
Syskill & Webert: Identifying interesting web sites
Michael Pazzani, Jack Muramatsu & Daniel Billsus
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92717

pazzani@ics.uci.edu

Abstract
We describe Syskill & Webert, a software agent that learns
to rate pages on the World Wide Web (WWW), deciding
what pages might interest a user. The user rates explored
pages on a three point scale, and Syskill & Webert learns
a user profile by analyzing the information on each page.
The user profile can be used in two ways. First, it can be
used to suggest which links a user would be interested in
exploring. Second, it can be used to construct a LYCOS
query to find pages that would interest a user. We compare
six different algorithms from machine learning and
information retrieval on this task. We find that the naive
Bayesian classifier offers several advantages over other
learning algorithms on this task. Furthermore, we find that
an initial portion of a web page is sufficient for making
predictions on its interestingness substantially reducing the
amount of network transmission required to make
predictions.

1 Introduction
There is a vast amount of information on the World

Wide Web (WWW) and more is becoming available daily.
How can a user locate information that might be useful to
that user? In this paper, we discuss Syskill & Webert, a
software agent that learns a profile of a user's interest, and
uses this profile to identify interesting web pages in two
ways. First, by having the user rate some of the links from
a manually collected “index page” Syskill & Webert can
suggest which other links might interest the user. Syskill &
Webert can annotate any HTML page with information on
whether the user would be interested in visiting each page
linked from that page. Second, Syskill & Webert can
construct a LYCOS (Maudlin & Leavitt, 1994) query and
retrieve pages that might match a user's interest, and then
annotate this result of the LYCOS search. Figure 1 shows
a Web page (http://ai.iit.nrc.ca/subjects/ai_subjects.html)
that has been annotated by Syskill and Webert. This web
page is a subject listing of AI topics that serves as an
example of one index page. In this case, the user has
indicated strong interest in “Machine Learning” and
“Reinforcement Learning” (indicated by two thumbs up), a
mild interest in “Agents” (indicated by one thumb up and
one thumb down) and no interest in “Business, Finance

and AI” and “Philosophy of AI’ (indicated by two thumbs
down). The other annotations are the predictions made by
Syskill & Webert about whether the user would be
interested in each unexplored page. A smiley face indicates
that the user hasn't visited the page and Syskill & Webert
recommends the page to the user. For this topic, these
pages are “Neural Networks,” “Evolutionary Algorithms,”
“Bayesian Inference,” “General AI,” and “Case-Based
Reasoning.” The international symbol for "no" is used to
indicate a page hasn't been visited and the learned user
profile indicates the page should be avoided. Following
any prediction is a number between 0 and 1 indicating the
probability the user would like the page.

In this paper, we first describe how the Syskill & Webert
interface is used and the functionality that it provides.
Next, we describe the underlying technology for learning a
user profile and how we addressed the issues involved in
applying machine learning algorithms to classify HTML
texts rather than classified attribute-value vectors. We
describe experiments that compare the accuracy of several
algorithms at learning user profiles. Finally, we relate
Syskill & Webert to other agents for learning on the Web.

2 Syskill & Webert
Syskill & Webert learns a separate profile for each topic

of each user. We decided to learn a profile for user topics
rather than users for two reasons. First, we believe that
many users have multiple interests and it will be possible to
learn a more accurate profile for each topic separately since
the factors that make one topic interesting are unlikely to
make another interesting. Second, associated with each
topic is a URL that we call an index page. The index page
is a manually constructed page that typically contains a
hundred or more links to other information providers. For
e x a m p l e , t h e W e b p a g e a t
http://golgi.harvard.edu/biopages/all.html

contains links to over 400 sites on the topic of Biosciences.
Syskill & Webert allows a user to explore the Web using
the index page as a starting point. In one mode of using
Syskill & Webert, it learns a profile from the user's ratings
of pages and uses this profile to suggest other pages
accessible from the index page. To collect ratings, the
HTML source of users’ pages is intercepted, and an

.

Figure 1. An example of a page annotated by Syskill & Webert.

