteed. Even if C happens to be irreducible, its principal 

eigenvector is still insensitive to the starting vector
k

x


, and hence 

is not what we want. We first put them in probability framework 

and to address both issues, we make a linear interpolation:  

1) We define
kk

xBy



1 , and we normalize each of its elements 

using the sum of the total elements in the vector. Let us 

denote the normalized vector as 1

k
y


, which contains the initial 

importance values of all persons in the network. Clearly the 

elements of the vector sum to one. We then define an 

importance-sensitive matrix 1
1


kk
yU  , whose columns are 

identical and each column is equivalent to 1

k
y


. 

2) We normalize the matrix C column-wise by replacing its 

elements as  


N

k kiijij
CCC

1

'
/ . Let us denote the resulting 

matrix as C’. Thus, each column of C’ sums to one, and each 

element of column j is the expected proportion that the 

corresponding person will receive from person j when the 

current importance value of j is propagated through the 

network.  

3) We make a linear interpolation of the link-structure matrix 

C’ and the importance-sensitive matrix 
k

U  as: 

kk
UCE )1('    

where   is a constant in interval [0,1]. Matrix 
k

E  is both 

irreducible and importance-sensitive.  

Finally, we define the SIP (Semi-supervised Importance 

Propagation) method iteratively as: 
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 . Because matrix 
k

E is irreducible, 

vector 
k

y


 stabilizes when t is large. This yields the fixed point 

equation: 

k

t

kk
yEy


  

The solution 
k

y


 is the principal eigenvector of matrix
k

E , 

consisting of the expected importance score of each contact 

person after iterative SIP. Applying this method to each 

importance level, we obtain vectors 
k

y


 for k = 1, 2, …, 5. These 

vectors provide 5 additional features (with the corresponding 

weights) in the enriched representation of the contact person of 

each email message, in the input vector for importance prediction 

using a SVM. 

4.2 Connections between SIP and Topic 

Sensitive PageRank  
Our formulae for SIP are quite similar to those in PageRank [3], 

Topic Sensitive PageRank (TSPR) and Personalized PageRank 

(PPR) methods when a topic distribution is used to represent the 

interest of each user [10]. In fact our SIP method is intrigued by 

the TSPR and PPR work. The main differences in our problem 

and the SIP solution are:  

 Our graph structure has two types of nodes (i.e., persons 

and messages) while the graph structures in TSPR and 

PPR (and in PageRank) has only one type of nodes (i.e., 

web pages). Consequently, we have two types of links 

with different semantics (i.e., ―who sends what‖ and 

―what is received by whom‖ respectively) while there is 

only one type of links (directed) in conventional link 

analysis methods.  

 We are modeling the transitivity of human-judged 

importance for one type of the nodes (i.e., email 

messages) which are partially labeled, to another type of 

nodes (i.e., email contact persons) which are unlabeled, 

and we propagate the importance values among persons 



iteratively. The network structure and the corresponding 

matrices are different from that in TSPR, PPR and 

PageRank. More importantly, the semantic concept is 

fundamentally different. That is, SIP focuses on 

propagation of importance values among persons based 

on their email connections while TSPR, PPR and 

PageRank focus on probabilistic transitions in random 

walk over web pages.  

 We use the resultant vectors in SIP to obtain enriched 

features for representing the sender and receivers of 

each email, as a part of the vector representation of each 

new email and the input of SVM classifiers. TSPR, PPR 

and PageRank are designed for ranking documents with 

respect to each query. Other than the above, our 

formulae are indeed quite similar to those in TSPR, PPR 

and PageRank. The convergence analyses for those 

methods and the formulae of the close-form solution 

(i.e., the principal eigenvector) of the transition matrix 

also apply here; we omit those details. 

 

5. EXPERIMENTS 

5.1 Data 
We recruited 25 experimental subjects, mostly from the Language 

Technologies Institute at the Carnegie Mellon University, 

including eight faculty members, five staff persons and twelve 

graduate students. Each subject was requested to label at least 400 

non-spam messages during a one-month period. The five 

importance levels are: absolutely non-important, relatively non-

important, neutral, important, and most important. Only seven 

users actually submitted more than 200 messages with importance 

labels, which we use to construct the dataset for the experiments 

in this paper. Table 1 summarizes the dataset statistics. 

Table 1: Summary Statistics of collected dataset (7 users) 

  Total Train Test 

User 1 1750 150 1600 

User 2 376 150 226 

User 3 484 150 334 

User 4 569 150 419 

User 5 233 150 83 

User 6 279 150 129 

User 7 234 150 84 

Avg 561 150 411 

 

5.2 Preprocessing  
We applied a multi-pass preprocessing to email messages. First, 

we applied email address canonicalization. Since each person may 

have multiple email accounts, it is necessary to unify them before 

applying social network analysis. For instance, ―John Smith‖ 

john.smith+@cs.xxx.edu, ―John‖ smith@cs.xxx.edu and ―John 

Smith‖ john747@gmail.com might be the email addresses of the 

same person. We used regular expression rules and a longest 

string matching algorithms to identify email addresses which may 

belong to the same user.  We then manually checked all the 

groups and corrected the errors in the process. We also applied 

word tokenization and stemming using the Porter stemmer; we did 

not remove stop words from the title and body text. 

5.3 Features  
The basic features are the tokens in the sections of from, to, cc, 

title, and body text in email messages. Let us use a v-dimensional 

vector to represent those features for each email message where v 

is the vocabulary size. We call it the basic feature (BF) sub-vector. 

The social-network based features are represented as follows:. We 

use a m-dimensional sub-vector to represent the Newman cluster 

(NC) features (Section 2) where m be the number of clusters 

produced by the clustering algorithm: each element of the sub-

vector is 1 if the user belongs to the corresponding cluster, or 0 

otherwise; each user can belong to one and only one cluster. We 

also use another sub-vector (7-dimensional) to represent the social 

importance (SI) features per user, whose elements are real-valued 

(Section 3). In addition, we use a 5-dimensional sub-vector to 

represent the five SIP scores per user, i.e., the mixture weights of 

the user at the five importance levels. The concatenation of those 

sub-vectors together with the basic feature (BF) vector yields a 

synthetic vector per email message as its full representation.  

5.4 Classifiers  
We use five linear SVM classifiers for the prediction of 

importance level per email message.  Each classifier takes the 

vector representation of each message (as described in the above 

section) as its input, and produces a score with respect to a 

specific importance level.  The importance level with the highest 

score is taken as the predicted importance level by our system for 

the input message. We used the standard SVMlight software 

package and tuned the margin parameter C in the range from 10−3 

to 103. We tuned the parameter with ten-fold cross validation of 

training data; we repeat the random split 10 times, and report the 

average performance on the test sets. To obtain a performance 

baseline, we ran the SVM classifiers with the basic features (BF) 

only as the input vectors.  We also ran the classifiers with 

additional features, namely, BF+NC for using basic features plus 

the Newman-cluster (NC) features, BF+SI for using basic features 

plus the social importance (SI) features, BF+SIP for using basis 

features plus SIP features, and their complete combination, 

namely  BF+NC+SI+SIP. 

5.5 Metric  
We use MAE (Mean Absolute Error) as the main evaluation 

metric, which is standard in evaluating systems that produce 

multi-level discrete predictions.  MAE is defined as:  

 


N

i ii
yyNMAE

1
ˆ/1 , 

where N is the number of messages in the test set, 
i

y  is the true 

importance level of message i, and 
i

ŷ is the predicted importance 

level for that message. Since we have five levels of importance, 

the MAE scores range from zero (the best possible) to four (the 

worst possible).  

 There are two conventional ways to compute the 

performance average over multiple users. One way is pooling the 

test instances from all users to obtain a joint test set, and 

computing the MAE on the pool.  This way has been called 

micro-averaged MAE. The other way is to compute the MAE on 

the test instances of each user and then take the average of the 

per-user MAE values.  This way has been called as macro-

averaged MAE.  The former gives each instance an equal weight, 

and is possibly dominated by the system’s performance on the  



Table 2: Detailed evaluation results of SVMs with each representation scheme and varying training-set sizes. Macro-averaged 

MAE scores are provided with p-values, indicating the statistical significances of performance improvement over that of BF (using 

basic features alone). Numbers in bold font indicate the best method for each fixed training-set size. One star indicates the p-values 

in (0.01, 0.05]; two stars indicate the p-values equal or less than 1%. 

  BF BF+NC BF+SI BF+SIP BF+SI+NC BF+SI+NC+SIP 

# of tr MAE MAE p-value MAE p-value MAE p-value MAE p-value MAE p-value 

10 0.9666 0.9063 * 0.0382 0.8837 * 0.0106 0.8968 * 0.0311 0.9112 * 0.0211 0.8827 ** 0.0087 

20 0.9720 0.8969 0.0506 0.8596 * 0.0315 0.9095 * 0.0435 0.9071 0.0558 0.8659 * 0.0235 

30 0.9210 0.8318 * 0.0334 0.7994 * 0.0182 0.8224 * 0.0149 0.8305 * 0.0324 0.8096 * 0.0210 