Figure 2. Syskill & Webert Interface for rating pages

additional functionality is added to each page (see Figure
2). This functionality allows the user to rate a page as
either hot (two thumbs up), lukewarm (one thumb up and
one thumb down), or cold (two thumbs down). The user
can return to the index page or switch topics. Furthermore,
the user can instruct Syskill & Webert to learn a user-
profile for the current topic, make suggestions or consult
LYCOS to search the Web.

When a user rates a page, the HTML source of the page
is copied to a local file and a summary of the rating is
made. The summary contains the classification (hot, cold,
or lukewarm), the URL and local file, the date the file was
copied (to allow for the bookkeeping that would occur

when a file changes), and the page’s title (to allow for the
production of a summary of the ratings).

Syskill & Webert adds functionality to the page (see
Figure 2) for learning a user profile, using this user profile
to suggest which links to explore from the index page, and
forming LYCOS queries. The user profile is learned by
analyzing all of the previous classifications of pages by the
user on this topic. Syskill & Webert also contains a
function to retrieve and locally store the HTML source of
all links accessible from the current page. Syskill &
Webert analyzes the HTML source of a page to determine
whether the page matches the user's profile. To avoid
network transmission overhead during our experiments, we

Figure 3 Syskill & Webert constructs a LYCOS query from a user profile.

prefetch all pages. This also ensures that experiments are
repeatable if a page changes or is no longer accessible

Once the user profile has been learned, it can be used to
determine whether the user would be interested in another
page. However, this decision is made by analyzing the
HTML source of a page, and it requires the page to be
retrieved first. To get around network delays, we allow the
user to prefetch all pages accessible from the index page
and store them locally. Once this has been done, Syskill &
Webert can learn a new profile and make suggestions about
pages to visit quickly. Section 5 discusses one means of
avoiding a significant amount of network transmission
overhead. Once the HTML has been analyzed, Syskill &
Webert annotates each link on the page with an icon
indicating the user's rating or its prediction of the user's
rating together with the estimated probability that a user
would like the page. Following any prediction is a number
between 0 and 1 indicating the probability the user would
like the page. The default version of Syskill & Webert uses
a simple Bayesian classifier (Duda & Hart, 1973) to
determine this probability. Note that these ratings and
predictions are specific to one user and do not reflect on
how other users might rate the pages.

As described above, Syskill & Webert is limited to
making suggestions about which link to follow from a
single page. This is useful if someone has collected a
nearly comprehensive set of links about a topic. Syskill &
Webert contains another feature that is useful in finding
pages that might interest a user anywhere on the Web
(provided the pages have been indexed by LYCOS). The
user profile contains information on two types of words
that occur in pages that have been rated. First, it contains
words that occur in the most number of pages that have
been rated "hot." For these words, we do not consider
whether they have also occurred in pages that have other
ratings. However, we ignore common English words and
all HTML commands. The second set of words we use are
those whose presence in an HTML file helps discriminate

pages that are rated hot from other pages. As described in
Section 3, we use mutual information to identify
discriminating words. Since LYCOS cannot accept very
long queries, we use the 7 most discriminating words that
are found in a higher proportion of hot pages than all pages
and the 7 most commonly occurring words as a query.
The discriminating words are useful in distinguishing pages
of a given topic but do not describe the topic. For example
(see Figure 3) the discriminating words for one user about
the Biosciences are “grants,” “control,” “WUSTL,” “data,”
“genome,” “CDC,” and “infectious.” The common words
are useful for defining a topic. In the example in Figure 3
these are “university,” “research,” “pharmacy,” “health,”
“journal,” “biology,” and “medical.”

LYCOS indexes a large percentage of the Web and can
quickly identify URLs whose pages contain certain
keywords. However, it requires a user to filter the results.
Syskill & Webert can be used to filter the results of
LYCOS (provided the pages are fetched). For example,
Figure 3 shows part of a LYCOS result that has been
augmented by Syskill & Webert to contain a
recommendation against visiting one page.

3 Learning a user profile.
Learning algorithms require a set of positive examples

of some concepts (such as web pages one is interested in)
and negative examples (such as web pages one is not
interested in). In this paper, we learn a concept that
distinguishes pages rated as hot by the user from other
pages (combining the two classes lukewarm and cold, since
few pages are rated lukewarm, and we are primarily
interested in finding pages a user would consider hot).
Most learning programs require that the examples be
represented as a set of feature vectors. Therefore, we have
constructed a method of converting the HTML source of a
web page into a Boolean feature vector. Each feature has a
Boolean value that indicates whether a particular “word” is
present (at least once) or absent in a particular web page.

For the purposes of this paper, a word is a sequence of
letters, delimited by nonletters. For example, the URL

contains nine “words” a, href, http, golgi, harvard, edu,
biopages, all, and html. All words are converted to upper
case.

Not all words that appear in an HTML document are
used as features. We use an information-based approach,
similar to that used by an early version of the NewsWeeder
program (Lang, 1995) to determine which words to use as
features. Intuitively, one would like words that occur
frequently in pages on the hotlist, but infrequently on pages
on the coldlist (or vice versa). This is achieved by finding
the expected information gain (E(W,S)) (e.g., Quinlan,
1986) that the presence or absence of a word (W) gives
toward the classification of elements of a set of pages (S):

E(W,S) = I(S) – [P(W=present)I(Sw=present)
 +P(W=absent)I(Sw=absent)]

where

I(S) = -p Sc log2 p Sc∑
c ∈ {hot, cold}

P(W=present) is the probability that W is present on a

page, Sw=present is the set of pages that contain at least

one occurrence of W, and Sc are the pages that belong to
the class. Using this approach, we find the set of k most
informative words. In the experiment discussed in Section
4, we use the 128 most informative words. In
experimentation not reported here, we’ve found that values
of k between 75 and 150 produce acceptable accuracies.
Table 1 shows some of the most informative words
obtained from a collection of 140 HTML documents on
independent rock bands.

Table 1. Some of the words used as features.
nirvana suite lo
fi snailmail him
pop records rockin
little singles recruited
july jams songwriting
college rr his
following today write
handling drums vocals
island tribute previous
smashing haunting bass
favorite airplay noise

Once the HTML source for a given topic has been
converted to positive and negative examples represented as
feature vectors, it’s possible to run many learning
algorithms on the data. We have investigated a variety of

machine learning algorithms including the Bayesian
classifier (Duda & Hart, 1973), the nearest neighbor
algorithm (Duda & Hart, 1973), ID3 (Quinlan, 1986),
perceptrons (Widrow & Hoff, 1960) and multi-layer
networks (with 12 hidden units) trained with error
backpropagation (Rummelhart, Hinton & Williams, 1986).

4 Experimental Evaluation
To determine whether it is possible to learn user

preferences accurately, we have had four users use the
Syskill & Webert interface to rate pages. A total of six
different user profiles were collected (since one user rated
pages on three different topics). The topics are
summarized in Table 2 together with the total number of
pages that have been rated by the user. Two users rated the
pages on independent recording artists. One (A) listened to
an excerpt of songs, and indicated whether the song was
liked. Of course, the machine learning algorithms only
analyze the HTML source describing the bands and do not
analyze associated sounds or pictures. Another user (B)
read about the bands (due to the lack of sound output on the
computer) and indicated whether he’d be interested in the
band.

Syskill & Webert is intended to be used to find unseen
pages the user would like. In order to evaluate the
effectiveness of the learning algorithms, it is necessary to
run experiments to see if Syskill & Webert’s prediction
agrees with the users preferences. Therefore we use a
subset of the rated pages for training the algorithm and
evaluate the effectiveness on the remaining rated pages.
For an individual trial of an experiment, we randomly
selected k pages to use as a training set, and reserved the
remainder of the data as a test set. From the training set,
we found the 128 most informative features, and then
recoded the training set as feature vectors to be used by the
learning algorithm. We tried five learning algorithms on
each training set. The learning algorithm created a
representation for the user preferences. Next, the test data
was converted to feature vectors using the features found
informative on the training set. Finally, the learned user
preferences were used to determine whether pages in the
test set would interest the user. For each trial, we recorded
the accuracy of the learned preferences (i.e., the percent of
test examples for which the learned preferences agreed
with the user’s interest). We ran 30 paired trials of each
algorithm. Figure 4 shows the average accuracy of each
algorithm as a function of the number of training examples
for four problems. The results on the two problems not
shown are similar.

Table 2. Topics used in our experiments.