40 0.8851 0.7995 * 0.0239 0.7911 * 0.0367 0.8029 0.0587 0.8155 * 0.0465 0.7869 * 0.0279 

50 0.8639 0.7820 * 0.0347 0.7613 * 0.0219 0.7900 0.0774 0.7766 * 0.0210 0.7625 * 0.0205 

60 0.8447 0.7820 0.0890 0.7514 * 0.0416 0.7603 * 0.0463 0.7607 * 0.0284 0.7363 * 0.0198 

70 0.8294 0.7662 0.0636 0.7218 * 0.0105 0.7679 0.1237 0.7560 * 0.0354 0.7184 * 0.0135 

80 0.8257 0.7596 * 0.0494 0.7324 * 0.0261 0.7763 0.1678 0.7433 * 0.0250 0.7157 * 0.0109 

90 0.8294 0.7521 * 0.0352 0.7295 * 0.0174 0.7598 0.0711 0.7315 ** 0.0086 0.7142 ** 0.0087 

100 0.8127 0.7411 * 0.0225 0.7236 * 0.0180 0.7634 0.1629 0.7314 * 0.0184 0.7098 * 0.0103 

110 0.8060 0.7268 * 0.0199 0.7168 * 0.0286 0.7542 0.1318 0.7142 * 0.0159 0.7046 * 0.0127 

120 0.8105 0.7232 * 0.0183 0.7090 * 0.0154 0.7426 0.0727 0.7135 * 0.0144 0.6960 ** 0.0071 

130 0.8028 0.7207 * 0.0287 0.6980 * 0.0156 0.7449 0.0997 0.7105 * 0.0148 0.6904 ** 0.0058 

140 0.7960 0.7100 * 0.0136 0.7112 * 0.0262 0.7389 0.1039 0.7087 * 0.0176 0.6842 ** 0.0050 

150 0.7992 0.7073 * 0.0186 0.7178 0.0594 0.7412 0.0873 0.7034 * 0.0142 0.6963 * 0.0128 

AVG 0.8510 0.7737 0.0360 0.7538 0.0252 0.7847 0.0862 0.7676 0.0862 0.7449 0.0139 

 

data of a user who has the largest test set.  The latter gives each 

user an equal weight instead.  Both methods can be informative; 

therefore we present the evaluation results in both metrics. 

We also conducted a one-sample t-test for assessing the 

statistical significance of performance improvement for SVMs 

with using different feature types in the input vectors.  For 

example, for comparing SVM using BF+SI and the baseline 

SVMs (using BF only), we calculated the difference in the 

absolution error of the former and the absolution error of the latter 

on each test instance, and used the mean of the per-instance 

differences to estimate the p-value under the hull hypothesis 

(which assumes a zero mean).  

5.6 Results 
Figure 4 shows the performance curves of SVM runs with 

different representation schemes for email messages.  Detailed 

scores in macro-averaged MAE are given in Table 2. It can be 

observed that BF had the worst performance. Using the social-

network based features (NC, SI and SIP) features in addition 

significantly reduced the importance prediction errors in most 

cases for the training-set sizes we tested. On average, the relative 

error reduction in macro-averaged MAE is 14%, i.e., from 0.8510 

to 0.7449 (see the last row of Table 2 and Figure 4b). The relative 

error reduction in micro-averaged MAE reduction (not shown 

explicitly in Table 2 but observable in Figure 4a) is 31%, i.e., 

from 0.7759 to 0.5909. All the training-set sizes are relatively 

small, compared to large data collections used in benchmark 

evaluations for text categorization, e.g., the RCV1 news-story 

collection has 780,000 training examples for 103 categories. This 

is exactly a part of the difficulty we must deal with for 

personalized email prioritization.  It is evident in our results that 

personal social networks and semi-supervised importance can be 

effectively leveraged for addressing such the paucity of labeled 

training data. 

It can also be observed that using the complete combination 

of all the features (BF+NC+SI+SIP) is significantly better than 

adding each type of the social-network feature alone in most cases 

(graph a in Figure 4).  As for using micro-average MAE as the 

performance measure (graph a in Figure 4), the complete 

combination of features had best results when the training-set 

sizes was not small (from the size of 50); BF+SI was the best for 

small training sets (of size 20).  These observations suggest that 

social importance was better captured for most of the users when 

the training-set sizes were relatively small.    Overall, using each 

type of social network feature alone may not be sufficient for 

characterizing the social roles and personal social networks of all 

the users. On the other hand, using the combining all the features 

enables us to model users with complementary features and hence 

to predict personal priorities robustly. Our detailed performance 

analyses (omitted here due to the space limit of the paper) on a 

per-user basis confirmed the above assertion.   