User Topic URL of topic’s index page Pages

A Biomedical http://golgi.harvard.edu/biopages/medicine.html 127

A Lycos not applicable 54

A Bands(listening) http://www.iuma.com/IUMA-2.0/olas/location/USA.html 57

B Bands (reading) http://www.iuma.com/IUMA-2.0/olas/location/USA.html 154

C Movies http://rte66.com/Movies/blurb.html 48

D Protein http://golgi.harvard.edu/sequences.html 26

The results are promising in that on most of the
problems the predictions are substantially better than
simply guessing that the user would not be interested in a
page (which is the most frequent prediction on all topics).
However, no one algorithm is clearly superior on this set.
To get a more detailed idea of which algorithms perform
well, we ran another experiment with 24 trials and 20
training examples in each domain and the algorithm(s) that
were most and least accurate. In each case, we used a
paired, two tailed t-test to find other algorithms that were
not significantly different from the best and the worst. On
the biomedical domain, the naive Bayesian classifier was
most accurate and ID3 was least. On the LYCOS search
domain, nearest neighbor was most accurate and ID3 was
least. On the bands (listening) problem, nearest neighbor,
the naive Bayesian classifier and backpropagation were
most accurate and ID3 was least. On the bands (reading)
problem nearest neighbor and backpropagation were most
accurate and ID3 was least. On the movies domain the
naive Bayesian classifier was most accurate and nearest
neighbor and ID3 were least. On the protein problem,
nearest neighbor, ID3 and the naive Bayesian classifier
were most accurate and backprop and the perceptron were
least accurate. In summary, it appears that ID3 is not
particularly suited to this problem, as one might imagine
since it learns simple necessary and sufficient descriptions
about category membership. A typical decision made by
ID3 looks at the presence or absence of 3-5 words and this
may be too brittle for a domain such as this. Although one
must be careful not to read too much into averaging
accuracies across domains, the naive Bayesian classifier
has the highest average accuracy with 20 training
examples: 77.1 (standard deviation 4.4). In contrast,
backprop is 75.0 (3.9), nearest neighbor is 75.0 (5.5), and
ID3 is 70.6 (3.6). We have also experimented with a more
advanced decision tree learner using pruning with similar
results.

We have decided to use the naive Bayesian classifier as
the default algorithm in Syskill & Webert for a variety of
reasons. It is very fast for both learning and predicting. Its

learning time is linear in the number of examples and its
prediction time is independent of the number of examples.
It is trivial to create an incremental version of the naive
Bayesian classifier. It provides relatively fine-grained
probability estimates that may be used to order the
exploration of new pages in addition to rating them. For
example, on the biomedical domain, we used a leave-one-
out testing methodology to predict the probability that a
user would be interested in a page. The ten pages with the
highest probability were all correctly classified as
interesting and the 10 pages with the lowest probability
were all correctly classified as uninteresting. There were
21 pages whose probability of being interesting was above
0.9 and 19 of these were rated as interesting by the user.
There were 64 pages whose probability of being interesting
was below 0.1 and only 1 was rated as interesting by the
user.

In the final experiment, we’ll concentrate our
experimentation on the naive Bayesian classifier with 20
training examples. We choose a small number of examples
since most users will want to get results after ranking such
a small number of pages. We investigate whether it is
possible to get similar accuracy with less work by looking
at an initial portion of the page during learning and
prediction.

As described so far, it is necessary to store the complete
HTML source of every page rated by the user and to
evaluate an unseen page it is necessary to retrieve the entire
HTML to convert the page to a feature vector. Here, we
investigate an alternate approach. Instead of analyzing the
entire HTML to find informative words, only the words
contained in the initial c characters are used during learning
when creating a profile and only those words in the initial c
characters are used to predict whether a user would like
the page. Of course, we still select the 128 most
informative words in the initial portions of the pages. Note
that we look at an initial sequence of characters, rather than
words, since the protocol for transmission of segments of
the file is based on characters.