6. RELATED WORK 

Statistical learning methods for performing email-based prediction 

tasks are becoming an increasingly important research area. We 

briefly discuss related methods with respect to their relevance to 

our work. 

        Among the early efforts in email prioritization, Horvitz et al. 

[11] built an email alerting system which used Support Vector 

Machines to classify newly arrived email messages into two 

categories, i.e., high or low in terms of utility. Probabilistic scores 

were also provided along with the system-made predictions. 

Personalization, however, was not considered in their method, and 

social network analysis was not their technical focus. 

Tyler et al. [18] utilized Newman clustering algorithm to 

discover social structures automatically from email messages. 



 

(a) Performance curves in micro-averaged MAE 

 

 

 (b) Performance curves in macro-averaged MAE 

Figure 4 Performance curves in MAE (Mean Absolute Error). 

The horizontal axis is the training-set size used in the learning 

phase of SVMs.  The vertical axis in graph (a) is the micro-

averaged MAE, and in graph (b) is the macro-averaged MAE. 

A lower value in MAE means the better performance.  

They found that the automatically-discovered social structures are 

quite similar, or consistent, with human interpretation of 

organizational structures. They also used email social networks to 

identify social leaders. However, they did not use the social 

network analysis (clusters or leadership scores) to prioritize email 

messages. 

Gomes et al. [9] used email messages to automatically group 

users in two ways, i.e., by sender clusters and by recipient clusters, 

respectively. The senders were clustered based on similarity of 

their recipient lists, and the recipients were clustered based on 

similarity of their sender lists as well; email contents were not 

used. They examined the use of those clusters in spam detection, 

i.e., to separate spam messages from non-spam messages. 

Prioritization among non-spam messages, however, was not 

addressed.  

Boykin and Roychowdhury [2] used clustering coefficients 

as enriched features to represent email messages and a Bayesian 

classifier to detect spam messages.  Martin et al. [15] used the out-

degree (the number of unique recipients) and in-degree (the 

number of unique senders) of each person in an email social 

network to detect worms which propagated through the email 

messages. Prioritization among non-spam messages was again not 

addressed by those methods. 

Neustaedter et al. [16] defined metrics for measuring the 

social importance of individuals based on the observations in the 

email fields: from, to and cc, and in the recorded actions of 

replying and reading. They used these metrics for retrieving old 

email messages rather than prioritizing incoming email messages 

Johansen et al. [14] proposed a social clustering approach to 

importance prediction of email messages. They collected email 

data from multiple users and induced social clusters of users.  For 

each user, some clusters are treated as ―important‖ and the others 

are not. The importance of each test instance of email message is 

predicted based on the cluster membership of its sender: if the 

sender belongs to an important cluster, then the messages is 

considered important; otherwise, it is predicted as not important.. 

The fundamental difference in their method from ours is that their 

clusters were induced from a community social network, not  

based on personal social networks. In addition, they only focused 

on social associations, not taking any textual features into account 

in the modeling and the prediction of importance.  

Minkov et al. [7] used automatically-induced graphs to 

associate senders, email folders and messages, and a random-walk 

algorithm (e.g., a PageRank like method) to leverage the 

associations in predicting folders and recipients for email 

messages. . Email prioritization, personalized or otherwise, was 

not addressed in their approach.  

In summary, there is a rich body of work in statistical 

learning approaches to email-based tasks. However, how to fully 

leverage personal email social networks in combination with 

email content for personalized email prioritization has not been 

studied in depth. Leveraging the good ideas in previous work and 

developing new techniques further with respect to personalized 

email prioritization is the unique focus and main contribution in 

this paper.   

 

7. CONCLUSIONS AND FUTURE WORK 
This paper presents the first study of personalized email 

prioritization under the assumption that only personal email data 

are available during the training and testing of the system. 

Specifically, we focus on social network analysis to capture user 

groups in each personal social network, and to obtain rich features 

for representing their user-centric social importance.  We further 

developed a novel semi-supervised (transductive) learning 

algorithm that propagates importance values among nodes 

(messages or people) in each partially labeled and personal email 

network. These methods enable us to obtain an enriched vector 

representation of each new email message, as the basis of accurate 

modeling of individual users and for generating robust predictions 

for individual users in email prioritization. The effectiveness of 

the proposed approach is strongly evident in our experiments on 

personal email data from multiple users.  

Future work would include collection of more data from a 

larger number of users and in a longer time period for thorough 

evaluation. We are also interested in a comparative study on 

different clustering algorithms and graph-mining techniques with 

respect to their effectiveness in mining social networks for 

personalized email prioritization. 
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