403020100
55

60

65

70

75

80

85

NearN
ID3
Perceptron
Backprop
Bayes
Most Frequent

Number of Examples

A
cc

u
ra

cy

Movies

50403020100
68

70

72

74

76

78

Number of Examples

A
cc

u
ra

cy

Biomedical

403020100
70

75

80

85

Number of Examples

A
cc

u
ra

cy

LYCOS (Biomedical)

252015105
65

70

75

80

Number of Examples

A
cc

u
ra

cy

Protein

Figure 4. Accuracy of learning algorithms

We ran an experiment with the naive Bayesian classifier
on the six domains with 20 training examples where we
varied the value of c. The values used were 256, 512,
1024, 2048, 3072, 4096 and infinity (i.e., using the entire
document). The results of this experiment, averaged over

24 trials, are shown in Figure 5. We plot each domain
separately and also plot an average over the six domains.

While in some domains (protein, bands and LYCOS),
there is an advantage in not analyzing the entire document,
on average there is a small decrease in accuracy. For

example, only looking at the first 2048 characters yields an
average accuracy of 74.2 while looking at all characters
yields an accuracy of 76.3. We have run experiments with
all of the other learning algorithms and the general pattern
is the same. On average, it is best to analyze the entire file,
but the first 1024 -2048 characters is sufficient to achieve
nearly the same accuracy. Usually, less than 512
characters results in a significant decrease in accuracy.

Although there is a small decrease in accuracy when
looking at the initial segment of the file, in the next version
of Syskill & Webert we will store and process only an
initial segment to reduce the transmission overhead
associated with fetching pages to rank. We also note that
many users of Syskill & Webert rate a page as interesting
without looking at the entire page and that many
information retrieval systems index abstracts rather than
the full text of a document.

Anecdotally, we have observed that some errors in
Syskill & Webert are caused by analyzing too much of a
page. For example, Syskill & Webert sometimes rates a
page as interesting to a user when it is not. Sometimes this
occurs because the page itself is uninteresting, while at the
bottom of the page, there are pointers and short
descriptions of related interesting sites. This may explain
why in some domains the accuracy of Syskill and Webert is
improved when only analyzing an initial segment.

500040003000200010000
50

60

70

80

90

bands (reading)
bands (listening)
biomedical
lycos
movies
protein
Average

Number of Characters

A
cc

u
ra

cy

All

Figure 5 The effect of only analyzing the initial c
characters of a file.

5 Related work
The methods developed for our learning agent are

related to work in information retrieval and relevance
feedback (e.g., Salton & Buckley, 1990; Croft & Harper,

1979). However, rather than learning to adapt user queries,
we are developing a user profile that may be used for
classification tasks such as filtering new information as it
becomes available. We experimented with several IR
algorithms to perform classification tasks (e.g., by
weighting the nearest neighbor similarity metric by the TF-
IDF weight, or applying a variant of Rocchio’s method
(Rocchio, 1971). We do not report on the results in this
paper due to space limitations, but in our initial
experiments the Bayesian classifier was nearly always
more accurate.

There are several other agents designed to perform tasks
similar to ours. The WebWatcher (Armstrong, Freitag,
Joachims, and Mitchell, 1995) system is designed to help a
user retrieve information from Web sites. When given a
description of a goal (such as retrieving a paper by a
particular author), it suggests which links to follow to get
from a starting location to a goal location. It learns by
watching a user traverse the WWW and it helps the user
when similar goals occur in the future. The WebWatcher
and the work described here serve different goals. In
particular, the user preference profile learned by Syskill &
Webert may be used to suggest new information sources
related to ones the user is interested in.

6 Future Work
We are planning two types of enhancements to Syskill &

Webert. First, we will investigate improvements to the
underlying classification technology:
• Explore the use of ordinal rather than Boolean features.

Boolean features indicate whether a word is present or
absent in a document. The ordinal features could
indicate the number of times a word is present. Note
that words include items such as "jpg" and "html" so
these may be used to make decisions based on the
number of pictures or links if they are informative. Like
extensions to TF-IDF, these may be normalized to the
length of the document.

• Using linguistic and hierarchical knowledge in the
forming of features. Linguistic routines such as
stemming (i.e., finding the root forms of words) may
improve the accuracy of Syskill & Webert by having a
smaller number of more informative features.
Currently, words in the pages are used as features
without any knowledge of the relationship between
words such as "protein" and "proteins." Semantic
knowledge such as the relationship between "pigs" and
"swine" may also prove useful. Similarly, knowing that
"gif," "jpg" and "jpeg" are all extensions of graphic files
would facilitate Syskill & Webert learning that a user
has a preference for (or against) pages with in-line
graphics.

Another set of enhancements to Syskill & Webert
involve the redesign of the user interface to make it more
interactive. We are currently reimplementing many of its
capabilities as a Netscape plugin. One important advantage
of this reimplementation is that the user profile can then be
stored on the client rather than on the Syskill & Webert
server. We are also exploring several other enhancements
to the interface that will make it easier to use (and as a
consequence allow us to collect more data for our
experiments).
• Implementing routines that interactively annotate the

index page with Syskill & Webert's predictions as the
initial 2k of each link is processed. Currently, no
annotations are added until all links have been retrieved
and rated. We allow the user to prefetch links so that
the rating can occur rapidly, but this does require
patience the first time Syskill & Webert is used and disk
space to store local copies of files.

• Currently, Syskill & Webert retrieves the original
source of a page to determine its interestingness.
Several of the Web search engines such as LYCOS
store a summary of the page. We are implementing
routines to use this summary for rating the
interestingness of a page. Combined with the previous
option, this will reorder the suggestion made by LYCOS
based on the user's profile. This may be particularly
useful with “CyberSearch” which is a copy of much of
the LYCOS database on CD-ROM eliminating the
network connection overhead as well as the network
transmission overhead

7 Conclusions
We have introduced an agent that collects user

evaluations of the interestingness of pages on the World
Wide Web. We have shown that a user profile may be
learned from this information and that this user profile can
be used to determine what other pages might interest the
user. Such pages can be found immediately accessible
from a user-defined index page for a given topic or by
using a Web search engine. Experiments on six topics
with four users showed that the Bayesian classifier
performs well at this classification task, both in terms of
accuracy and efficiency. Other learning algorithms that
make classifications based on combining evidence from a
large number of features also performed well. ID3 was not
very accurate perhaps since it tries to minimize the number
of features it tests to make a classification and accurate
classifications cannot be based on the presence or absence

of a few words. Further experimentation showed that
nearly the same classification accuracy could be achieved
by looking only at the initial portion of a page, suggesting
an enhancement to the interface that reduces storage space
and network transmission overhead.

Acknowledgments
The research reported here was supported in part by

NSF grant IRI-9310413 and ARPA grant F49620-92-J-
0430 monitored by AFOSR.

References
Armstrong, R. Freitag, D., Joachims, T., and Mitchell,

T. (1995). WebWatcher: A learning apprentice for the
World Wide Web.

Croft, W.B. & Harper, D. (1979). Using probabilistic
models of document retrieval without relevance. Journal of
Documentation, 35, 285-295.

Duda, R. & Hart, P. (1973). Pattern classification and
scene analysis. New York: John Wiley & Sons.

Lang, K. (1995). NewsWeeder: Learning to filter news.
Proceedings of the Twelfth International Conference on
Machine Learning. Lake Tahoe, CA.

Maudlin, M & Leavitt, J. (1994). Web Agent Related
Research at the Center for Machine Translation
Proceedings of the ACM Special Interest Group on
Networked Information Discovery and Retrieval

Minsky, M., & Papert, S. (1969). Perceptrons .
Cambridge, MA: MIT Press.

Quinlan, J.R. (1986). Induction of decision trees.
Machine Learning, 1, 81–106.

Rumelhart, D., Hinton, G., & Williams, R. (1986).
Learning internal representations by error propagation. In
D. Rumelhart and J. McClelland (Eds.), Parallel
Distributed Processing: Explorations in the Microstructure
of Cognition. Volume 1: Foundations, (pp 318-362).
Cambridge, MA: MIT Press.

J. Rocchio (1971) Relevance Feedback in Information
Retrieval. In Gerald Salton, editor, The SMART Retrieval
System: Experiments in Automatic Document Processing,
pages 313 - 323. Prentice Hall, Englewood Cliffs, NJ.

Salton, G. & Buckley, C. (1990). Improving retrieval
performance by relevance feedback. Journal of the
American Society for Information Science, 41, 288-297.

Widrow, G., & Hoff, M. (1960). Adaptive switching
circuits. Institute of Radio Engineers, Western
Electronic Show and Convention, Convention Record,
Part 4.

